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ABSTRACT. We consider degenerations of complex projective Calabi–Yau varieties and study the singularities
of L2, Quillen and BCOV metrics on Hodge and determinant bundles. The dominant and subdominant
terms in the expansions of the metrics close to non-smooth fibers are shown to be related to well-known
topological invariants of singularities, such as limit Hodge structures, vanishing cycles and log-canonical
thresholds. We also describe corresponding invariants for more general degenerating families in the case of
the Quillen metric.
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1. INTRODUCTION

In this article we study the singularities of several natural metrics on combinations of Hodge type
bundles, for degenerating families of complex projective algebraic varieties. In particular we provide
topological interpretations of invariants associated to logarithmic singularities of these metrics. Our
original motivation was a metrical approach to the canonical bundle formula for families of Calabi–Yau
varieties [Kaw98, FM00, Amb04, Kol07]. The first instance of this formula goes back to Kodaira [Kod64,
Thm. 12], and describes the relative canonical bundle of an elliptic surface in terms of a positive modular
part and some topological invariants of the singular fibers. We were thus naturally led to the study of
Hodge type bundles, their metrics and behavior close to singular fibers.

As a matter of motivation, a classical example to keep in mind is the Hodge bundle f∗ωX /S for a family
of compact Riemann surfaces f : X → S, endowed with its canonical L2-metric or a Quillen metric on its
determinant bundle (cf. section 3.1). The latter topic is the main focus of the work of Bismut–Bost [BB90].
In the semi-stable case, they describe the singularities and the curvature current of the Quillen metric on
the determinant of the Hodge bundle. In the special case where S is the unit disk and there is a unique
singular fiber X0 at 0 ∈ S, the principal part of the curvature current is of the form

#sing(X0)

12
δ0,

where δ0 is the Dirac current at 0 and #sing(X0) is the number of singular points in the fiber X0.
In this article, we study analogues of this phenomenon for L2-metrics on Hodge bundles for Calabi–Yau

families (Theorem A), Quillen metrics on determinant bundles (Theorem B) and the so-called BCOV
metric, which has found applications in mirror symmetry for Calabi–Yau 3-folds (Theorem C).

2010 Mathematics Subject Classification. Primary: 14J32, 58K55, 58J52; Secondary: 58K65, 14J70 .

1



To state our contributions, for the purpose of this introduction, we suppose that f : X → S is a flat,
projective map of complex manifolds of relative dimension n, S is the unit disc with parameter s. We
suppose the fibers Xs = f −1(s) connected and smooth for s 6= 0 (we say that f is generically smooth). We
also assume that X carries a fixed Kähler metric. We denote by KX /S = KX ⊗K −1

S the relative canonical
bundle.

Theorem A. Suppose the general fiber of X → S is Calabi–Yau, i.e. with trivial canonical bundle. Let η be a
local holomorphic frame of the line bundle f∗KX /S . Then if we define

||η||2s =
∣∣∣∣∫

Xs

η∧η
∣∣∣∣

we have
− log ||η||2 =α log |s|2 −β log | log |s|2|+O(1)

where

(a) α= 1− cX0 ( f ) ∈ [0,1)∩Q. Here cX0 ( f ) is the log-canonical threshold of (X ,−B , X0) along X0, where
B is the divisor of the evaluation map f ∗ f∗(KX /S) → KX /S . Moreover, exp(−2πiα) is the eigenvalue
of the semi-simple part of the monodromy acting on the graded piece Grn

F H n
lim of the middle limit

Hodge structure of X → S.
(b) β= δ(X , X0) ∈ [0,n]∩N is the degeneracy index of (X , X0), computed through the geometry of the

special fiber and KX /S . Moreover, β+n is the mixed Hodge structure weight of the 1-dimensional
space Grn

F H n
lim.

(c) If X → S is birational to a model Z → S, where Z is normal with KZ locally free, and Z0 has at worst
canonical singularities, then α=β= 0 and the L2-metric is continuous.

This statement summarizes the results in section 2. On the smooth locus, the curvature of the L2-metric
is the Kähler form of the modular Weil-Petersson metric. Hence Theorem A indicates the necessary
correction of the Hodge bundle so that the L2-metric becomes good in the sense of Mumford. A special
case of the third point is morphisms with isolated ordinary quadratic singularities, in which case the L2

metric is continuous.
Versions of Theorem A already appeared in the work of other authors, in slightly different forms.

The third point is proved by Wang in [Wan97, Prop. 2.3 with Cor. 1.2] (see also [RZ11, Thm.B.1] in the
appendix by M. Gross) and in fact a converse is proven by Tosatti in [Tos15, Thm.1.1]. As a special instance
of canonical singularities, we mention the case of ordinary quadratic singularities when n ≥ 2. The
degeneracy index and log-canonical threshold have also been studied by Halle–Nicaise [HN12, Thm.
6.2.2]. In the context of `-adic cohomology, they establish the analogous relationship as in the theorem
above. There is also related work of Berman [Ber16, Sec. 3] on the asymptotics of L2-metrics in terms of
log-canonical thresholds. More recently Boucksom–Jonsson [BJ16] study asymptotics of volume forms
in relationship with non-archimedean limits. Actually, the argument we provide for the asymptotics in
terms of cX0 ( f ) and δ(X , X0) is a specialization of the computations in loc. cit., and was communicated to
us by S. Boucksom, whom we warmly thank.

In sections 3 and 4, we shift our interest to the determinant line bundle endowed with a Quillen type
metric, instead of the direct image of the relative canonical bundle endowed with the L2 metric. The main
feature is that, after normalizing the metric, this bundle still detects the variation in moduli in its smooth
part, and has a degeneration mainly governed by the singular fibers, and weakly depending on their germs
of embedding. Suppose now that V is a hermitian vector bundle on X and let λ(V )Q be the determinant
of the cohomology of V , equipped with the Quillen metric. This has a singularity at 0, and our aim is to
provide a topological measure of it. If σ is a local holomorphic frame of λ(V ), then Yoshikawa [Yos07]
proves that

log ||σ||2Q =
(∫

X0

Y (X /S,V )

)
log |s|2 +R(s) as s → 0,
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where Y (X /S,V ) is a certain cohomology class and R(s) is a continuous function of s. In this article
we study and generalize this class for families of varieties over a general parameter space S, and whose
total space X is not necessarily smooth. This uses and underlines the Nash blowup instead of the Gauss
morphism. The latter was actually introduced by Bismut [Bis97] and then further exploited by Yoshikawa
[Yos07]. Our approach allows us to study the class Y (X /S,V ) from the point of view of Fulton’s intersection
theory, which exhibits functoriality properties to the effect that we can use moduli space arguments in
computations. For the formulation of the theorem, for simplicity, let V be the trivial line bundle and set
Y (X /S) = ∫

X0
Y (X /S,V ).

Theorem B. (a) Suppose that X is an non necessarily smooth family of hypersurfaces inPn parametrized
by the unit disc S. Then

Y (X /S) = (−1)n+1

(n +2)!

∫
X0

c X0
n+1(ΩX /S)

where c X0
n+1(ΩX /S) denotes the localized top Chern class of X → S.

(b) The same formula holds if X → S is a family of K 3 or abelian surfaces, with X smooth and KX

trivial. Then one can conclude that

Y (X /S) = −1

24
(χ(X∞)−χ(X0)).

In fact, for general families X → S with X smooth, we have the fundamental relation∫
X0

c X0
n+1(ΩX /S) = (−1)n(χ(X∞)−χ(X0)).

The expression χ(X∞)−χ(X0) is the total dimension of the vanishing cycles of the family, i.e. the difference
between the topological Euler characteristic of the special fiber X0 and that of a general fiber X∞.

The developments abutting to Theorem B are the object of section 3. We stress here that the intersection
theoretic approach is well suited to other geometric settings. For instance, in the “arithmetic situation"
(i.e. S is the spectrum of a discrete valuation ring of mixed characteristic), the Yoshikawa class can still
be defined and may be seen as a discriminant, meaning a measure of bad reduction. An example of
this principle was studied by the first author in [Eri16], and applied in the study of Quillen metrics on
degenerating Riemann surfaces [Eri12]. This was a source of inspiration for the present work.

We now turn our attention to a particular combination of Hodge type bundles. For a smooth family
f : X → S one can consider the vector bundles Rq f∗Ω

p
X /S coming from the Hodge filtration on relative de

Rham cohomology. Taking weighted determinants of these vector bundles, one introduces the BCOV line
bundle (named after Bershadsky–Cecotti–Ooguri–Vafa)

λBCOV =
n⊗

p=0
λ(Ωp

X /S)(−1)p p =
n⊗

p,q=0
det

(
Rq f∗Ω

p
X /S

)(−1)p+q p
.

Following Fang–Lu–Yoshikawa [FLY08], after a suitable rescaling of the Quillen metric onλBCOV, one defines
the BCOV metric. For a family of Calabi–Yau varieties, this is independent of the initially chosen Kähler
metric, and its curvature is given by the modular Weil–Petersson form. Therefore it is an intrinsic invariant
of the family. As loc. cit. illustrates, for applications to mirror symmetry in physics, it is important to
determine the singularities of the BCOV metric under degeneration. Hence, let us now assume that
f : X → S is only generically smooth. The line bundle λBCOV (initially defined on the smooth locus) has a
natural extension to S, called the Kähler extension, which we denote by λ̃BCOV. Then, the BCOV metric on
λBCOV can be seen as a singular metric on λ̃BCOV. The last statement of this introduction summarizes our
results on the singularities of the BCOV metric on λ̃BCOV, as discussed in section 4.
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Theorem C. Suppose that KX is trivial. Let η be a local holomorphic frame of λ̃BCOV. Then,

(a) the asymptotic expansion of the BCOV metric is

− log ||η||2BCOV =αBCOV log |s|2 − χ(X∞)

12
β log | log |s|2|+O(1).

Here

αBCOV = 9n2 +11n +2

24
(χ(X∞)−χ(X0))+ α

12
χ(X∞)

and α,β are as in Theorem A. In particular, αBCOV is expressed in terms of vanishing cycles and the
topological Euler characteristic of a general fiber.

(b) if the monodromy action on H n
lim is unipotent (e.g. if f is semi-stable), then αBCOV further simplifies

to

αBCOV = 9n2 +11n +2

24
(χ(X∞)−χ(X0)).

(c) if f has only isolated ordinary quadratic singularities and n ≥ 2, then

αBCOV = 9n2 +11n +2

24
#sing(X0),

so that

− log ||η||2BCOV =
9n2 +11n +2

24
#sing(X0) log |s|2 +O(1).

Such families with trivial canonical bundle are commonly known as Kulikov families, named after
work of Kulikov on semi-stable degenerations of K3 surfaces [Kul77]. Examples in other dimensions are
known to exist [KN94, Lee10]. Another situation of Kulikov family is when f has relative dimension n ≥ 2
and presents only isolated singularities so that the Kulikov assumption in the third point of Theorem C
is automatic. In fact, we provide a general closed formula for the logarithmic divergence, without any
assumption on KX . In any event, Theorem C describes the necessary correction to the BCOV metric on
λ̃BCOV in order to obtain a good hermitian metric.

The expression of αBCOV in (c) for ordinary quadratic singularities was first observed by Yoshikawa
(private communication with the authors). Our approach is based on independent ideas, relying on the
general expression (a) and the fact that α=β= 0 for these types of singularities.

Acknowledgements: The authors would like to thank Bo Berndtsson, Sébastien Boucksom, Lars Hal-
vard Halle, Johannes Nicaise, Jan Stevens and Ken-Ichi Yoshikawa for interesting discussions and remarks.
We also would like to extend our gratitude to the Hausdorff Institute for Mathematics in Bonn, where this
project originated, for their support and hospitality, as well as the UMI of the CNRS in Montreal.

2. DEGENERATION OF L2-METRICS ON THE HODGE BUNDLE

2.1. Background on the Hodge bundle for Calabi–Yau and Kulikov families. Let f : X → S be a proper
flat morphism with connected fibers of dimension n, from a complex manifold X to a smooth complex
curve S. We will refer to such a map as a family. Assume that f is generically smooth (or submersive) with
respect to the Zariski topology. The relative cotangent sheafΩX /S (or sheaf of relative Kähler differentials)
then fits into a short exact sequence

0 → f ∗ΩS
d f t

→ ΩX →ΩX /S → 0.(1)

The exactness on the left is guaranteed by the generic smoothness assumption. The relative canonical
bundle is defined to be

KX /S : = KX ⊗ f ∗K −1
S .

It coincides withΛnΩX /S at the points where f is submersive.
Assume now that the smooth fibers of f have trivial canonical bundle. Then the direct image sheaf

f∗(KX /S), the Hodge bundle, is locally free of rank 1. Indeed, it is a torsion-free sheaf on a smooth curve,
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and hence locally free. Moreover, on a Zariski dense open subset of S it has rank 1. The evaluation map of
line bundles

(2) ev : f ∗ f∗(KX /S) → KX /S

is an isomorphism over smooth fibers, by base change, and injective. We denote by B its zero divisor. By
construction, B is a divisor supported in the the singular fibers of f and depends on the model X . The
injectivity of the evaluation map implies that B is effective. By construction it is supported on singular
fibers. With this notations, we have the relation

KX /S = f ∗ f∗(KX /S)⊗OX (B).(3)

We observe that B cannot contain any full fiber of π. For this, let s be a local parameter on the curve S
centred at a point s0. Let η be a local section of π∗(KX ) on an open set U of S, not divisible by s in f∗(KX ).

If the zero divisor B of ev contained the whole fiber Xs0 , then ev f ∗η
s would be a form in KX (π−1(U )). But it

is not of the form ev f ∗µ for some µ in f∗(KX )(U ), hence contradicting the surjectivity of ev on the open
tube (π−1U ).

In the case when B is trivial, we call f : X → S a Kulikov family. Kulikov models are in general difficult to
describe. For families of K3 surfaces Kulikov [Kul77] established the existence of such models in the semi-
stable case. In arbitrary dimension, examples are obtained by smoothing of suitable normal crossings
varieties [KN94, Lee10]. Finally, we remark that if the the special fiber has at least two components, their
intersection is part of the f -singular locus Z and any component therein is of dimension at least n +1−2.
Hence if Z is of dimension at most (n +1)−3 = n −2, then any singular fiber X0 is necessarily irreducible
and reduced. We infer that B =; in this case. A particular instance of this fact is given by morphisms of
relative dimension n ≥ 2 and isolated singularities.

2.2. Log-canonical threshold, degeneracy index and the singularities of the L2-metric. Let f : X → S
be a generically smooth family between complex manifolds, of relative dimension n, and where S is a
curve. Assume that the smooth fibers of f have trivial canonical bundle, so that f∗(KX /S) is a line bundle.
On the smooth locus in S, this line bundle affords an intrinsic L2 or Hodge metric. If η is a nonvanishing
n-form on a smooth fiber Xs , then

‖η‖2
L2,s =

1

(2π)n

∣∣∣∣∫
Xs

η∧η
∣∣∣∣ .

If η extends to a trivialization of f∗(KX /S) in a neighborhood of s, then ‖η‖L2,s changes smoothly with s.
The question is to analyze the behavior of the L2-metric close to the singular locus of f in S. For the sake
of simplicity, in the sequel we assume that S is a disk centered at 0 and there is at most a singular fiber at 0.

The formation of f∗(KX /S) is invariant under blowups along regular centers in the special fiber. There-
fore, for the purpose of analyzing the L2-metric, we may assume (after a Hironaka resolution) that the
singular fiber of f : X → S decomposes into irreducible components a j E j , with E j smooth, meeting with
normal crossings

X0 =
∑

a j E j .

We write the zero divisor of the evaluation map (3), that is a relative canonical divisor, in the form

B =∑
(b j −1)E j .

Following Kollár [Kol97, Sec. 8, esp. Def. 8.1] (see also Berman [Ber16, Sec. 3.4, esp. Prop. 3.8]), we define
the log-canonical threshold of (X ,−B , X0) along X0 by

cX0 (X ,−B , X0) = min
j

(
b j

a j

)
.

As in loc. cit., we will allow the abuse of notation cX0 ( f ) for cX0 (X ,−B , X0). In addition, we define
5



b(X , X0) := max

{
]J | ∩J E j 6= ; and ∀ j ∈ J ,

b j

a j
= cX0 (X ,−B , X0)

}
.

Notice that b(X , X0)−1 is the degeneracy index δ(X , X0) defined by Halle–Nicaise [HN12, Def. 6.2.1].
The log-canonical threshold and the degeneracy index govern the asymptotics of the L2-metric close to

the singular locus.

Proposition 2.1. Let η be a holomorphic frame of f∗KX /S . Then the L2-metric on f∗KX /S degenerates close
to 0 as

− log ||η||2L2 = (1− cX0 ( f )) log |s|2 − (b(X , X0)−1)log | log |s|2|+O(1),

where s is the local coordinate on S.

Proof. The isomorphism KX /S = detΩX /S = det ΩX
f ∗ΩS

on the smooth part of f yields a description of the
map

f ∗KS ⊗KX /S → KX

f ∗d s ⊗ [u] 7→ f ∗d s ∧u.

The effective divisor B relates KX /S and f ∗ f∗KX /S by

f ∗KS ⊗ f ∗ f∗KX /S =OX (−B)⊗KX .(4)

Choose a point x0 ∈ X0. Denote by J(x0) := { j , x0 ∈ E j }. Choose local coordinates (z1, z2, · · · , zn+1) on X
centred at x0 such that for j ∈ J (x0), E j is given by z j = 0 and the maps f becomes, locally around x0,

f : (z1, z2, · · · , zn+1) 7→ s = ∏
j∈J (x0)

z
a j

j .

The isomorphism (4) shows the existence of an open covering (Uα) of X by coordinate charts and invertible
holomorphic functions fα such that on Uα,

f ∗d s ∧ev(η) = fα
∏

j∈J (x0)
z

b j−1
j d z1 ∧d z2 ∧·· ·∧d zn+1.

We choose a partition of the unity (φα) built from an open covering of X where the previous simplifications

hold. Choose a j0 ∈ J (x0) such that
b j0
a j0

= minJ (x0)
b j

a j
and note that

d z1 ∧d z2 ∧·· ·∧d zn+1 = (−1) j0
z j0

a j0

f ∗ d s

s
∧d z1 ∧d z2 ∧·· ·d z j0−1 ∧d z j0+1 ∧·· ·∧d zn+1.

We introduce the changes of variables z j = e
ρ j
a j e iθ j for j ∈ J (x0) and zk = rk e iθk for k ∈ {1, · · · ,n +1}− J (x0).

The set of integration is defined by |zi | ≤ 1 and
∏

j∈J (x0) z
a j

j = s, in other words by ρ j ≤ 0, 0 ≤ rk ≤ 1 and∑
j∈J (x0) a jθ j = arg(s) and

∑
j∈J (x0)ρ j = log |s|.

1

(2π)n |s|2
∫

Xs

φα
| fα(z)|2
|a j0 |2

∏
j∈J (x0)

|z j |2b j−2|z j0 |2|d z1|2|d z2|2 · · · |d z j0−1|2|d z j0+1|2 · · · |d zn+1|2

= 1

(2π)n |s|2
∫

Xs

φα
| fα(z)|2∏

j∈J (x0) |a j |2
∏

j∈J (x0)
e

2b j
a j
ρ j ∏

j∈J (x0)− j0

dθ j dρ j
∏

k∈{1,··· ,n+1}−J (x0)
rk drk dθk

≡ C |s|2(
b j0
a j0

−1)
∫
∑
ρ j=log |s|

φα| fα(z)|2 ∏
j∈J (x0)

e

(
2b j
a j

− 2b j0
a j0

)
ρ j

dρ1dρ2 · · ·dρ j0−1dρ j0+1 · · ·dρn+1.
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Adding those estimates for the different α and neglecting bounded terms, we easily derive the desired
estimate

− log ||ηs ||2L2(Xs ) ≡ (1−min
j

(
b j

a j

)
) log |s|2 − ]

{
j 6= j0/x0 ∈ E j and

b j

a j
= b j0

a j0

}
log | log |s|2|+O(1).

�

Remark 2.2. Consider now the particular case when X → S is semi-stable. Then all the ai = 1 and since
the divisor B does not contain a whole fiber (see section 2.1), there is at least one bi = 1. We conclude that

cX0 ( f ) = min j (
b j

a j
) = 1. If the family is moreover a Kulikov model, then all the bi = 1. In this case, it follows

that the degeneracy index is simply the maximal number of intersecting components in the special fiber.

2.3. The L2-metric and semi-stable reduction. Let us now examine the change of the L2-metric under
semi-stable reduction. We consider a semi-stable reduction diagram

Y
F //

g
��

X

f
��

T
ρ
// S

where g is a semi-stable family, ρ is the finite morphism t 7→ s = t e and F a generically finite mor-
phism. From [MT09, lemmas 3.3 and 4.2], we know that (g∗(KY /T ),L2) isometrically embeds into
(ρ∗ f∗(KX /S),ρ∗L2). A local frame ξ for g∗(KY /T ) hence relates to a local frame η for f∗(KX /S) through

ξ= t aρ∗η

where a can be recovered by the formula

a = dimC

ρ∗ f∗(KX /S)

g∗(KY /T )
.

From the previous proposition we get

Proposition 2.3. The asymptotic of the L2-metric on f∗(KX /S) is of the shape

− log ||η||2 =α log |s|2 −β log | log |s|2|+C +O(
1

log |s| )

where

α= a

e
= 1

e
dimC

ρ∗ f∗(KX /S)

g∗(KY /T )
and

β= b(X , X0)−1 = b(Y ,Y0)−1.

Remark 2.4. The fact that the metric has the above shape, with α= 0 in the semi-stable case, is already
stated in [Yos10, Thm. 6.8].

2.4. The L2-metric via variation of Hodge structures. Let f : X →∆ be a proper Kähler morphism with
connected fibres of dimension n from a complex manifold X to the complex unit disc ∆, which is a
holomorphic submersion on ∆×. We suppose that the special fiber is a normal crossings divisor, and that
the equation for f is locally given by s = zn1

1 . . . znk

k , where s is the standard parameter on ∆. Denote by
f × := f −1(∆×) →∆× the smooth part of f . Let γ be the monodromy operator of the local system Rn f ×∗ C,
and γ= γuγs = γsγu be its Jordan decomposition where γu is unipotent and γs semi-simple.

The aim of this section is to prove the following statement.

Proposition 2.5. With the previous notations, suppose furthermore that hn,0 = 1. Then,

(a) exp(−2πiα) = exp(2πi cX0 ( f )) is the eigenvalue of γs acting on Grn
F H n

lim = F n H n
lim.
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(b) n +β is the weight of the 1-dimensional space Grn
F H n

lim.

Remark 2.6. The result seems to be known, and is announced in [HN12, Thm. 6.2.2 (2)] and the authors
inform us the methods amount to the usage of Steenbrink’s constructions of the logarithmic relative
de Rham complex. Our method of proof is based on a (nowadays standard) combination of Deligne
extensions of local systems and Schmid’s construction of the limit mixed Hodge structure.

Proof. We will use the correspondence between an element Q in H n(X∞,C) and the corresponding multi-
valued flat section Q of the local system Rn f ×∗ C. Let ρ = exp(2πi−) :H→ ∆× be the universal covering
of the punctured unit disc, and for τ ∈ H set s = exp(2πiτ). Set Γ = N + S, where N = 1

2πi logγu and
S = 1

2πi logγs , where for S, we have fixed the branch of the logarithm having imaginary part in [0,2π).
Hence S has eigenvalues in [0,1).

Let f1, . . . , fN is a basis of H n(X∞,C). The corresponding multi-valued flat basis satisfies fi (τ+1) = γ fi (τ).
If we define

ei := s−Γ fi = exp(−2πiτΓ) fi

then we have ei (τ+1) = ei (τ). The Deligne canonical extension1 H n of Rn f ×∗ C⊗O∆× is defined to be the
locally free O∆ module generated by the ei ’s. The Gauss–Manin connection on Rn f ×∗ C⊗O∆× extends to a
regular singular connection on H n . Its residue is readily computed in the basis ei , and seen to coincide
with Γ.

We denote by H n
lim the limit (mixed) Hodge structure on H n(X∞,C), the cohomology of a general fiber.

By construction, H n
lim is equipped with a decreasing filtration F p H n(X∞,C), the Hodge filtration, and an

increasing filtration Wk H n(X∞,C), the weight filtration built from the nilpotent operator N . Moreover,
H n

lim may be identified with the fiber of H n at 0, with monodromy action given in terms of the residue of
the Gauss–Manin connection exp(2πiΓ).

Let now Q ∈ F n H n(X∞,C) be non-zero. From its corresponding multi-valued flat section Q, we con-
struct the section of H n determined by

Q∞(τ) = exp(−2πiτΓ)Q(τ).

This section is called the twisted period. Its fiber at 0 ∈∆ is denoted by Q∞, and is seen as an element
in H n

lim. Let ` the integer such that Q∞ belongs to W` but not to W`−1. By construction of the weight
filtration, the nilpotent operator N maps W` to W`−2. The semi-simple part γs (and hence S) acts on
H n

lim as a mixed Hodge structure operator [Ste77, Theorem 2.13]. Write ω j := exp(2πiλ j ) where λ j is a
non-increasing sequence of rational numbers in [0,1), for the sequence of eigenvalues of γs acting on
W`/W`−1. Choose a basis (e j ) of H n

lim adapted to the filtration W . Hence, Q∞ can be decomposed as

Q∞ = Q++Q′

where Q+ :=∑
j q j e j , Se j =λ j e j +e′j and Q′ and the e′j belong to W`−1. As γs respects the Hodge filtration

on H n(X∞,C), and as hn,0 = 1, F n H n(X∞,C) is an eigenspace for S, with eigenvalue, say λ. From the
freeness of (e j ), it follows that for each j , either q j = 0 or λ j =λ, so that

S(Q+) =λ(Q+)+Q′′

where Q′′ ∈W`−1.
By the nilpotent orbit theorem [Sch73], and as shown by Kawamata [Kaw82, Lemma 1],

f∗(KX /∆) = ι∗ f ×
∗ (KX ×/∆×)∩H n

where ι :∆× →∆ is the inclusion. We can hence write a local frame η for f∗(KX /∆) as

η=∑
i
ηi (s)ei (s) =∑

i
ηi (s)exp(−2πiτΓ) fi

1Also called the upper extension due to the choice of the logarithm
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where the ηi are local holomorphic functions. In this case, the corresponding limit of the twisted period is
Q∞ :=∑

i ηi (0)ei .
We denote by I the intersection form on Rn f ×∗ C and by C the Weil operator so that I (C v, v) is positive.

As the coefficients ηi are holomorphic∫
Xs

i n2
η(s)∧η(s) = I (Cη(s),η(s)) = I

(
Ce2πiτΓQ∞(s),e2πiτΓQ∞(s)

)
(1+O(|s|)).

By the SL(2)-orbit theorem [Sch73, Theorem 6.6], that gives the asymptotic of the orbit of elements in W•,
the leading contribution comes from elements in W` not in W`−1 :

I
(
Ce2πiτΓQ∞(s),e2πiτΓQ∞(s)

)
= I

(
Ce2πiτΓQ+(s),e2πiτΓQ+(s)

)
(1+0(Im(τ)−1))

= |s|−2λI
(
Ce2πiτN Q+,e2πiτN Q+

)
(1+0(Im(τ)−1)).

Now, for the principal nilpotent orbit η+(s) := e2πiτN Q+, the quantity

I (Cη+(s),η+(s)) = I (Ce2πiτN Q+,e2πiτN Q+) = I (Ce2i Im(τ)N Q+,Q+)

is a polynomial P (Im(τ)) of degree µ in Im(τ), whose leading term is i n2 (2i )µIm(τ)µ

µ! I (C NµQ+,Q+) (compare

with [Wan97, section 1]). The degree µ is the order of the nilpotent operator N acting on Q+. Hence, by
the polarized condition [CK82, 2.10)], and because Q∞ and Q+ differ from an element in W`−1, it is exactly
the order of the nilpotent monodromy operator N acting on the limit twisted period Q∞.

The asymptotic of the L2 norm is therefore

− log ||η(s)||2L2 'λ log |s|2 −µ log | log |s|2|.
�

Remark 2.7. In the unipotent case, and with the notations as in the proof of the proposition, from
||η(s)||2

L2 = P (− 1
2π log |s|)+ρ1(τ) we infer that the curvature of (π∗(KX /S),L2) (i.e. the Weil-Petersson metric)

has Poincaré growth

dd c log ||η(τ)||2L2 =
(

(P ′)2 −PP ′′+ρ2(z)

P 2 +ρ3(τ)

)
i dτ∧dτ'

(
µ

(Imτ)2 +ρ4(τ)

)
i dτ∧dτ,

where the ρ’s are functions which, together with all their derivatives, exponentially decrease to zero as
Im(τ) tends to +∞, with rate of decay independent of Re(τ).

Recall that a variety Z has canonical singularities, if Z is normal and the canonical divisor KZ is Q-
Cartier, and if for any resolution of singularities µ : Z ′ → Z , KZ ′ −µ∗KZ is effective. It follows that, if KZ is
Cartier, that µ∗KZ ′ ' KZ . If g : Z →∆ is such that Z0 has canonical singularities, then so does Z [Kaw99].
Hence if µ : X → Z is any desingularization, and f = gµ with KZ locally free, then f∗KX /∆ = g∗KZ /∆.

Proposition 2.8. Let f : X →∆ be as in the beginning of this section, and suppose that f × : X × →∆× admits
a model g : Z →∆, such that Z is normal with KZ locally free, and that Z0 only has canonical singularities.
Then α=β= 0.

Proof. Let µ : X → Z be a normal crossings resolution, and X0 = ∑
ai Ei , where E0 = Z̃0 is the strict

transform of Z0. Let η ∈ KZ /∆ correspond to an element trivializing g∗KZ /∆ ' g∗KX /∆. The divisor of
µ∗η is then the divisor of evaluation map for X , we denote it by B =∑

(bi −1)Ei . Since Z0 is normal and
connected, it is integral and since the evaluation map g∗g∗KZ /∆→ KZ /∆ cannot contain an entire fiber
it must be an isomorphism. It follows that b0 = 1. By [Ste88, Thm. 2], if Z0 has rational singularities, for
any exceptional Ei we have bi −1 ≥ ai . In characteristic zero, where the canonical sheaf is locally free,
rational and canonical singularities are equivalent concepts, and since by adjunction KZ (Z0)|Z0 ' KZ0 is
locally free, we infer that for any exceptional Ei , bi /ai ≥ 1+1/ai > 1. Moreover, for the non-exceptional
component Z̃0 the ratio of b0/a0 is 1, it follows immediately from Proposition 2.1 that α=β= 0. �

9



Recall that (X , x) → (∆,0), for x ∈ X , is a ordinary quadratic singularity if locally on X the map can be
written as a germ of a holomorphic function f : (Cn ,0) → (C,0), so that 0 is an isolated singularity of the
level set f = 0, and the Hessian of f at 0 is invertible. Such singularities can all be diagonalized to the form∑

z2
i = 0. When n ≥ 2, they are examples of canonical singularities, and KX 'OX by the remark at the end

of Section 2. We hence obtain

Corollary 2.9. Suppose that n ≥ 2, f : X → ∆ has only ordinary quadratic singularities in X0. Then
α=β= 0.

Remark 2.10. Proposition 2.8 and Corollary 2.9 implies that if X0 only has canonical singularities, or if X
is smooth and X0 only has isolated ordinary quadratic singularities, then the L2 metric is continuous.

3. DEGENERATION OF THE QUILLEN METRIC

3.1. Background on Quillen metrics.

3.1.1. Grothendieck–Riemann–Roch in codimension 1. Let f : X → S be a smooth projective morphism of
complex algebraic manifolds. Let V be a vector bundle on X . The Grothendieck–Riemann–Roch theorem
with values in Chow groups is an identity of characteristic classes

ch(R f∗V ) = f∗(ch(V )Td(TX /S)) ∈ A∗(S)Q.

We denoted by A∗(S) Fulton’s intersection theoretic Chow groups [Ful98]. The relation is also valid in de
Rham cohomology. In this section we focus on the "codimension one part" of the Grothendieck–Riemann–
Roch formula. With values in Chow groups, this is written

c1(R f∗V ) = f∗(ch(V )Td(TX /S))(1).

The first Chern class of R f∗V equals the first Chern class of the determinant of the cohomology detR f∗V ,
also denoted λ(V ). It can be defined by the theory of Knudsen-Mumford [KM76]. Contrary to the
individual relative cohomology groups, it is compatible with base change.

3.1.2. Quillen metrics and the curvature formula. Suppose for simplicity that X admits a Kähler metric
on X , with Kähler form ω, that we fix once and for all. If V is equipped with a smooth hermitian metric
h and TX /S with the restriction of the Kähler metric, then the Grothendieck–Riemann–Roch formula in
codimension 1 can be lifted to the level of differential forms. This is achieved by means of Chern-Weil
theory and the theory of the Quillen metric.

Let us briefly recall the definition of the Quillen metric. Let s ∈S, and consider the fiber of λ(V ) at s:

λ(V )s =
⊗

p
det H p (Xs ,V |Xs )(−1)p

.

By Hodge theory, and depending on the hermitian metric h and the Kähler form ω restricted to Xs , the
cohomology groups H p (Xs ,V |Xs ) carry L2 type metrics (using the Dolbeault resolution and harmonic
representatives). Hence, λ(V )s has a induced metric that we still call L2-metric, and that we write hL2,s .
This family of metrics is in general not smooth in s, due to possible jumps in the dimensions of the
cohomology. Let T (s) be the holomorphic analytic torsion attached to (V ,h) and (TX /S ,ω):

T (s) =
n∑

p=0
(−1)p p logdet∆0,p

s .

Here, we denoted by ∆0,p
s the ∂-laplacian acting on A0,p (V |Xs ) ((0, p) forms on Xs with values in V |Xs ),

and depending on the fixed hermitian data. Also, det∆0,p
s denotes the zeta regularized determinant of

∆
0,p
s (restricting to strictly positive eigenvalues). The Quillen metric on λ(V )s is defined by

hQ,s = (expT (s))hL2,s .
10



This family of metrics is smooth in s. The resulting smooth metric on λ(V ) is called the Quillen metric,
and we write hQ to refer to it. Observe that while the L2-metric is defined using only harmonic forms
(hence 0 eigenvalue for the laplacians), the Quillen metric involves the whole spectrum of the Dolbeault
laplacians.

The curvature theorem of Bismut–Gillet–Soulé [BGS88a, BGS88b, BGS88c] is the equality of Chern–Weil
differential forms on S

c1(λ(V ),hQ) = f∗(ch(V ,h)Td(TX /S ,ω)).

By taking cohomology classes, one reobtains the Grothendieck–Riemann–Roch formula in de Rham
cohomology.

3.1.3. The Quillen metric close to singular fibers. As a matter of motivation, we now review Yoshikawa’s[Yos07]
results on the degeneration of the Quillen metric in a slightly simplified form.

Let f : X → S be a generically smooth, flat and projective morphism of complex algebraic mani-
folds. Therefore, with respect to the previous setting, we allow for singular fibers. We assume S is
one-dimensional and f ha s a unique singular fiber. Recall that the Gauss map from the regular locus of f
to the space P(T X ) of rank one quotients of T X

µ : X −Σ f −→ P(T X )
x 7−→ Tx X /kerd fx

described in coordinates through the isomorphism of P(T X ) with the space P (ΩX ⊗T S) =P(T X ⊗ΩS) of
lines inΩX ⊗T S

ν : X −Σ f −→ P (ΩX ⊗T S)

x 7−→
[∑n

i=0
∂s◦ f
∂zi

(x)d zi ⊗ ∂
∂s

]
where (zi ) is a local coordinate system on X and s is a local coordinate on S. Consider the ideal sheaf

IΣ f :=
(
∂s◦ f
∂zi

(x)
)

on X locally generated by the coefficients of d f . We resolve the singularities of µ and ν

seen as a meromorphic map on X by blowing up the ideal IΣ f . Let X̃
q→ X be any desingularization of the

blowup of this ideal, and E its exceptional divisor. We have a diagram

P(T X )

p

��

X̃
q
//

µ̃
<<

X

µ

OO
P (ΩX ⊗T S)

p

��

X̃
q

//

ν̃
99

X

ν

OO
[τi ] = [∂s◦ f

∂zi
(x)]

_
p

��
x̃ � q

//
3

ν̃
99

x
_

ν

OO

By construction, we see that ν̃∗OT X⊗ f ∗ΩS (1) = OX̃ (−E). Together with the isomorphism
P(T X ) →P(T X ⊗ΩS), this gives for the resolution µ̃ of µ

(5) µ̃∗OT X (1) = q∗ f ∗T S ⊗OX̃ (−E).

The tautological exact sequence on P(T X ) hence pulls back on X̃ to

0 → µ̃∗U −→ q∗T X
q∗d f−→ q∗ f ∗T S ⊗OX̃ (−E) −→ 0(6)

where U denotes the tautological hyperplane subbundle. With these preliminaries at hand, we can now
state:

Theorem 3.1 (Yoshikawa [Yos07]). Fix a Kähler metric hX on X . Let (V ,h) be a hermitian vector bundle on
X . On the smooth locus, equip the determinant line bundle λ(V ) with the corresponding Quillen metric.

(a) Let σ be a local holomorphic frame for λ(V ) near the singular point s = 0. Then

log ||σ||2Q =
(∫

E
Td µ̃∗U

TdOX̃ (−E)−1

c1(OX̃ (−E))
q∗ ch(V )

)
log |s|2 +R(s) as s → 0,

11



where R(s) is a continuous function of s.
(b) The curvature current is given, in a neighborhood of s = 0, by

c1(λ(V ),hQ) = f∗(ch(V ,h)Td(TX /S ,hX ))(1,1)

−
(∫

E
Td µ̃∗U

TdOX̃ (−E)−1

c1(OX̃ (−E))
q∗ ch(V )

)
δ0,

where the first term on the right of the equality is Lp
loc(S) for some p > 1, and δ0 is the Dirac current

at 0.
(c) Denote by κ minus the coefficient of the logarithmic singularity. Then the Quillen metric uniquely

extends to a good hermitian metric on the Q-line bundle λ(V )⊗O (−κ · [0]).

Remark 3.2. The third claim in the theorem is only implicitly stated in [Yos07]. In fact, it is proven that
the potential of the curvature current of the hermitian metric in (c) is of the form ϕ(t)+φ(t). Here ϕ is
smooth and φ is a finite sum of functions of the form |s|2r (log |s|)k g (t), where r ∈Q∩ (0,1], k ≥ 0 is an
integer and g is smooth. This function and its derivatives satisfy the estimates in the definition of a good
metric in the sense of Mumford [Mum77].

3.2. The Nash blowup and the Yoshikawa class. We proceed to develop an intersection theoretic ap-
proach to Yoshikawa’s theorem. Instead of the theory of the Gauss map and the resolution of the Jacobian
ideal, we introduce the Grassmanian scheme and the Nash blowup. Throughout we use the intersection
theory of Fulton [Ful98]. The advantage of our constructions is that they naturally exhibit a functorial
behavior and allows for a better understanding of the topological term in Theorem 3.1 (cf. Definition
3.2.5). We recover and expand concrete computations of Yoshikawa.

Let us say a word about the category where we place our arguments. We work in the category of
schemes, mostly to be in conformity with the literature. However, the relevant arguments should be
applicable in the analytic category, using relative singular cohomology instead of bivariant Chow groups.

3.2.1. On the Jacobian cone. Let f : X → S be a projective, flat, generically smooth morphism of integral
noetherian schemes over C, of relative dimension n.

Define the Jacobian ideal Jac(X /S) as the annihilator ofΛn+1ΩX /S . Assume that X is locally a hyper-
surface in a S-smooth scheme Y of dimension n +1. This is the case of hypersurfaces in PN

S , but also the
case when X and S are smooth over C and S is one-dimensional (consider the graph of the morphism).
Locally on X , we have an exact sequence

0 →IX /I 2
X

d→ΩY /S |X →ΩX /S → 0(7)

where the ideal IX of X in Y is generated by an element F . If one chooses (étale) local coordinates
y0, · · · , yn on Y then Jac(X /S) is the OX -ideal generated by ∂F

∂y j
, j = 0, . . . ,n. Observe that this is, by

definition, the first Fitting ideal of ΩX /S . This local description shows that the Jacobian ideal is indeed
the ideal defining the singular locus of the structure morphism f . For example, if f : H → P̌N

C
is the

tautological family of hyperplane sections in some smooth complex projective variety X , then the Jacobian
ideal just corresponds to the scheme parametrizing singular sections.

3.2.2. On the Nash blowup. We still work locally on X . Locally, we denote by Y a smooth S-scheme
containing X as a hypersurface. Let Grn(ΩY /S) be the Grassmannian of rank n-quotients of ΩY /S and
let X 99KGrnΩY /S be the rational map defined by x 7→ (x,ΩX /S,x ), called the Gauss map. The schematic
closure X̂ of the image of this morphism is by definition the Nash blowup of ΩX /S and has the uni-
versal property that an S-morphism t : T → X̂ , such that no component of T has image contained in
V (Jac(X /S)), corresponds to a surjection ΩXT /T → E , where E is locally free of rank n on XT . Denote
by n̂ : X̂ → X the obvious map. As Grn(ΩX /S), understood as a Quot-scheme, is a closed subscheme of
Grn(ΩY /S), an equivalent definition, independent of the choice of the ambient space Y , is given by the
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closure of the X /S-smooth locus in Grn(ΩX /S). These constructions are summarized in the following
diagram:

X̂ �
�

//

n̂
��

Grn(ΩX /S) �
�

//

vv

Grn(ΩY /S)

��

X

((

Gauss

22

� � // Y

uuS

This gives another interpretation of the Gauss map, considered by Yoshikawa. Actually, suppose that
f : X → S is a morphism of complex analytic manifolds, with S of dimension one. Consider then the graph
Γ f : X → S×X . Then the projection on S from Y = S×X is smooth, and the map X sm ⊆ GrnΩX /S → GrnΩX

from the f -smooth locus is given by x 7→ [
ΩX×S/S,x =ΩX ,x�ΩX /S,x

]
. This is simply a dual version of the

usual Gauss map.

3.2.3. Comparison with the resolution of the Jacobian ideal. The Grassmanian construction, namely the
Nash blowup, and the blowup of X along the Jacobian ideal, actually coincide. This is useful in that both
properties of blowups (structure of the exceptional divisor) and Grassmanians (existence of a universal
locally free quotient and functoriality) can be simultaneously used.

Lemma 3.3. (see also [Pie79]) If X is locally a hypersurface in an S-smooth scheme, then the blowup of
V (Jac(X /S)) in X is the Nash blowup of X .

Proof. Denote by b : X ′ → X the blow up of X along Z :=V (Jac(X /S)) and n̂ : X̂ → X the Nash blowup
of ΩX /S . To construct a morphism from X ′ to X̂ , we have to construct a rank n locally free quotient of
ΩX ′×S X /X ′ = b∗ΩX /S . It is enough to show that the Gauss map locally extends to X ′, since local extensions
are separated hence unique. Locally, the ideal IX of X in some smooth S-scheme Y is defined by an
equation F in OY . Locally on X ′, the ideal b∗Jac(X /S) is a free ideal OX ′(−E) generated by an element
u which is not a zero divisor. The differential b∗dF can then be written uV for a uniquely determined
nowhere vanishing section V in b∗ΩY /S|X . From the sequence (7) and the equality V = “ b∗dF

u ", we infer

0 → (b∗IX /I 2
X )⊗OX ′(E)

d⊗1−→ b∗ΩY /S |X → b∗ΩY /S |X /V(8)

that gives a locally well-defined locally free quotient b∗ΩX /S → b∗ΩY /S |X /V .
To construct a morphism from X̂ to X ′, by the universal property of blowing-up, we have to show that

the Jacobian ideal Jac(X /S) becomes locally principal on X̂ . Consider the following diagram on X̂ , where
the bottom line comes from the tautological sequence on Grn(ΩY /S), the middle line comes from (7), M is
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the kernel of the rank d quotient n̂∗ΩX /S →Q, and C the fiber product of n̂∗ΩY /S and M over n̂∗ΩX /S :

0

��

n̂∗IX /I 2
X

// C //

��

M

��

// 0

n̂∗IX /I 2
X

//

��

n̂∗ΩY /S |X // n̂∗ΩX /S
//

��

0

0 // N // n̂∗ΩY /S |X // Q //

��

0

0.

We infer an induced map C →N . As C is a fiber-product, a diagram chasing provides an inverse map
N → C , so that C is necessarily an invertible sheaf. The sheaf Q being locally free, the Fitting ideal of
n̂∗ΩX /S is that of M , that is locally generated by the coefficient of the map n̂∗IX /I 2

X →C between two
invertible sheaves. By functoriality of Fitting ideals, the pull back by n̂ of the Jacobian ideal is locally
principal. The two constructed maps are inverse over X to each other, so that we can identify b : X ′ → X
and n̂ : X̂ → X . �

Thanks to the lemma, on the blow-up X ′ of X along the Jacobian ideal there is a universal locally free
quotient b∗ΩX /S →Q (coming from the Grassmannian interpretation). We now consider its kernel. Let E
be the exceptional divisor of the blowup b : X ′ → X , giving rise to the Cartesian diagram

E

b
��

i // X ′

b
��

Z
iZ // X .

In the following lemma Li f ∗ is the i -th left derived inverse image under a morphism f . Recall that it is
the sheaf defined by taking the i -th cohomology of the pull-back by f of a local free resolution. Note that
the sheaf ΩX /S admits local free resolutions by the local hypersurface hypothesis. The lemma is to be
compared with (the dual of) (5) restricted to E .

Lemma 3.4. Let LE be the kernel of the universal locally free quotient b∗ΩX /S →Q. Then LE is a locally
free sheaf of rank 1 on E. There is a canonical isomorphism

LE ' b∗L1i∗ZΩX /S ⊗OX ′(E)|E .

Furthermore, if f : X → S is a morphism of smooth algebraic varieties, then LE 'O (E)|E .
14



Proof. That LE is supported on E is immediate by construction. From the proof of the previous lemma,
locally on X , there is a diagram of exact sequences

0

��

0

��

0

��

0 // K
α //

��

(b∗IX /I 2
X )⊗OX ′(E) //

d⊗1
��

LE

��

// 0

b∗IX /I 2
X

d // b∗(ΩY /S|X ) //

��

b∗ΩX /S
//

��

0

Q

��

Q

��

0 0.

Because the differential d : IX /I 2
X →ΩY /S vanishes on Z the induced map b∗IX /I 2

X → b∗ΩY /S vanishes
on E as well. Moreover the morphism d ⊗1 remains injective after restricting to E . It follows that α|E is
vanishes identically, and hence there is an isomorphism

(9) LE ' (b∗IX /I 2
X )|E ⊗OX ′(E)|E .

This shows that LE is locally free of rank 1. Now we claim that there is an isomorphism

(10) (b∗IX /I 2
X )|E ' b∗L1i∗ZΩX /S .

First of all, it is clear that (b∗IX /I 2
X )|E = b∗i∗Z (IX /I 2

X ). Second, from the exact sequence (7) we derive

L1i∗ZΩX /S ' i∗Z (IX /I 2
X ).

The claim follows. Hence (9)–(10) give raise to an isomorphism as in the statement. One can check it
does not depend on the (local) choice of Y , so that it is a canonical isomorphism and globalizes. This
completes the proof of the first claim.

For the second assertion, it is enough to specialize the previous argument with Y = X ×S. In this case,
it is immediate that

IX /I 2
X = f ∗ΩS .

Since f is generically smooth and S is one-dimensional, the singular locus of f in S is zero dimensional.
We thus see that

L1i∗ZΩX /S ' i∗Z (IX /I 2
X ) = ( f ◦ iZ )∗(ΩS)

is a trivial line bundle. �

3.2.4. The Yoshikawa class. The previous notations regarding the morphism f : X → S are still in force. In
particular, the singular locus is a closed subscheme Z in X , the Nash blowup along Z is b : X ′ → X and E
is the exceptional divisor. We now digress on localized characteristic classes in the theory of Chow groups.
This formalism, combined with the previous observations on Nash blowups, reveals useful to arrive to
a conceptual explanation of the topological term in Yoshikawa’s asymptotics. To be consistent with the
literature on intersection theory and Chow groups (cf. Fulton’s [Ful98], especially the relative setting of
Chapter 20), from now we assume that S is regular, for instance SpecR with R a discrete valuation ring.
Also, we will make extensive use of the theory of localized Chern classes. We refer the reader to [Ful98,
Chap. 18.1] for the main construction of localized Chern classes of generically acyclic complexes, using
the Grassmannian graph construction. We also cite [Abb00, Sec. 3] and [KS04, Sec. 2], that recast the main
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properties of the localized Chern classes of generically acyclic complexes, in the form that will be used
here.

Recall that a bivariant class c ∈ A(X → Y ) is a rule that assigns, to every Y -scheme, say Y ′, a homomor-
phism

c : A∗(Y ′) −→ A∗(X ′),

where X ′ is the base change of X to Y ′. This homomorphism is subject to several compatibilites (proper
push-forward, flat pull-back and intersection product). We refer to [Ful98, Chap. 17] for the precise
formulation of these.

Suppose we are given a multiplicative characteristic class T , corresponding to a power series
T (x) ∈ 1 + xQ[x]. Thus, to a vector bundle E on X it associates homomorphisms on Chow groups
T (E ) : A∗(X )Q → A∗(X )Q, and to a bounded complex of vector bundles E • it associates the homomor-

phism
∏

T (E i )(−1)i
, compatible with pull-backs. Let b : X ′ → X be the Nash blowup of the morphism

f : X → S, with exceptional divisor E . On X ′ there is the universal locally free quotient b∗ΩX /S → Q.
Because X is locally an hypersurface in a smooth S-scheme, this is quasi-isomorphic to a three term
complex of vector bundles. It is acyclic off the exceptional divisor E . Thus, following [Ful98, Chap. 18.1],
there are localized bivariant Chern classes cE

i (b∗ΩX /S →Q) ∈ A(E → X ′), i > 0. Consequently, the class
T (b∗ΩX /S → Q)−1 = T (b∗ΩX /S)T (Q)−1 −1 admits a refinement as a bivariant Chern class. Indeed, T
itself can be expressed as a power series in the Chern classes ci , and the refinement to a bivariant class is
obtained by replacing ci by cE

i in this power series representation. This refinement shall be denoted

T E (b∗ΩX /S →Q) ∈ A(E → X ′)Q,

or simply T E to simplify the notations. If [X ′] ∈ A∗(X ′) is the cycle class of X ′, then T E sends [X ′] into
A(E)Q. The usual notation for this class is T E ∩ [X ′]. We will later be interested in the top degree terms of
such classes.

The following lemma computes T E ∩ [X ′] in terms of characteristic classes depending only on O (E).

Lemma 3.5. Assume that the base S is one-dimensional. Then:

(a) as a bivariant class c1(L1i∗ZΩX /S) vanishes. In particular, we have an equality of bivariant classes

c1(LE ) = c1(O (E)|E ).

(b) The bivariant class T E satisfies the formula

T E ∩ [X ′] =
(

T (O (E)|E )−1

c1(O (E)|E )
∩ [E ]

)
in A∗(E)Q.

(c) T E also satisfies the formula

T (Q|E )
(
T E ∩ [X ′]

)= T
(
Li∗b∗ΩX /S

)(1−T (O (E)|E )−1

c1(O (E)|E )

)
∩ [E ].

Proof. For the first item, under our running assumptions on X (locally hypersurface hypothesis, f gener-
ically smooth and S one-dimensional and regular) the proof of [KS04, Lemma 5.1.3] can be adapted
mutatis mutandis. The equality c1(LE ) = c1(O (E)|E ) the follows from Lemma 3.4.

For the second claim, by a deformation to the normal cone argument with respect to the closed
immersion E → X ′, we can assume that i : E → X ′ is the section of a projection p : X ′ → E . In this case,
since p∗i∗ = Id, the direct image i∗ : A∗(E) → A∗(X ′) is necessarily injective. Moreover, for any localized
Chern class as in the statement,

i∗(T E (b∗ΩX /S →Q)∩ [X ′]) = (T (b∗ΩX /S →Q)−1)∩ [X ′].

On X ′ we have the tautological sequence,

0 → LE → b∗ΩX /S →Q → 0.
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By Lemma 3.4, LE is a line bundle on E . Since i : E → X ′ is a retraction, the line bundle L = p∗LE on X ′
extends LE and there is an exact sequence

0 → L(−E) → L → LE → 0.

We thus have a quasi-isomorphism of complexes

[L(−E)
−1

→ L
0

] ' [b∗ΩX /S
0

→Q
1

].

Consequently

(T (b∗ΩX /S →Q)−1)∩ [X ′] = (T (L(−E) → L)−1)∩ [X ′]

= (T (L)T (L(−E))−1 −1)∩ [X ′].

The class T (L)T (L(−E))−1 −1 is naturally divisible by c1(O (E)). We can thus rewrite

(11) (T (L)T (L(−E))−1 −1)∩ [X ′] = T (L)T (L(−E))−1 −1

c1(O (E))
∩ [E ].

Finally, by Lemma 3.4 we also know that LE = L1i∗ZΩX /S ⊗O (E) |E , and hence by the first item we infer
c1(LE ) = c1(O (E)|E ). Plugging this relation into (11), we arrive at the equality

T E (b∗ΩX /S →Q)∩ [X ′] = T (O (E)|E )−1

c1(O (E)|E )
∩ [E ],

as was to be shown.
The final claim follows the same lines (and notation) as the second, and the completely formal computa-
tions

i∗
(
T (Q)∩ (T E −1)∩ [X ′]

) = T (Q)(T (b∗ΩX /S)T (Q)−1 −1)∩ [X ′]
= (

T (b∗ΩX /S)∩ (1−T (Q)T (b∗ΩX /S)−1)∩ [X ′]
= T (b∗ΩX /S)∩ (

1−T (L(−E))T (L)−1)∩ [X ′].

�

Recall that Td∗ is the multiplicative characteristic class determined by (−x)
1−e−(−x) = x

ex−1 . We next define
the Yoshikawa class, inspired by Theorem 3.1.

Definition 3.2.5 (Yoshikawa class). Keep the assumptions of the introduction of this chapter. Let V be
a vector bundle on X . Given a birational and proper morphism π : X̃ → X of integral schemes, with a
surjection π∗ΩX /S → E , for some vector bundle E of rank n, define the Yoshikawa class as the cycle class

Y (X /S,V ) = ch(i∗Z V ) ·π∗(Td∗(E|D )Td∗D (π∗ΩX /S → E )∩ [X̃ ]) ∈ A∗(Z )Q,

where D =π−1(Z ). For the trivial sheaf, we denote it by Y (X /S).

Proposition 3.6 (Independence). The Yoshikawa class is independent of the choice of birational morphism
π : X̃ → X and surjection π∗ΩX /S → E .

Proof. The first assertion follows from the existence of the moduli of rank d-quotients ofΩX /S . Indeed,
any datum as in the statement can be compared to the universal case on the Nash blowup: there exists a
morphism to the Nash blowup ϕ : X̃ → X ′ and a commutative diagram

ϕ∗b∗ΩX /S

����

π∗ΩX /S

����

ϕ∗Q
∼ // E ,

17



where the left-most vertical arrow is induced from the universal surjection on the Nash blowup. Moreover,
we observe that

Lϕ∗b∗ΩX /S =ϕ∗b∗ΩX /S .

Indeed, since X is noetherian and is locally a hypersurface in an S-smooth scheme,ΩX /S admits a two-
term resolution by locally free sheaves 0 → F1 → F2 → ΩX /S → 0. Notice that the pullback
0 → b∗F1 → b∗F2 → b∗ΩX /S → 0 is still exact, since the left-most map is generically injective on an
integral scheme, and hence globally injective. Repeating the argument withϕ, establishes the relationship.
We can then invoke the very construction of the localized Chern classes and the projection formula
[Abb00, p. 31, especially C2]. �

Yoshikawa’s theorem works with a smooth desingularization of the Gauss map. The above proposition
hence proves:

Corollary 3.7. Under the hypotheses of Theorem 3.1, the degree of Y (X /S,V ) is the coefficient of the
logarithmic singularity of the Quillen metric.

Remark 3.8. We expect that the hypothesis of smooth total space X can be weakened with the same
conclusion on the logarithmic singularity of the Quillen metric. This is one of the motivations of our
treatment of the Yoshikawa class.

Proposition 3.9 (Functoriality). Suppose given a Cartesian diagram

XT
p ′
//

f ′

��

X

f
��

T
p
// S

where f ′ is a generically smooth morphism of integral schemes and p : T → S is a locally complete inter-
section morphism. Then p !Y (X /S,V ) = Y (XT /T, p ′∗V ), where p ! denotes the refined Gysin morphism
associated to p.

Proof. Let Z ′ be the Jacobian scheme of the morphism f ′. By the functoriality of Fitting ideals, the scheme
Z ′ is the base change of Z to T and there is a canonical isomorphism (XT )′ → (X ′)T for the Nash blowups.
In particular, it is legitimate to drop the parentheses in the notations. Factoring T → S as the composition
of a smooth morphism and a regular closed immersion, we can treat each case separately. They are similar,
but the smooth case is simpler so we suppose henceforth that T → S is a regular closed immersion of
constant codimension d . Now, consider the cartesian diagrams

X ′
T

//

��

X ′

��

XT

��

p
// X

��

T // S.
18



Any bivariant class T E with respect to E → X satisfies p !(T E ∩ [X ]) = T E ′ ∩p ![X ′] (see [Ful98, Sec. 17.1,
axiom (C3)]) and clearly p ![X ′] = [X ′

T ]. Moreover, we have an induced cartesian diagram

E ′ //

π′
��

E

π

��

Z ′ //

��

Z

��

XT
// X .

Then as the refined Gysin maps commute with proper pushforward [Ful98, Thm. 6.2],

π′∗
(
T E ′ ∩ [X ′

T ]
)
= p !π∗

(
T E ∩ [X ]

)
. This implies the statement. �

3.2.6. Computations of the Yoshikawa class. In the following proposition, we show that the Yoshikawa
class can be written in terms of Segre classes (cf. [Ful98, Chap. 4]). In the particular case of isolated
singularities and regular total space, the formula reduces to a classical topological invariant of those: the
Milnor number. Recall that for a germ of an isolated hypersurface singularity f : (Cn+1,0) → (C,0), the
Milnor number is defined as

(12) µ0 = dimC

C{z0, . . . , zn}(
∂ f
∂z0

, . . . , ∂ f
∂zn

) .

The results are a cohomological refinement of Yoshikawa’s formulas [Yos98, Yos07].

Proposition 3.10. Suppose that S is one-dimensional and b : X ′ → X is the Nash blow-up with exceptional
divisor E. Then:

(a) the Yoshikawa class fulfills the equality

Y (X /S) = Td∗(i∗ZΩX /S)∩
∞∑

k=0

(−1)k+1

(k +2)!
sn−k (Z ),

where sn−k (Z ) = (−1)k b∗(E k ) ∈ An−k (Z ) is a Segre class.
(b) if Y is a smooth projective variety, and X → S is a family of hypersurfaces in Y ×S, then

Y (X /S) = Td∗(ΩY |Z )∩
∞∑

k=0

(−1)k+1

(k +2)!
sn−k (Z ).

(c) if X is regular, X → S is the germ of a morphism over a disk (S = SpecC{t }) and has only isolated
singularities in the special fiber X0, then

degY (X /S) = (−1)n+1

(n +2)!

∑
x∈X0

µX ,x

where µX ,x denotes the Milnor number of the singularity at x.

Proof. As in the proof of Proposition 3.6, one can show

Li∗b∗ΩX /S ' Li∗Lb∗ΩX /S ' Lb∗Li∗ZΩX /S .

Moreover, by Lemma 3.5 (a) and the observation L j i∗ZΩX /S = 0 for j ≥ 2 (since there exists a local free
resolution of length 2 ofΩX /S), we conclude for the Chern classes the relation c j (Li∗ZΩX /S) = c j (i∗ZΩX /S).
With this understood, the first formula is a direct computation using the third claim in Lemma 3.5 and the
projection formula.

For the second formula, by (7) applies with Y ×S in place of Y , we see that i∗ZΩX /S =ΩY |Z .
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For the third property, we can suppose that f : X → S has an isolated singularity at a single closed point
x in the special fiber X0. Furthermore i∗ZΩX /S is supported on a zero-dimensional space, and its Todd
class is necessarily 1. We then have by the established formulas,

degY (X /S) = (−1)n+1

(n +2)!
deg s0(Z ).

Now, because X → S is Cohen-Macaulay and the singularity is isolated, the degree of the Segre class s0(Z )
is computed by the colength of the Jacobian ideal [Ful98, Ex. 4.3.5 (c)]. This is the Milnor number as
defined in (12). �

The following lemma will be useful in some computations with the Yoshikawa class. As an example of
use, we refer to Theorem 3.12 and Theorem 3.14 below.

Lemma 3.11. Let f : X → S be a germ of a fibration over the unit disk, with regular total space X . Then

degcn(Q|E ) = degc Z
n+1(ΩX /S)∩ [X ] = (−1)n (

χ(X∞)−χ(X0)
)

,

where X∞ is a generic fiber and χ is the topological Euler characteristic.

Proof. For the equality
degc Z

n+1(ΩX /S)∩ [X ] = (−1)n (
χ(X∞)−χ(X0)

)
,

we observe that
degc Z

n+1(ΩX /S)∩ [X ] = degc X0
n+1(ΩX /S)∩ [X ]

and then we refer to [Ful98, Example 14.1.5]. For the first equality, we recall from Lemma 3.4 the tautologi-
cal exact sequence on the Nash blowup X ′

0 → LE → b∗ΩX /S →Q → 0.

By the Whitney formula for localized Chern classes [Abb00, Prop. 3.1 (b)] we have

(13) cE
n+1(b∗ΩX /S)∩ [X ′] = cn(Q|E )(cE

1 (LE )∩ [X ′]).

By the vanishing property in Lemma 3.5 (a), we also have

(14) cE
1 (LE )∩ [X ′] = [E ].

From (13)–(14) we derive

(15) cE
n+1(b∗ΩX /S)∩ [X ′] = cn(Q|E )∩ [E ].

To conclude, we apply the projection formula of localized Chern classes with respect to proper morphisms
[Abb00, p. 31 (C1)], that implies

(16) degcE
n+1(b∗ΩX /S)∩ [X ′] = degc Z

n+1(ΩX /S)∩ [X ].

We complete the proof by combining (15)–(16). �

3.2.7. The Yoshikawa class for families of hypersurfaces. Recall that the discriminant or dual variety of
a smooth variety Y ⊆PN is a variety ∆Y ⊆ P̌N , parametrizing the hypersurfaces H ∈ P̌N such that Y ∩H
is singular. Here Y ∩ H is regarded as a scheme. In many interesting cases ∆Y is a hypersurface. Let
us mention the case of the d-Veronese embedding, Pn ⊆ PN . In this case ∆Y parametrizes singular
hypersurfaces of degree d in Pn .
We denote by F : H → P̌N the universal family of hyperplane sections of Y . The F -singular locus Z →∆Y

can be described as the projective bundleP(NY /PN ) over Y , where N denotes the normal bundle of Y ⊆PN .
Indeed, a singular point in a hyperplane section is nothing but hyperplane H , a point y ∈ Y ∩H such
that Ty H ⊆ TyP

n contains Ty Y , so that H corresponds to a vector in P(NY /PN ,y ), the projectivised normal

bundle of Y ⊆ Pn at y . Hence the F -singular locus is just the projectivised normal bundle of Y ⊆ PN

[GKZ08], p. 27. In particular, ∆Y , being the image of P(NY /PN ) in P̌N , is irreducible.
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Theorem 3.12. Suppose that f : X → S is a family of hyperplane sections of a smooth complex projective
variety Y ⊆ PN of dimension n +1, over a regular base S. Let Z be the singular scheme of f . Then the
codimension n +1-component of Y (X /S) is given by

Y (X /S)(n+1) = (−1)n+1

(n +2)!
c Z

n+1(ΩX /S)∩ [X ].

Consequently,

degY (X /S) = (−1)n+1

(n +2)!

∫
X0

c X0
n+1(ΩX /S)∩ [X ].

Remark 3.13. When X is regular, one can see that f has isolated singularities. Then, according to the above
theorem and Lemma 3.11, the degree of the Yoshikawa class is given by the change of Euler characteristics,
or equivalently the vanishing cycles. This is compatible with Proposition 3.10 (c), since the sum of the
Milnor numbers equals the number of vanishing cycles.

Proof. For the first point, by Proposition 3.9, and the analogous functoriality for c Z
n+1(ΩX /S)∩ [X ], it is

enough to prove that

Y (X /S)(n+1) = (−1)n+1

(n +2)!
c Z

n+1(ΩX /S)∩ [X ]

when X → S is the universal situation H → P̌N , with Z =P(N ).
We start by proving that

[Z ] = c Z
n+1(ΩH /P̌N )∩ [H ],

and later we will relate the Yoshikawa class to [P(N )]. Consider the resolution

O (−H )|H →ΩY ×P̌N /P̌N |H →ΩH /P̌N → 0.

It determines a section σ of ΩY ×P̌N /P̌N (H )|H whose schematic zero locus is Z . This is of maximal
codimension n +1 in H , hence by [Ful98, Prop. 14.1 (c)] the corresponding localized Chern class is given
by [Z ]. All in all, we conclude

[Z ] = c Z
n+1(ΩH /P̌N ⊗O (H )|H ) = c Z

n+1(ΩH /P̌N ),

where the last equality is easily checked from the very construction of the localized Chern classes through
the Grassmannian graph construction (see [Abb00, Sec. 3] and use that O (H )|H is invertible, hence
tensoring by it induces an isomorphism on grasmannians and does not alter the construction in loc. cit).

Now we compute the (N −1)-dimensional component of the Yoshikawa class in the universal situa-
tion. First, we observe that the codimension n +1 component Y (H /P̌N ) is concentrated on the N −1
dimensional irreducible subscheme Z , and hence is a multiple thereof:

Y (H /P̌N )(n+1) = m[Z ],

for some rational number m. Second, we determine the coefficient m by “evaluating" on a point. For
this, denote by b : H ′ → H denotes the Nash blowup. The induced map E → Z has the structure of a
projective bundle of rank n. As in the proof of Lemma 3.5, write the Yoshikawa class as

b∗
(
Td∗(Li∗b∗ΩH /P̌N )∩

(
1−Td∗(LE (−E))Td∗(LE )−1

c1(O (E)|E )

)
∩ [E ]

)
,

where i is the closed immersion of E into H ′. Let k : p → Z be any (closed) point of Z , necessarily a closed
regular immersion of codimension N −1. Then we have a Cartesian diagram

Pn k ′
//

b′

��

E

b
��

p
k // Z .
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Then as k∗[Z ] = [p], it is enough to compute k∗Y (H /P̌N ). We obviously have

k ′∗b∗L1iZ
∗ΩH /P̌N = b′∗k∗L1iZ

∗ΩH /P̌N

is a trivial line bundle over a point. Therefore, by Lemma 3.4 we find k ′∗LE =O (E)|Pn =O (−1). Further-

more, b∗k∗ = b′∗k ′∗ and we conclude that the pullback of the Yoshikawa class is given by
∫
Pn

1−Td∗(O (−1))−1

c1(O (−1)) .
This further simplifies to

m = degk∗Y (H /P̌N ) = (−1)n+1c1(O (1))n

(n +2)!
= (−1)n+1

(n +2)!
.

The consequence

degY (X /S) = (−1)n+1

(n +2)!

∫
X0

c X0
n+1(ΩX /S)∩ [X ]

follows by the properties of localized Chern classes and since c X0
n+1(ΩX /S) is supported on the singular

locus Z . �

3.2.8. The Yoshikawa class for Kulikov families of surfaces. We now look at a germ of a Kulikov family over
a disk, f : X → S. We assume that X is regular, f has relative dimension 2 and a unique singular fiber over
0, and finally that the relative canonical sheaf KX is trivial. Observe we don’t require the generic fiber to be
a K3 surface, hence we also allow it to be an abelian surface.

Theorem 3.14. The Yoshikawa class of a Kulikov family as above satisfies

degY (X /S) = −1

24
[χ(X∞)−χ(X0)].

Proof. Let b : X ′ → X be the Nash blow-up, with universal quotient bundle Q and exceptional divisor E . A
direct computation using Lemma 3.5 shows that the degree is given by

(17) degY (X /S) =
∫

E

−c1(Q)c1(O (E))− c1(Q)2 − c2(Q)

24
.

Recall the exact sequence

0 → LE → b∗ΩX /S →Q → 0,

that together with the first item in Lemma 3.5 implies

c1(b∗KX /S |E )∩ [X ′] = c1(O (E) |E )∩ [X ′]+ c1(Q |E )∩ [X ′].

But by the Kulikov assumption, KX /S is trivial, and therefore

c1(O (E) |E )∩ [X ′] =−c1(Q |E )∩ [X ′].

Plugging this relation into (17), we find

degY (X /S) =−
∫

E

c2(Q)

24
.

We conclude by Lemma 3.11. �

Notice that if X∞ is K 3 (resp. abelian surface) the Euler characteristic is 24 (resp. 0).
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4. DEGENERATION OF THE BCOV METRIC

In this section we will consider families of Calabi–Yau varieties and their BCOV line bundles. More
precisely, we will study the BCOV metric introduced by [FLY08] and its asymptotic behavior under de-
generation. We will use the results in the preceding sections to show that the singularity is governed by
topological invariants, especially vanishing cycles in the case of Kulikov families.

For the rest of this section, let f : X → S be a generically smooth flat projective morphism of complex
algebraic manifolds with connected fibers, and dimS = 1. We suppose the non-singular fibers are n-
dimensional Calabi–Yau varieties, in the sense that their canonical bundles are trivial. We suppose that X
has a fixed Kähler metric hX .

4.1. The BCOV line bundle and metric. We define the BCOV line bundle. First assume that f is smooth.
Then we put

λBCOV(Ω•
X /S) := λ

( ⊕
0≤p≤n

(−1)p pΩp
X /S

)
= ⊗

0≤p≤n
λ(Ωp

X /S)(−1)p p

= ⊗
0≤p,q≤n

(
detRq f∗(Ωp

X /S)
)(−1)p+q p

.

In general, the sheavesΩp
X /S are only coherent sheaves on X , and not locally free. To extend the BCOV line

bundle from the smooth locus to the whole base S, it is useful to introduce the so-called Kähler resolution
ofΩp

X /S , involving the locally free sheavesΩp
X and f ∗Ω⊗q

S . Equivalently, we apply the left derived functor
LΛp toΩX /S . This is achieved by simply applying the exterior power functors to the exact sequence (1)
defining the relative cotangent sheaf. For each 0 ≤ p ≤ n, we obtain a complex�Ωp

X /S :
(

f ∗ΩS
)⊗p → (

f ∗ΩS
)⊗p−1 ⊗ΩX →··· · · ·→ (

f ∗ΩS
)⊗Ωp−1

X →Ω
p
X .

The Kähler extension λBCOV( �Ω•
X /S) of the BCOV line bundle on the smooth locus is then defined to be

λBCOV( �Ω•
X /S) =λ

( ⊕
0≤p≤n

(−1)p p �Ωp
X /S

)
=

n⊗
p=0

p⊗
j=0

(
f ∗ΩS

)(−1)p+ j p j
λ(Ωp− j

X )(−1)p+ j p .

For smooth f , and depending on the Kähler metric hX , the BCOV line bundle carries a combination of
Quillen metrics. We now introduce the BCOV metric, following [FLY08, Def. 4.1], but phrased differently.

Definition 4.1.1. (a) The function A(X /S) ∈C ∞(S) is locally given by the formula

A(X /S) = ||ηX /S ||χ(X∞)/6
L2 exp

{
(−1)n+1

12
f∗

(
log(

||ηX ||2
||d f ||2 )cn(ΩX /S ,hX )

)}
.

Here, ηX is a nowhere vanishing global section of KX (which exists locally relative to the base) and
ηX /S is the section of f∗(KX /S) determined by ηX = ηX /S ∧ f ∗(d s), for some local coordinate s on S.

(b) The BCOV metric on λBCOV(Ω•
X /S) is

hBCOV = A(X /S)hQ,

where hQ is the Quillen metric depending on hX .

The section ηX /S is sometimes called the Gelfand-Leray form of η, with respect to f .
The following statement describes the singular behaviour of the BCOV metric when the morphism

f : X → S is only supposed generically smooth.

Proposition 4.1. Let f : X → S be a generically smooth family of Calabi–Yau varieties of dimension n.
Assume there is at most one singular fiber of equation s = 0. We denote by α and β the coefficients encoding
the asymptotics of the L2-metric in Proposition 2.3.
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(a) Choose a local holomorphic frame σ̃ for the Kähler extension λBCOV( �Ω•
X /S). Then the asymptotic of

the BCOV norm of σ̃ is

− log ||σ̃||2BCOV = αBCOV log |s|2 − χ(X∞)

12
β log | log |s|2|+ continuous

= −
[

n∑
p=0

p∑
j=0

∫
E

(
p(−1) j Td∗Q

Td∗OX̃ (E)−e(p− j )c1(OX̃ (E))

c1(OX̃ (E))
q∗ ch(Ω j

X )

)

− 1

12

(
αχ(X∞)+ (χ(X∞)−χ(X0))+ (−1)n+1

∫
b∗B

cn(Q)

)]
log |s|2 − χ(X∞)

12
β log | log |s|2|+ continuous,

where X ′ b→ X is the Nash blowup of f , E its exceptional divisor, Q the tautological quotient vector
bundle on X ′ and B is the divisor of the evaluation map (3).

(b) The BCOV metric uniquely extends to a good metric (in the sense of Mumford) on the Q-line bundle

λBCOV( �Ω•
X /S)⊗O (−αBCOV[0]). It has an Lp (p > 1) potential −χ(X∞)

12 β log | log |s|2|+ continuous.
(c) Suppose f : X → S is smooth, and is the restriction of a Kuranishi family under a classifying map ι.

Then the curvature form of the BCOV metric agrees with the pull-back of the Weil-Petersson form

c1(λBCOV(Ω•
X /S),hBCOV) = χ(X∞)

12
ι∗ωW P .

Proof. The first equality is the conjunction of the asymptotic formulas of the Quillen metric and computa-
tions and asymptotics of the term A(X /S). The Quillen part is covered by Theorem 3.1. For A(X /S), we
compute:

log A(X /S) = χ(X∞)

12
log ||ηX /S ||2L2 + (−1)n+1

12
( f ◦b)∗

(
b∗ log

(||ηX ||2
)

cn(Q)
)

+ (−1)n

12
( f ◦b)∗

(
b∗ log

(||d f ||2)cn(Q)
)

.

The asymptotics of the first term are given by the asymptotics of the L2-metric, established in Proposition
2.3

− log ||ηX /S ||2L2 =α log |s|2 −β(log | log |s|2|)+continuous.

The second term and the third terms have asymptotics given by [Yos07, Lemma 4.4 and Corollary 4.6]

( f ◦b)∗
(
b∗ log

(||ηX ||2
)

cn(Q)
)= (∫

b∗B
cn(Q)

)
log |s|2 +continuous

( f ◦b)∗
(
b∗ log

(||d f ||2)cn(Q)
)= (∫

E
cn(Q)

)
log |s|2 +continuous.

For the first equality, we have used di v(ηX ) = B and for the second equality we have used that the zero-
locus of d f is exactly the singular locus Z and E = b−1(Z ). We obtain the final form by applying the
formula

∫
E cn(Q) = (−1)n(χ(X∞)−χ(X0))

The second part of the proposition is a consequence of the first. Indeed, by Theorem 3.1 it is enough to
provide Mumford-good estimates on the continuous rests of the formulas above. But they are also as in
Remark 3.2, by the same [Yos07, Lemma 4.4], and hence good in the sense of Mumford.

The third part is [FLY08, Thm.4.9]. �

Remark 4.2. If the singular fibers of f : X → S have normal crossings, one may as well consider the
logarithmic extension of λBCOV, by using the complex Ω•

X /S(log) instead of the Kähler resolution. The
logarithmic and the Kähler extensions can explicitly be compared by means of the residue exact sequence.
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4.2. Computation ofαBCOV. The asymptotic formulas provided by [FLY08, Thm. 5.4] and Proposition 4.1
above are cumbersome, and the relation to topological invariants (for instance vanishing cycles) is not
clear. We next show that several simplifications and cancellations occur in the expression defining αBCOV.
We rewrite it solely in terms of the characteristic classes cn(Q), c1(Q)cn−1(Q) and c1(b∗KX )cn−1(Q). We
derive consequences for Kulikov type families.

Recall that b : X ′ → X denotes the Nash blowup of the morphism f : X → S, with exceptional divisor E
and universal quotient bundle Q. We focus on the combination of characteristic classes

ω := Td∗(Q |E )
n∑

p=0

p∑
j=0

p(−1) j
(
Td∗(O (E) |E )−ch(O (E) |E )p− j

)
ch(b∗Ω j

X |E )∩ [X ′].

To simplify the discussion, we supress the ∩[X ′] from the notations. In the definition of αBCOV, the class ω
contributes through

−
∫

E

ω

c1(O (E) |E )
.

Because of the division by c1(O (E) |E ) and since E is a divisor in X ′, we only seek a simple expression for
the degree n +1 part of ω. A priori, we know this component has to be a multiple c1(O (E) |E ).

The point of departure is to restrict the universal exact sequence

0 → LE → b∗ΩX /S →Q → 0

to the exceptional divisor. Because Q is locally free, the restriction of the sequence to E remains exact.
Moreover, we observe that E lies above the singular locus Z of the morphism f : X → S, and hence
b∗ΩX /S |E= b∗ΩX |E . Therefore, we obtain an exact sequence

(18) 0 → LE → b∗ΩX |E→Q |E→ 0.

We also recall from Lemma 3.5 that LE is a line bundle on E , and that as a bivariant class with values in
A∗(E), the relation c1(LE ) = c1(O (E)|E ) holds. Taking exterior powers in (18) and substituting c1(LE ) by
c1(O (E)|E ), we find

(19) ch(b∗Ω j
X |E ) = ch(Λ j Q |E )+ch(Λ j−1Q |E )ch(O (E) |E ),

with the convention that Λ j−1Q = 0 for j = 0. From now on, to lighten notations, we also skip the
restriction to E from the notations, by saying instead that a given relation holds on E. Therefore, on E we
can write ω=ϑ+ϑ′, where

ϑ= (Td∗(Q))(Td∗O (E))
∑

0≤ j≤p≤n
p(−1) j (ch(Λ j Q)+ch(Λ j−1Q)ch(O (E)))

and the class ϑ′ is defined to be the rest. Actually, after a simple telescopic sum, ϑ′ simplifies to

ϑ′ =−Td∗(Q)
n∑

p=0
p(−1)p ch(ΛpQ).

We now work on the class ω.

Lemma 4.3. The class ϑ is the sum of four contributions

ϑ1 =−n(n +1)

2
(−1)ncn(Q)c1(O (E))+hct ,

ϑ2 =−Td∗(Q)Td∗(O (E))
n∑

j=0
(−1) j+1 j ( j +1)

2
ch(Λ j Q)ch(O (E))

ϑ3 =−Td∗(Q)Td∗(O (E))
n∑

j=0
(−1) j j ( j −1)

2
ch(Λ j Q),

where hct is a shortcut for "higher codimension terms".
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Proof. The proof is elementary, and relies on the property [Ful98, Example 3.2.5]

(20) Td∗(Q)
n∑

p=0
ch(ΛpQ) = (−1)ncn(Q),

and the power series expansions of Td∗(O (E)) and ch(O (E)) in c1(O (E)). �

The relation (20) and the expressions for the classes ϑ and ϑ′ motivate the following definition.

Definition 4.2.1. For a vector bundle F of rank r , we define

P (F ) = Td∗(F )
r∑

p=0
(−1)p ch(Λp F ) (= (−1)r cr (F )),

P ′(F ) = Td∗(F )
r∑

p=0
(−1)p p ch(Λp F ),

P ′′(F ) = Td∗(F )
r∑

p=0
(−1)p p(p −1)

2
ch(Λp F ).

As the notation suggests, the classes P ′(F ) and P ′′(F ) are to be seen as the first and second derivatives
of P (F ). More precisely, we have

Lemma 4.4. The classes P, P ′ and P ′′ satisfy

P (F ⊕G) = P (F )P (G),

P ′(F ⊕G) = P ′(F )P (G)+P (F )P ′(G),

P ′′(F ⊕G) = P ′′(F )P (G)+P ′(F )P ′(G)+P (F )P ′′(G).

In particular, given line bundles L1, . . . ,Lr , we have

P ′(L1 ⊕ . . .⊕Lr ) =
r∑

i=1
P (L1) . . .P ′(Li ) . . .P (Lr ),

P ′′(L1 ⊕ . . .⊕Lr ) = ∑
1≤i< j≤r

P (L1) . . .P ′(Li ) . . .P ′(L j ) . . .P (Lr ).

Proof. The first part is an easy computation using the multiplicativity of Td∗ with respect to direct sums
of vector bundles, and the multiplicativity of ch with respect to tensor products of vector bundles. The
conclusion for direct sums of line bundles requires the observation P ′′(L) = 0 for a line bundle L. �

In terms of P ′ and P ′′, the classes ϑ′ and ϑ3 are

ϑ′ =−P ′(Q),

ϑ3 =−Td∗(O (E))P ′′(Q).

For ϑ2, an easy computation gives the string of equalities,

ϑ2 = (P ′(Q)+P ′′(Q))ch(O (E))Td∗(O (E))

= (P ′(Q)+P ′′(Q))c1(O (E))+P ′(Q)Td∗(O (E))−ϑ3 +hct

= P ′(Q)

(
1

2
c1(O (E))+ 1

12
c1(O (E))2

)
+P ′′(Q)c1(O (E))−ϑ3 −ϑ′+hct .

(21)

To conclude, we thus have to extract the codimension n − 1 and n parts of the class P ′(Q), and the
codimension n class of P ′′(Q).

Lemma 4.5. (a) For the first derivative class, we have

P ′(Q) = (−1)ncn−1(Q)+ (−1)n n

2
cn(Q)+hct ,
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(b) For the second derivative class, we have

P ′′(Q)(n) = (−1)n n(3n −5)

24
cn(Q)+ (−1)n 1

12
c1(Q)cn−1(Q).

Proof. By Lemma 4.4 and the splitting principle, we can suppose that Q splits into a direct sum of line
bundles L1, . . . ,Ln .

For the first item, we use the formula for P ′(L1 ⊕ . . .⊕Ln) in Lemma 4.4. For this, we recall from (20)

P (Li ) =−c1(Li )

and observe

P ′(Li ) = P (Li )−Td∗(Li )

=−1− 1

2
c1(Li )− 1

12
c1(Li )2 +hct .

After an elementary computation, one concludes by taking into account

cn(Q) = c1(L1) . . .c1(Ln),

cn−1(Q) =
n∑

i=1
c1(L1) . . . �c1(Li ) . . .c1(Ln).

For the second item, we proceed similarly. We first compute

P ′(Li )P ′(L j ) = 1

4
c1(Li )c1(L j )+ 1

12
c1(Li )2 + 1

12
c1(L j )2 +hct .

Hence, we obtain

P ′′(Q)(n) =(−1)n n(n −1)

8
cn(Q)

+ (−1)n 1

12

∑
i< j

c1(L1) . . .c1(Li )2 . . . �c1(L j ) . . .cn(Ln)

+ (−1)n 1

12

∑
i< j

c1(L1) . . . �c1(Li ) . . .c1(L j )2 . . .c1(Ln).

But we observe∑
i< j

c1(L1) . . .c1(Li )2 . . . �c1(L j ) . . .cn(Ln)+ ∑
i< j

c1(L1) . . . �c1(Li ) . . .c1(L j )2 . . .c1(Ln)

= (c1(L1)+ . . .+ c1(Ln))
n∑

i=1
c1(L1) . . . �c1(Li ) . . .c1(Ln)−nc1(L1) . . .c1(Ln)

= c1(Q)cn−1(Q)−ncn(Q).

All in all, we conclude

P ′′(Q)(n) = (−1)n n(3n −5)

24
cn(Q)+ (−1)n 1

12
c1(Q)cn−1(Q),

as was to be shown. �

Proposition 4.6. The class ω satisfies∫
E

ω

c1(O (E) |E )
= (−1)n+1 9n2 +11n

24

∫
E

cn(Q)+ (−1)n

12

∫
E

b∗c1(KX )cn−1(Q).

Proof. We collect the identities in Lemma 4.3, the expression (21) for ϑ4 and the values provided by
Lemma 18. We then observe that

c1(O (E) |E )+ c1(Q |E ) = c1(b∗KX |E ),

as follow from (18) and c1(LE ) = c1(O (E) |E ). This concludes the proof. �
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Corollary 4.7. Suppose that KX is trivial on the singular locus Z . Then∫
E

ω

c1(O (E) |E )
=−9n2 +11n

24

(
χ(X∞)−χ(X0)

)
.

In particular, if f has isolated singularities, then∫
E

ω

c1(O (E) |E )
= (−1)n+1 9n2 +11n

24

∑
x∈X0

µX ,x .

Proof. By applying the projection formula, one infers∫
E

b∗c1(KX )cn−1(Q) =
∫

Z
c1(KX )b∗cn−1(Q).

By assumption, KX is trivial on Z , and hence this intersection number vanishes. We conclude by applying
the formula

(−1)n
∫

E
cn(Q) =χ(X∞)−χ(X0).

�

Corollary 4.8. The coefficient αBCOV is given by

αBCOV = 9n2 +11n +2

24
(χ(X∞)−χ(X0))+ α

12
χ(X∞)+ (−1)n

12

∫
B

cn(ΩX /S).

Proof. For the first assertion, notice that

b∗c1(KX )cn−1(Q)∩ [E ] = cn−1(Q)∩ c1(b∗B)∩ [E ] = cn−1(Q)∩ c1(E)∩ [b∗B ]

in the Chow group of the special fiber of X ′ → S. This is a consequence of the commutativity of intersection
classes of Cartier divisors [Ful98, Sec. 2.4], and the definition of c1 of a line bundle.

Moreover, from Lemma 3.4 we have LE 'O (E)|E and applying Chern classes on the tautological exact
sequence on the Nash blowup, we easily deduce from the Whitney formula that

cn(b∗ΩX /S)∩ [b∗B ] = cn(Q)∩ [b∗B ]+ cn−1(Q)c1(E)∩ [b∗B ].

Observe that cn(b∗ΩX /S) = b∗cn(ΩX /S), becauseΩX /S admits a two term locally free resolution and b is
birational. Applying the projection formula, we finally find∫

E
b∗c1(KX )cn−1(Q) =

∫
B

cn(ΩX /S)−
∫

b∗B
cn(Q).

We finish the proof of the first claim by plugging this relation into Proposition 4.6, and by the very definition
of αBCOV. �

To sum up, we conclude by restating Proposition 4.1 (a) for Kulikov families.

Proposition 4.9. Let f : X → S be a generically smooth family of Calabi–Yau varieties of dimension n,
with a unique singular fiber of equation s = 0. Assume that X is a Kulikov family, i.e. that B =; (e.g. if KX

is trivial). Choose a local holomorphic frame σ̃ for the Kähler extension λBCOV( �Ω•
X /S). Then the asymptotic of

the BCOV norm of σ̃ is

− log ||σ̃||2BCOV = αBCOV log |s|2 − χ(X∞)

12
β log | log |s|2|+ continuous

=
[

9n2 +11n +2

24
(χ(X∞)−χ(X0))+ α

12
χ(X∞)

]
log |s|2

−χ(X∞)

12
β log | log |s|2|+ continuous,

where α and β are as in Proposition 2.3.
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Corollary 4.10. If n ≥ 2 and f : X → S has only isolated ordinary quadratic singularities, then

− log ||σ̃||2BCOV =
9n2 +11n +2

24
#sing(X0) log |s|2 + continuous.

Proof. We observed in section 2.1 that a Calabi-Yau degeneration with isolated singularities is auto-
matically Kulikov. The claim then follows from Proposition 4.9 together with Corollary 2.9 and Remark
2.10. �
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