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ABSTRACT. Calabi–Yau manifolds have risen to prominence in algebraic geometry, in part because
of mirror symmetry and enumerative geometry. After Bershadsky–Cecotti–Ooguri–Vafa (BCOV),
it is expected that genus 1 curve counting on a Calabi–Yau manifold is related to a conjectured
invariant, only depending on the complex structure of the mirror, and built from Ray–Singer
holomorphic analytic torsions. To this end, extending work of Fang–Lu–Yoshikawa in dimension 3,
we introduce and study the BCOV invariant of Calabi–Yau manifolds of arbitrary dimension. To
determine it, knowledge of its behaviour at the boundary of moduli spaces is imperative. To address
this problem, we prove general results on degenerations of L2 metrics on Hodge bundles and their
determinants, refining the work of Schmid. We express the singularities of these metrics in terms of
limiting Hodge structures, and derive consequences for the dominant and subdominant singular
terms of the BCOV invariant.
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1. INTRODUCTION

In this article we introduce and study a real valued invariant for Calabi–Yau manifolds, depend-
ing only on the complex structure, expected to be birationally invariant and to encode genus 1
curve counting on a mirror Calabi–Yau manifold. The invariant has as its origin the remarkable
theoretical physics article of Bershadsky–Cecotti–Ooguri–Vafa [BCOV94]. It is a genus 1 coun-
terpart of the Yukawa coupling studied by Candelas–de la Ossa–Green–Parkes [CdlOGP91] in
their work on mirror symmetry and genus 0 Gromov–Witten invariants. The physics theory of
[BCOV94] received a mathematical treatment by Fang–Lu–Yoshikawa [FLY08], where they defined
what is nowadays called the BCOV invariant for three dimensional Calabi–Yau manifolds, in the
strict sense. They confirmed the predictions in [BCOV94] for the mirror of the quintic Calabi–Yau
3-fold. An important and open question, already raised in [BCOV94, Sec. 5.8], is to extend these
constructions and results to general dimensions, and this is the purpose of our study.

1.1. The BCOV invariant of a Calabi–Yau manifold. Let Z be a Calabi–Yau manifold of dimen-
sion n, meaning a compact Kähler manifold with trivial canonical bundle. Given a choice of
Ricci flat Kähler metric ω on Z , the invariant T (Z ,ω) proposed by [BCOV94] is a combination of
Ray–Singer holomorphic torsions, that can be written as follows:

(1.1) T (Z ,ω) =
n∏

p,q=1
(det∆(p,q)

∂
)(−1)p+q pq

where det∆(p,q)

∂
refers to the zeta regularized determinant of the ∂-Laplacian acting on (p, q)-

forms on Z . This depends on the Kähler form, as opposed to the mirror symmetry principle
that it should be an invariant of the complex structure in the B-model. An intrinsic definition in
dimension 3, when h0,1 = h0,2 = 0, was provided by [FLY08], and was accomplished by multiplying
by normalizing factors. A similar renormalization was noted in [PW05]. The correction term
seems to be specific to dimension 3 and does not offer an obvious extension to higher dimensions.
To our surprise, a general normalization was suggested by Kato’s formalism of heights of motives
[Kat14].

In our approach, the BCOV invariant is in fact realized as the quotient of two natural metrics on
the so-called BCOV complex line. This can be thought of as a weighted product of determinants
of Hodge summands, defined for a compact complex manifold Z as

λBCOV (Z ) =⊗
p,q

det H q (Z ,Ωp
Z )(−1)p+q p .
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On the one hand, λBCOV (Z ) can be equipped with the Quillen-BCOV metric hQ,BCOV introduced
in [FLY08], and independent of any choice of Kähler structure. On the other hand, in the current
article we exhibit a renormalized L2 metric on the BCOV complex line, that we call the L2-BCOV
metric. Precisely, for a Calabi–Yau manifold Z with Kähler form ω, we define the L2-BCOV norm
of an element σ of the BCOV line by

hL2,BCOV (σ,σ) = hL2 (σ,σ)
2n∏

k=1
volL2 (H k (Z ,Z),ω)(−1)k+1k/2.

Here hL2 is the product of L2 metrics on the BCOV line provided by Hodge theory (harmonic
representatives with respect to ω) and volL2 (H k (Z ,Z),ω) is the square of the covolume of the lat-
tice H k (Z ,Z)nt ⊂ H k (Z ,R) with respect to the L2 scalar product, where H k (Z ,Z)nt is the maximal
torsion free quotient of H k (Z ,Z). We adopt the convention that the volume equals 1 for those
factors with H k (Z ,R) = 0. In Proposition 5.6 we show that the L2-BCOV metric thus defined is also
independent of the choice of Kähler metric. The BCOV invariant of the Calabi–Yau manifold Z is
then defined as the proportionality factor comparing the Quillen-BCOV and L2-BCOV metrics.

Definition. Let Z be a Calabi–Yau manifold. Then we let

τBCOV (Z ) := hQ,BCOV /hL2,BCOV ∈R>0.

We refer to τBCOV (Z ) as the BCOV invariant of Z .

Note that since the two metrics are independent of the choice of Kähler structure, the invariant
only depends on the complex structure of Z . It generalizes the construction for strict Calabi–Yau
3-folds in [FLY08]1 to general Calabi–Yau manifolds of arbitrary dimension.

The writing of the invariant as a quotient of metrics lends itself to computing the second
variation of τBCOV (Z ) as the complex structure is deformed. If f : X → S is a Kähler morphism of
connected complex manifolds whose fibers are Calabi–Yau n-folds, we prove in Proposition 5.10
that the function s 7→ logτBCOV (Xs) satisfies the differential equation

(1.2) dd c logτBCOV =
2n∑

k=0
(−1)kωH k − χ

12
ωW P .

Here, χ is the topological Euler characteristic of a general fiber, and ωW P and ωH k are the Weil–
Petersson and Hodge type forms for the family f : X → S. The equation (1.2) is a higher di-
mensional version of the holomorphic anomaly equation at genus 1 in the mirror symmetry
literature.

In general, the BCOV invariant is a non-trivial function. In some cases, such as abelian
varieties of dimension at least two or hyperkähler varieties, it is constant in complex moduli (cf.
Proposition 5.12). In the case of moduli of polarized Calabi–Yau manifolds, it is equal to the BCOV
torsion in (1.1), up to a constant which depends on the polarization.

1.2. Asymptotic behaviour of the BCOV invariant. The only known strategy to approach the
BCOV predictions in mirror symmetry consists in seeing the BCOV invariant as a function on a
moduli space of Calabi–Yau varieties, then exploiting the holomorphic anomaly equation (1.2).
We refer the reader to e.g. [HKQ09] for a discussion in the mathematical physics literature.

Since moduli spaces are in general non-compact, the differential equation determines logτBCOV

at most up to a generally non-constant pluriharmonic function. To fix this indeterminacy, known

1Our definition differs by an explicit power of 2π due to different normalizations.

3



BCOV INVARIANTS ERIKSSON, FREIXAS I MONTPLET, AND MOUROUGANE

as the holomorphic ambiguity, it is essential to know the limiting behaviour of the BCOV in-
variant as one approaches the boundary of the moduli space. We provide a general answer to
this question, by identifying an explicit topological expression for such boundary conditions for
one-parameter normal crossings degenerations (see Theorems A, B below).

Denote by D the complex unit disc. Suppose f : X →D is a projective morphism of complex
manifolds, with Calabi–Yau n-fold fibers outside the origin.2 In Theorem 6.5 and Proposition 6.8
we prove that the BCOV invariant behaves as

(1.3) logτBCOV (X t ) = κ f log
(|t |2)+% f log

(
log |t |−1)+continuous,

for constants κ f ,% f ∈Q, as t → 0. The rationality of κ f was established in the three-dimensional
case by Yoshikawa [Yos15]. Under further assumptions on the degeneration, we obtain general
expressions for κ f and % f , in terms of the geometry of the special fiber and the limiting mixed
Hodge structures. In this introduction, we focus on some relevant situations, when κ f and % f

take a particularly pleasant form.
To state the first such result, let f : X →D be a projective morphism of complex manifolds with

Calabi–Yau n-fold fibers outside the origin, and such that the special fiber X0 =∑
i Di is a simple

normal crossings divisor. Introduce the notation D(k) =⊔
I
⋂

i∈I Di where the union is over index
subsets I of cardinality k. Denote by χ(D(k)) the topological Euler characteristic of D(k).

Theorem A. In the above situation, suppose also that f is Kulikov, i.e. KX 'OX . Then

κ f =
n+1∑
k=1

(−1)k k(k −1)

24
χ(D(k)).

In the case of strict Calabi–Yau 3-folds ( i.e. h0,1 = h0,2 = 0), this expression can be further simplified
to

κ f =
χ(D(2))−6Q

12
where Q = #D(4) is the number of quadruple points.

The case of dimension three in the theorem confirms a conjecture of Liu–Xia [LX19, Conj. 0.5]
and is found in Corollary 7.9. The theorem, which follows from Proposition 7.1, can thus be seen
as a far-reaching generalization thereof.

Another important example of generic singularities for several Calabi–Yau families is the case
of ordinary double points, often called conifold singularities. For these singularities we prove in
Theorem 7.3:

Theorem B. Let f : X →D be a projective morphism of complex manifolds, with smooth Calabi–
Yau n-fold fibers outside the origin. If the special fiber X0 has at most ordinary double point
singularities, then

• if n is odd,

κ f =
n +1

24
#sing(X0) and % f = #sing(X0).

• if n is even,

κ f =−n −2

24
#sing(X0) and % f = 0.

Here #sing(X0) denotes the number of singular points in the fiber X0.

2Actually a slightly stronger technical condition is required, that f extends to a projective morphism X̃ → S of
compact complex manifolds. See §1.5.
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For κ f , the case n = 3 of the statement was already established by Fang–Lu–Yoshikawa [FLY08],
and it was a key point to their proof of the BCOV conjecture for the mirror quintic family. For
n = 4 the theorem corroborates an expectation suggested by work of Klemm–Pandharipande
in [KP08, Sec. 4 & 6]. The case of general n confirms a conjecture of Fang–Lu–Yoshikawa from
2004 (private communication). In the theoretical physics literature this is usually referred to
as the conifold gap condition at conifold points. The refined information for % f had not been
considered before, and is one of the applications of our approach.

In dimensions three and four we have more general formulas for κ f only assuming a smooth
total space (cf. Theorem 7.6 and Theorem 7.13). These rely on a careful study of Serre duality
on Kähler extensions due to T. Saito [Sai04]. In these cases κ f involves in particular the total
dimension of the vanishing cycles of the family.

In Section 7.4 we derive some consequences concerning the number of singular fibers for
families admitting at most ordinary double point singularities over a complete curve. It would be
interesting to investigate the same type of global-local interaction more generally, following e.g.
the approaches in [GGK09] or [LX19].

1.3. Asymptotic behaviour of L2 metrics and monodromy eigenvalues. In order to generally
study the asymptotics of the BCOV invariant (cf. (1.3)) one needs a precise control on the
asymptotics of Quillen and L2 metrics. The singularities of the Quillen-BCOV metric were already
dealt with in our previous paper [EFiMM18], itself relying on results of Yoshikawa [Yos07]. As for
L2 metrics on Hodge bundles, we elaborate on the work of Schmid [Sch73] and Peters [Pet84],
and obtain explicit asymptotics in terms of limiting Hodge structures.

The framework of our analysis is a projective morphism f : X →D of complex manifolds, with
normal crossings special fiber. Denote by Ωp

X /D(log) the sheaf of relative differential p-forms
with (not necessarily reduced) logarithmic poles along the special fiber. Then the higher direct
image sheaves Rq f∗Ω

p
X /D(log) are locally free. Given a choice of rational Kähler structure, the

vector bundles Rq f∗Ω
p
X /D(log) carry corresponding L2 metrics, possibly singular at the origin. In

Theorem 4.4 we determine the singularities of the induced metrics on detRq f∗Ω
p
X /D(log). The

statement involves the limiting Hodge structure on H p+q (X∞), the cohomology of a general fiber.
Recall that this is a mixed Hodge structure with a Hodge type filtration F •∞ and a weight filtration
W•. The semi-simple part of the monodromy, denoted Ts , acts upon the whole mixed Hodge
structure and admits a logarithm ` logTs with eigenvalues in 2πi ·{Q∩ (−1,0]

}
.

Theorem C. Let σ be a holomorphic trivialization of detRq f∗Ω
p
X /D(log). Then we have a real

analytic asymptotic expansion for its L2 norm

loghL2 (σ,σ) =αp,q log |t |2 +βp,q loglog |t |−1 +C +O

(
1

log |t |
)

,

with

αp,q =− 1

2πi
tr

(
` logTs | Grp

F∞ H k (X∞)
)

(k = p +q)

and

βp,q =
k∑

r=−k
r dimGrp

F∞ GrW
k+r H k (X∞)

and a constant C ∈R.

This result refines [Pet84, Prop. 2.2.1]. Notice that he could only show that αp,q is a rational
number extracted from the monodromy in a non-precise manner, and similarly for βp,q . Our
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contribution thus clarifies the exact relationship to the limiting mixed Hodge structure. This
result refines [Pet84, Prop. 2.2.1] in that it gives the values of the coefficients αp,q and βp,q in
terms of the limiting Hodge structure, without flatness assumption on the filtered piece of the
Hodge filtration.

In the semi-stable case (hence unipotent monodromies) the coefficient αp,q is known to be
zero. The determination of the coefficient αp,q thus reduces to the following purely algebraic
geometric consideration. To compare to the semi-stable case we exhibit a diagram

Y

g
��

// X

f
��

D
ρ
// D,

where ρ(t) = t` is some ramified covering and Y →D is semi-stable. The diagram is Cartesian
over D×. There is a natural inclusion of locally free sheaves

ρ∗Rq f∗Ω
p
X /D(log) ⊆ Rq g∗Ω

p
Y /D(log).

The quotient is a torsion sheaf supported on the origin, and can hence be written as

hp,q⊕
j=1

OD,0

t a j OD,0
,

for some integers a j ≥ 0. The rational numbers αp,q
j = a j

`
∈ [0,1) are independent of the choice of

semi-stable reduction, and we call them the elementary exponents of the (p, q) Hodge bundle.
Their sum is equal to the sought for αp,q in Theorem C. We prove the following fundamental
theorem in the theory of degenerations of Hodge structures, of independent interest:

Theorem D. The elementary exponentsαp,q
j of the (p, q) Hodge bundle are such that exp(−2πiαp,q

j )

constitute the eigenvalues of Ts , the semi-simple part of the monodromy acting on Grp
F∞ H p+q (X∞)

(with multiplicities).

In fact our arguments provide more general results for Deligne extensions for degenerations
of Hodge structures. These results constitute the content of Section 2 (see in particular The-
orem 2.6 and Corollary 2.8). Theorem C and Theorem D generalize Theorem A of [EFiMM18]
and analogous results by Halle–Nicaise [HN12] and Boucksom–Jonsson [BJ17] which consider
constructions coming from canonical bundles. With respect to these references, we stress that
the theorems of this section do not assume any Calabi–Yau hypothesis, and apply to general
graded pieces of the Hodge filtration. As an anonymous referee pointed out, Theorem D could
also be formulated within the general framework of mixed Hodge modules.

1.4. Relations with mirror symmetry. In this section we return to the initial motivation for
the introduction of the BCOV invariant, discussed at the beginning of the text. More compu-
tational endeavours and applications of the invariant are the topic of a sequel to the present
article [EFiMM19], where we prove a mirror symmetry conjecture, at genus 1, for Calabi–Yau
hypersurfaces in projective space and their mirror family.

Consider f : X → D to be a maximally unipotent projective degeneration of Calabi–Yau n-
folds3, meaning that for the monodromy operator T on the local system corresponding to H n ,

3This is also known as a large complex structure limit of Calabi–Yau manifolds.
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we have (T −1)n 6= 0 and (T −1)n+1 = 0. Denote by X∞ a general fiber. In this setting, mirror
symmetry predicts the existence of a Calabi–Yau mirror X ∨∞ and an ample class [H ] such that,

(1.4) κ f =
(−1)n+1

12

∫
X ∨∞

cn−1(X ∨
∞)∩ [H ].

See for instance the introduction in Yoshikawa’s [Yos17] and the discussion by Klemm–Pandhari-
pande [KP08, Sec. 4].

Generally, even when potential mirrors are known, such as in Batyrev’s framework using toric
Fano varieties [Bat94], this seems to be out of reach. However, in the special case when X∞ is
an abelian variety of dimension n ≥ 2 or a hyperkähler variety, we can confirm that both sides
of (1.4) are zero. The right hand side vanishes, because X ∨∞ is also an abelian or hyperkähler
variety and so cn−1(X ∨∞) = 0. The vanishing of the left hand side is due to the constancy of the
BCOV invariant for such families, cf. Proposition 5.12. Besides, in the direction of the conjecture
we can prove the following corollary, which is a consequence of the general form of Theorem A
(Theorem 6.5 infra) :

Corollary. Suppose that f : X → D is a projective degeneration of Calabi–Yau varieties, with
unipotent monodromies. Then

12κ f ∈Z.

Consider momentarily a Calabi–Yau 3-fold Z and [H ] an ample cohomology class in H 2(Z ).
Then by the known semi-stability of TZ and the Bogomolov–Gieseker inequality, with c1 = 0, we
have ∫

Z
c2(Z )∩ [H ] ≥ 0.

Taking into account (1.4), this leads us to make the following conjecture:

Conjecture A. If f : X → D is a projective degeneration of 3-dimensional Calabi–Yau varieties
with maximally unipotent monodromy, then κ f ≥ 0.

We remark that the conjecture is true for abelian 3-folds, since in this case our BCOV invariant is
constant so that κ f is 0. Most importantly, it is also known to hold for the mirror quintic family, as
in this case the BCOV predictions were confirmed by Fang–Lu–Yoshikawa [FLY08]. In the general
case, we expect that the explicit formulas we exhibit for κ f will provide a useful tool towards
the proof of the conjecture. For instance, in the semi-stable and Kulikov case, a combination
of Theorem A and the classification of the possible special fibers lead to the following positive
answer (cf. Proposition 7.11):

Proposition. The Conjecture A is true for semi-stable and Kulikov degenerations of strict Calabi–
Yau threefolds.

More ambitiously, we could ask about the sign of the coefficient κ f for an arbitrary degenera-
tion, not necessarily have maximal unipotent monodromy. This question, for which we don’t
have a conjectural answer, is closely related to the problem of determining the birational type
of the moduli space of polarized Calabi–Yau 3-folds. We thank K.-I. Yoshikawa for bringing our
attention to this fact.

In another direction, it is expected (cf. [Kon95, p. 137]) that birational Calabi–Yau mani-
folds have the same B-models. Since the BCOV invariant should only depend thereupon, this
expectation should afford the following realization:

Conjecture B. If X and X ′ are birational Calabi–Yau manifolds, then τBCOV (X ) = τBCOV (X ′).
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The conjecture extends the corresponding conjecture in [FLY08] in dimension 3, which in
this generality remains open. In these lines, Maillot–Rössler [MR12] proved that if X and X ′ are
defined overQ, then a power of the quotient τBCOV (X )/τBCOV (X ′) is a rational number.

After a preliminary version of this work was circulated, Y. Zhang was lead to extend our
construction and produce a BCOV type invariant for Calabi–Yau pairs (X ,Y ) (cf. [Zha]). These
pairs consist of a compact Kähler manifold X together with a smooth divisor Y in some linear
series |mKX |. It can be expected that this construction be a useful auxiliary tool in the proof of
Conjecture B.

As a final consideration, we remark that the current known constructions of mirror Calabi–Yau
varieties, e.g. Batyrev’s [Bat94], do not always produce Calabi–Yau manifolds, but rather orbifolds.
It would thus be desirable to extend these constructions to this context, possibly replacing
Dolbeault cohomology with Chen–Ruan cohomology. In this direction we quote the extensive
work of Yoshikawa [Yos04, Yos09, Yos12, Yos13a, Yos13b, Yos17], who considered equivariant
analytic torsion of K3 surfaces with involution. A running theme is the relationship between
equivariant torsions and Borcherds products. This is remarkable since the non-equivariant BCOV
torsion is trivial for K3 surfaces.

1.5. Notations and conventions. For the convenience of the reader, we introduce the various
notations and conventions that are being used in this work.

A Calabi–Yau variety is, for the purposes of this article, a compact connected complex Käh-
ler manifold X with trivial canonical bundle KX ' OX . We say that a Calabi–Yau variety X of
dimension n is a strict Calabi–Yau variety if moreover H i (X ,OX ) = 0 for 0 < i < n. Hence, except
for K 3 surfaces, neither hyperkähler varieties are strict Calabi–Yau varieties, nor are abelian
varieties of dimension at least 2. Smooth hypersurfaces of degree n+1 in Pn are strict Calabi–Yau
varieties. By the Bogomolov–Beauville decomposition theorem [Bog74, Bea83], in the algebraic
category these can be realized as finite étale quotients of varieties of the form T ×V ×H , where T
is a complex torus, V is a product of strict Calabi–Yau varieties and H a product of hyperkähler
varieties.

A degeneration f : X → S is a flat morphism of reduced and irreducible complex analytic spaces,
with connected fibers and smooth general fibers. Often we will take S =D, a disc centered at 0,
and then we suppose that the morphism is smooth outside of the origin. In that case we denote
by X∞ a general fiber, and by X0 the fiber above the origin. The differentiable type of X∞ is
independent of the choice of a general fiber. A degeneration f : X →D is said to have normal
crossings if X is non-singular and X0 is a not necessarily reduced simple normal crossings divisor
in X . If X0 is furthermore reduced, then we say that f is semi-stable. We may equivalently talk
about normal crossings (resp. semi-stable) degenerations.

A projective morphism f : X → S is a proper morphism of analytic spaces such that, locally
with respect to the base, f factors through a closed immersion Pn ×S followed by the projection
on the second variable. A projective degeneration is a morphism which is both a degeneration
and projective. A rational Kähler structure on a complex manifold is a Kähler form such that the
associated cohomology class is rational. A Kähler morphism f : X → S is a proper submersion of
complex manifolds, admitting a Kähler form ω on X .4

A germ of any of the above types T (e.g. projective) of morphisms is the localization of a
morphism of compact complex manifolds, of type T .

4It would be enough to assume the existence of a smooth closed real (1,1) form on X , inducing a Kähler form on
fibers.
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2. LOGARITHMIC EXTENSIONS OF HODGE BUNDLES

In this section we recall Deligne’s extension of a local system over the punctured unit disc
D×. We also review Steenbrink’s construction of the lower extension of the local system of de
Rham cohomology of a normal crossings degeneration, together with its Hodge filtration. For
these questions we follow closely the presentation expounded in [PS08, Chap. 11], [Ste76, Sec. 2]
and [Ste77, Sec. 2]. Finally, we study the behaviour of the relative Hodge filtration with respect
to semi-stable reduction. The comparison of Hodge filtrations before and after semi-stable
reduction produces some elementary divisors, and we show that they exactly correspond to the
eigenvalues of the semi-simple part of the monodromy operator acting on the limiting Hodge
filtration.

2.1. Deligne’s extensions. Let (V ,∇) be a finite rank flat holomorphic vector bundle on D×. Let
q : H→D× be the universal covering map q(τ) = exp(2πiτ), whereH is the upper half-plane. The
C-vector space of multi-valued flat sections of V is, by definition

V∞ := Γ(H, q∗V )q∗∇ = ker
(
q∗∇ : Γ(H, q∗V ) → Γ(H, q∗V ⊗ΩH)

)
.

This vector space is finite dimensional. The monodromy transformation is the automorphism
T ∈ EndC(V∞) induced by τ 7→ τ+1. We assume that T is quasi-unipotent. We may then introduce
the Chevalley decomposition T = TsTu = TuTs of T into a semi-simple automorphism Ts and
a unipotent automorphism Tu . The logarithm of Tu is well-defined. We denote N = 1

2πi logTu .
To define a logarithm of Ts , one chooses a branch of the logarithm on C×. For a fixed choice of
branch (still denoted log) we denote S = 1

2πi logTs . We can thus define 1
2πi logT := S +N .

The vector bundle V on D× can be uniquely extended to a vector bundle Vlog on D, referred to
as the Deligne extension, in such a way that:

(i) there is an identification Vlog |D×
∼−→ V , depending only on the choice of branch of logarithm.

(ii) the connection ∇ extends to a connection with regular singular poles

∇ : Vlog −→ Vlog ⊗ΩD(log[0]).

Here we denote by ΩD(log[0]) the sheaf of meromorphic differentials on Dwith at most a
simple pole at 0.

(iii) the eigenvalues of −2πi Res0∇ belong to (2πiQ)∩ logC×, for the given branch of log.
(iv) the operator T induces a vector bundle endomorphism of Vlog, whose fiber T0 is related to

Res0∇ by
T0 = exp(−2πi Res0∇).

Two frequent choices in (iii) are the upper and lower branches. The upper branch takes values in
R+2πi [0,1), and will be denoted u log. The lower branch takes values in R+2πi (−1,0], and will
be denoted ` log. In later geometric constructions we will mostly encounter the lower branch.

Whenever the monodromy is unipotent, the extension Vlog is called the canonical extension of
V .5 Notice that, when it exists, the canonical extension “commutes” with any finite base change
q 7→ q`.

An explicit description of Vlog will be necessary. The regular sections of Vlog are obtained from
twisted flat multivalued sections as follows. Let e ∈V∞. Since e(τ+1) = T e(τ), the twisted section

(2.1) ẽ(τ) := exp(−τ logT )e(τ)

5In the literature one often refers to the lower extension as the canonical extension, e.g. [PS08, Def. 11.4]. In the
present article, this terminology is reserved to the unipotent case.

9



BCOV INVARIANTS ERIKSSON, FREIXAS I MONTPLET, AND MOUROUGANE

is invariant under τ 7→ τ+1 and descends to a global holomorphic section of V on D×, denoted
ẽ(q). From the flatness of e(τ) and the relation 2πi dτ= d q/q , it is straightforward to check the
equality on D×

∇ẽ(q) =−(logT )ẽ(q)dτ=− 1

2πi
(logT )ẽ(q)

d q

q
.

The procedure e(τ) 7→ ẽ(q) describes a C-linear injective morphism

ϕ : V∞ −→ Γ(D×,V )

and induces an isomorphism, depending only on the choice of branch of logarithm

V∞⊗OD×
∼−→ V .

Then, one defines
Vlog :=ϕ(V∞)⊗COD.

In other words, we declare that ẽ as above is holomorphic at q = 0. It is straightforward to check
that Vlog satisfies the properties (i)–(iv) stated above.

A formal consequence of the construction is the isomorphism described as “first twisting and
then evaluating at 0":

ψ : V∞
∼−→ Vlog(0)

e 7−→ ẽ(0).
(2.2)

By definition, this isomorphism is equivariant with respect to the monodromy transformations,
namely T acting on V∞ and T0 acting on Vlog(0).

A final reminder concerns unipotent reduction. By assumption, the semi-simple endomor-
phism Ts has finite order. We choose `≥ 1 with T `

s = id. Let ρ : D→D be the finite ramified cover
ρ(t ) = t`. The space of multi-valued flat sections of the pull-back (ρ∗V ,ρ∗∇), say U∞, is actually
isomorphic to V∞:

ν : V∞
∼−→ Γ(H, q∗ρ∗V )q∗ρ∗∇ =: U∞

e(τ) 7−→ e(`τ).
(2.3)

The monodromy transformation on U∞ is unipotent and identifies to T ` = T `
u , with logarithm

`N . The flat vector bundle (ρ∗V ,ρ∗∇) thus affords a canonical extension, that we denote by U =
(ρ∗V )log. The procedure of twisting and evaluating at 0 for Vlog and U provides a commutative
diagram of isomorphisms

(2.4) e(τ)_

��

V∞
∼
ψ
//

ν ∼
��

Vlog(0)

∼
��

ẽ(0)_

��

e(`τ) U∞
∼
ρψ
// U (0) ρ ẽ(0).

The action of Ts on V∞ induces an action of Ts on U∞ and U (0) through the isomorphisms above.
On U∞, this automorphism is induced by the translation τ 7→ τ+1/`.

With these notations, it is clear that given linearly independent elements of the form ẽ1(0), . . . , ẽr (0),
the corresponding ρ ẽ1(0), . . . , ρ ẽr (0) in U (0) are linearly independent as well, and reciprocally.
For future usage we record the following lemma. For simplicity of exposition we restrict ourselves
to lower extensions, but a similar statement holds for other extensions. Notice that for the lower
extension, it follows from the construction that there is a natural inclusion ρ∗Vlog ⊆ (ρ∗V )log =U .

10
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Lemma 2.1. Let Vlog be the lower extension of (V ,∇), and let σ ∈ Γ(D,Vlog) be such that σ(0) 6= 0.
Define k ≥ 0 as the largest integer such that ρσ := t−kρ∗σ ∈U . Then k ≤ `−1 and ρσ(0) ∈U (0) is
an eigenvector of Ts of eigenvalue exp(−2πi k/`).

Proof. We choose e1, . . . ,er ∈ V∞ a basis of eigenvectors of Ts , whose eigenvalues we write
exp(−2πi k1/`), . . . ,exp(−2πi kr /`), where 0 ≤ k j ≤ `−1. By construction, it follows that ρ ẽ j (0) ∈
U (0) is an eigenvector of Ts of eigenvalue exp(−2πi k j /`). We write

σ=∑
j

f j (q)ẽ j (q),

where the f j (q) are holomorphic functions on D. Because σ(0) 6= 0, at least one of the functions
f j does not vanish at 0. Observe that

(ρ∗ẽ j )(t ) = ẽ j (t`) = ẽ j (`τ)

= exp(−2πi (S +N )`τ)e j (`τ)

= exp(−2πi (−k j /`)`τ)exp(−2πi N`τ)e j (`τ)

= t k j exp(−2πi N`τ)e j (`τ)

where exp(−2πi`Nτ)e j (`τ) =:ρ ẽ j (t ) belongs to U . Hence, the pull-back ρ∗σ can be written

ρ∗σ=∑
j

t k j f j (0) ρ ẽ j (t )+O(t`).

Define k as the smallest k j such that f j (0) 6= 0. In particular k ≤ `−1. Then

t−kρ∗σ= ∑
k j=k

f j (0) ρ ẽ j (0)+ ∑
k j>k

t k j−k f j (0) ρ ẽ j (0)+O(t`−k )

and thus
(t−kρ∗σ)(0) = ∑

j : k j=k
f j (0) ρ ẽ j (0) 6= 0,

which is an eigenvector of Ts of eigenvalue exp(−2πi k/`). This concludes the proof. �

Definition 2.2. With notations as in Lemma 2.1, we define the elementary exponent of σ to be
the rational number κ(σ) = k/` ∈ Q∩ [0,1). Hence, ρσ(0) is an eigenvector of Ts of eigenvalue
exp(−2πiκ(σ)).

2.2. Steenbrink’s construction. Let X be a complex manifold of dimension m with a normal
crossings divisor D, such that Dred is locally given by an equation z1 . . . zk = 0 in suitable holo-
morphic coordinates z1, . . . , zm . Recall that the sheaf of logarithmic differentials ΩX (logD) is the
OX -module locally generated by d z1

z1
, . . . , d zk

zk
,d zk+1, . . . ,d zm .

Let f : X →D be a projective normal crossings degeneration, with fibres of dimension n. We
denote its restriction to D× by f ×. Locally, the special fiber is given by an equation zm1

1 . . . zmk
k = 0.

Pull-back of differential forms induces an injection f ∗ΩD(log[0]) → ΩX (log X0). The sheaf of
relative logarithmic forms is then defined by

ΩX /D(log) =ΩX (log X0)/ f ∗ΩD(log[0]).

This is a locally free sheaf, and we define Ωp
X /D(log) = ∧pΩX /D(log). The exterior differential

makes Ω•
X /D(log) a complex, named the logarithmic de Rham complex of f . After Steenbrink

[Ste76, Sec. 2], its k-th hypercohomology sheaf Rk f∗Ω•
X /D(log) defines an extension of the flat

bundle V := Rk f ×∗ C⊗OD× , for which the Gauss-Manin connection has logarithmic singularities,

11



BCOV INVARIANTS ERIKSSON, FREIXAS I MONTPLET, AND MOUROUGANE

whose residue has eigenvalues in [0,1)∩Q. It is hence the lower Deligne extension Vlog of V . With
notations as in the previous subsection, we let V∞ be the space of multi-valued flat sections of V

on D×. By parallel transport, the space V∞ is canonically isomorphic to the k-th cohomology of a
general fiber of f , also denoted H k (X∞,C) or simply H k (X∞). In this setting, the isomorphism
(2.2) gives an isomorphism

(2.5) ψ : H k (X∞)
∼−→ Rk f∗Ω•

X /D(log)(0).

It is the composition of the isomorphisms stated in [Ste76, Prop. 2.16 and Thm. 2.18]. Notice that
this isomorphism depends on the fixed choice of holomorphic parameter on D.

One defines the Hodge filtration bundles F pVlog of Vlog = Rk f∗Ω•
X /D(log), or simply F

p
log, by

considering the sections of the Hodge filtration on the smooth part F pV that extend to Vlog. It is

equivalently the filtration induced by the bête filtration Ω≥p
X /D(log) of the complex Ω•

X /D(log). If
j : D× ,→D is the inclusion, we may thus write

(2.6) F
p
log = j∗(F pV )∩Vlog ⊆ j∗V .

In [Ste77, Thm 2.11] Steenbrink shows that the sheaves Rq f∗Ω
p
X /D(log) are locally free. From the

E1 degeneration of the Hodge-de Rham spectral sequence in the smooth case, it then follows that
for Rk f∗Ω•

X /D(log) we have

(2.7) F
p
log/F p+1

log = Rk−p f∗Ω
p
X /D(log).

These are called (p,k −p) Hodge bundles, or sometimes referred to as simply Hodge bundles.
Let us now consider a semi-stable reduction diagram

(2.8) Y

g
��

r
// X

f
��

D
ρ
// D,

where ρ(t) = t` and r is generically finite. The previous discussion applied to Rk g×∗C⊗OD×

produces the canonical extension U = Rk g∗ΩY /D(log) with its Hodge filtration by vector sub-
bundles that we may denote ρF p . Hence on Rk g∗ΩY /D(log) we have

ρF p /ρF p+1 = Rk−p g∗Ω
p
Y /D(log).

Observe that the k-th cohomology of a general fiber of g , H k (Y∞), is naturally identified with
H k (X∞) (see the isomorphism (2.3)). Hence we now have an isomorphism (cf. (2.4))

ρψ : H k (X∞) = H k (Y∞)
∼−→U (0) = Rk g∗Ω•

Y /D(log)(0).

The isomorphisms ψ and ρψ are to be compared with [Ste77, (2.12)]. Taking the fiber at 0 of the
Hodge filtration ρF • and transporting it to H k (X∞) through ρψ, we obtain Steenbrink’s limiting
Hodge filtration on H k (X∞), that we denote by F p H k (X∞) or simply F p

∞. To sum up, we have

(2.9) U (0) ⊇ ρF p (0)

H k (X∞)

∼ ρψ

OO

⊇ F p
∞.

∼ ρψ

OO

The limiting Hodge filtration depends on the choice of holomorphic parameter on D. The
canonical object is the “nilpotent orbit” {exp(λN )F •∞,λ ∈C} in a suitable Grassmannian.
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Remark 2.3. In [Ste77] Steenbrink allows Y in (2.8) to be the V -manifold, and g to be semi-
stable in the sense of V -manifolds. Such a situation naturally arises as follows. We write
f −1(0) = ∑r

i=1 mi Di , where the divisors Di are smooth, intersect transversally, and the mi are
their multiplicities in the schematic fiber f −1(0). Let `= lcm(m1, . . . ,mr ), ρ(t ) = t` and perform
the base change X ×ρ D, of f by ρ. Then define Y as the normalization of X ×ρ D. Steenbrink
shows that Y is a V -manifold and the structure morphism g : Y →D is semi-stable in the sense
of V -manifolds. Our discussion equally applies to this setting.

To conclude this subsection, we compare Hodge filtrations and Hodge bundles before and
after semi-stable reduction. Notice that there are inclusions, induced by pull-back of differential
forms from X to Y ,

ρ∗Rk f∗Ω•
X /D(log) ⊆ Rk g∗Ω•

Y /D(log),

ρ∗F
p
log ⊆ ρF p , ρ∗Rq f∗Ω

p
X /D(log) ⊆ Rq g∗Ω

p
Y /D(log).

The respective quotients of these inclusions are torsion sheaves supported at the point 0. We may
thus write

ρF p

ρ∗F
p
log

'
hp⊕
j=1

OD,0

t
a

p
j OD,0

,

for some integers ap
j ≥ 0, and similarly for the Hodge bundles

Rq g∗Ω
p
Y /D(log)

ρ∗Rq f∗Ω
p
X /D(log)

'
hp,q⊕
j=1

OD,0

t
b

p,q
j OD,0

,

for some integers bp,q
j ≥ 0. We indicated by hp the rank of F

p
log and hp,q the rank of Rq f∗Ω

p
X /D(log).

Lemma 2.4. The integers ap
j and bp,q

r satisfy

0 ≤ ap
j ≤ `−1, 0 ≤ bp,q

r ≤ `−1,

where `= degρ. Moreover, the rational numbers ap
j /` and bp,q

r /` are independent of the choice of
semi-stable reduction.

Proof. The first statement is a direct consequence of Lemma 2.1. The second assertion easily
follows from two facts: first, in the unipotent case, formation of canonical extensions commutes
with pull-back by t 7→ t m on D; second, any two semi-stable reduction diagrams are dominated
by a third one. This is combined with (2.6)–(2.7), applied in the unipotent case. �

The second claim of the lemma can be reformulated by saying that the rational numbers
ap

j /` and bp,q
j /` only depend on the local system Rk f ×∗ C and its associated variation of Hodge

structures. We give them a name:

Definition 2.5 (Elementary exponents of Hodge bundles). The rational numbers αp
j := ap

j /` are

called the elementary exponents of p-th level of the Hodge filtration for Rk f ×∗ C. The rational
numbers αp,q

j := bp,q
j /` are called the elementary exponents of the (p, q) Hodge bundle for Rk f ×∗ C

(k = p +q). We also denote by αp,q =∑hp,q

j=1 α
p,q
j , i.e. the sum of all the elementary exponents of the

(p, q) Hodge bundle.

In the rest of this section we relate the elementary exponents to the eigenvalues of Ts acting on
the limiting Hodge filtration.
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2.3. Elementary exponents and eigenvalues of monodromy. We maintain the setting and nota-
tions of the previous subsections. Hence f : X →D is a normal crossings projective degeneration
over the unit disc. Also, g : Y →D is a semi-stable reduction of f as in (2.8), existing after some fi-
nite base change ρ(t ) = t`. We compared the Hodge filtrations F •

log on Vlog := Rk f∗Ω•
X /D(log) and

ρF • on U := Rk g∗Ω•
Y /D(log), producing the elementary exponents of Definition 2.5. The limiting

Hodge filtration F •∞ on H k (X∞) = H k (Y∞) was obtained after identifying the latter with U (0) via
the isomorphism ρψ, and then transporting the filtration ρF •(0) through this identification (cf.
(2.9)). Recall that the semi-simple part of the monodromy operator Ts acts on U (0).

Theorem 2.6. Let σ1, . . . ,σh be a basis of the OD-module F
p
log. Then there exists another basis

θ1, . . . ,θh with the following properties:

(a) for every m = 1, . . . ,h, we have
m⊕

j=1
ODσ j =

m⊕
j=1

ODθ j .

(b) there exist integers 0 ≤ a j ≤ `−1 such that the elements ρθ j := t−a jρ∗θ j define a OD-basis of
ρF p .

(c) the elementary exponent κ(θ j ) equals a j /`. Hence the fiber at 0 element ρθ j (0) ∈U (0) is an
eigenvector of Ts of eigenvalue exp(−2πi a j /`).

In particular, the operator Ts preserves the limiting Hodge filtration F •∞ and the rational numbers
a j /` are, modulo reordering, the elementary exponents of p-th level of the Hodge filtration for
Rk f ×∗ C.

Proof. Fix a basis of V∞, say e1, . . . ,er , made of eigenvectors of Ts . We write their eigenvalues as
exp(−2πi k1/`), . . . , exp(−2πi kr /`), with 0 ≤ k j ≤ `−1 ordered increasingly. Recall the notations
ẽ j and ρ ẽ j for the associated OD-module bases of Vlog and U . We construct the basis θ1, . . . ,θh

inductively.

We start by applying Lemma 2.1 to σ1. Hence there exists an integer a1, with 0 ≤ a1 ≤ `−1,
such that ρσ1 := t−a1ρ∗σ1 ∈U and ρσ1(0) is an eigenvector of Ts (in particular non-zero). Hence
(a) is satisfied for k = 1 with the choice θ1 =σ1. Also (c) is satisfied.

Suppose we already constructed θ1, . . . ,θm as in the statement, for some m < h. More precisely,
this means:

• condition (a) holds restricted to the range 1, . . . ,m;
• for every j ≤ m there exists an integer 0 ≤ a j ≤ `−1 such that ρθ j = t−a jρ∗θ j belongs to
ρF p , and the vectors ρθ1(0), . . . , ρθm(0) are linearly independent;

• κ(θ j ) = a j /` and ρθ j (0) is an eigenvector of Ts of eigenvalue exp(−2πi a j /`).

In particular, the vector σm+1(0) is linearly independent with θ1(0), . . . ,θm(0). We apply Lemma
2.1 with σ=σm+1. We write the Ts-eigenvalue of ρσ(0) as exp(−2πi a/`), for some 0 ≤ a ≤ `−1.
Two cases can occur. In the first case, ρσ(0) is already linearly independent with ρθ1(0), . . . , ρθm(0).
Then we take θm+1 =σ and am+1 = a. In the second case, there is a non-trivial linear relation:

(2.10) ρσ(0) =
m∑

j=1
µ j

ρθ j (0).

We infer for the coefficients µ j that, either µ j = 0, or µ j 6= 0 and then ρθ j (0) has eigenvalue
exp(−2πi a/`). Hence, if µ j 6= 0 then a j = a and ρθ j = t−aρ∗θ j . We denote by J (σ) the non-empty
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subset of {1, . . . ,m} for which a j = a. Define now the sections

σ′ :=σ− ∑
j∈J (σ)

µ jθ j ∈ Γ(D,F p
log)

and
σ̂′ = t−aρ∗σ′ = ρσ− ∑

j∈J (σ)
µ j

ρθ j ∈ Γ(D, ρF p ).

Due to (2.10), this section is necessarily of the form

σ̂′ = t b−a
∑

k j=b
γ j

ρ ẽ j (t )+ ∑
k j>b

t k j−aγ j
ρ ẽ j (t )+ t−aR(t`),

for some constants γ j , some minimal b > a and R(t`) = ρ∗R(s), where R(s) a regular section of
Vlog vanishing at s = 0. Notice the first sum is non-trivial. Otherwise, by the minimality of b, it
would necessarily be σ′ = R(s), which vanishes at 0 and hence entails

σ(0) =∑
j
µ jθ j (0),

contradicting the linear independence of σ(0) =σm+1(0) with θ1(0), . . . ,θm(0) observed before.
Now

t−(b−a)σ̂′ = t−bρ∗σ′ = ρσ′

is a regular section of ρF p and its value at 0 is∑
k j=b

γ j
ρ ẽ j (0),

which is non-zero and an eigenvector of Ts of eigenvalue exp(−2πi b/`). Hence κ(σ′) = b/`.
Furthermore, ρσ′ is independent with the sections ρθ j with j ∈ J(σ). Indeed, the eigenvalue of
ρσ′(0) is exp(−2πi b/`) and for j ∈ J (σ) the eigenvalue of ρθ j (0) is exp(−2πi a/`), and b > a. Still,
it could be that ρσ′(0) is linearly dependent with the ρθ j (0), with j 6∈ J (σ). If such is the case, then
we repeat the argument, starting with a non-trivial linear relation

ρσ′(0) = ∑
j∈{1,...,m}\J (σ)

µ′
j
ρθ j (0).

In particular, this produces a new subset of indices J(σ′) ⊂ {1, . . . ,m} disjoint with J(σ). This
procedure clearly comes to an end after a finite number of steps, since J(σ′)∩ J(σ) = ; and
κ(σ′) = b/`> a/`= κ(σ). The outcome is a section θm+1 with the expected properties. Namely,
the sections θ1, . . . ,θm+1 are independent and satisfy

m+1⊕
j=1

ODσ j =
m+1⊕
j=1

ODθ j .

Furthermore, for some 0 ≤ am+1 ≤ `−1, ρθm+1 = t−am+1ρ∗θm+1 is a regular section of ρF p , and
its value at 0 is an eigenvector of Ts of eigenvalue exp(−2πi am+1/`). �

Remark 2.7. (i) Recall that the limiting Hodge structure F •∞ depends on the choice of holomor-
phic coordinate on D. However, the nilpotent orbit {exp(λN )F •∞,λ ∈ C} is canonical. The
operators Ts and exp(Nλ) commute, and therefore Ts preserves exp(λN )F p

∞ as well. Also,
the eigenvalues of Ts on F p

∞ and exp(λN )F p
∞ are the same, and hence they only depend on

the nilpotent orbit. This is consistent with the fact that the elementary exponents do not
depend on the choice of coordinate on D. It follows that, for the purpose of comparing the
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elementary exponents with the monodromy eigenvalues, D can be taken to have any radius,
as opposed to the radius 1 assumption we made so far.

(ii) For one-variable variations of polarized Hodge structures, the invariance of the limiting
Hodge filtration under the action of Ts is already observed by Schmid [Sch73, (4.9)]. A
different argument for the invariance in the geometric case is provided by Steenbrink [Ste77,
Thm. 2.13].

(iii) Theorem 2.6 can be stated in the more general context of variations of Hodge structures. We
restricted to the geometric case for the sake of conciseness.

As a consequence, we derive the corresponding statement for the elementary exponents of the
Hodge bundles:

Corollary 2.8. The elementary exponents αp,q
j of the (p, q) Hodge bundle for Rk f ×∗ C (k = p +q)

are such that the exp(−2πiαp,q
j ) constitute the eigenvalues of Ts acting on Grp

F∞ H k (X∞) (with
multiplicities). In particular, we have

αp,q =− 1

2πi
tr

(
` logTs | Grp

F∞ H p+q (X∞)
)

.

Proof. Recall that the graded quotients F
p
log/F p+1

log are locally free and isomorphic to Rk−p f∗Ω
p
X /D(log).

Similarly after semi-stable reduction. The result easily follows from Theorem 2.6, by choosing a
basis σ1, . . . ,σh of F

p+1
log and completing it into a basis σ1, . . . ,σr of F

p
log, in such a way that the

σh+1, . . . ,σr project onto a basis of Rk−p f∗Ω
p
X /D(log). �

Remark 2.9. (i) Steenbrink’s construction of the limiting Hodge filtration via V -manifolds,
recalled in Remark 2.3, shows that we may take `= lcm(m1, . . . ,mr ) , where the mi are the
multiplicities of the irreducible components of the schematic fiber f −1(0).

(ii) In the polarized setting and for primitive cohomology groups, one has analogous statements
to Theorem 2.6 and Corollary 2.8, formally with the same proof. The formulation and details
are left to the reader.

For other extensions, the same argument gives an analogous result of Theorem 2.6. However,
it is not clear that the successive quotients of the (extended) Hodge filtration are locally free.
Nonetheless, for the upper extension, the situation is much better. Precisely, let uV be the
upper extension of the local system V = Rk f ×∗ C⊗OD× (see §2.1), and extend the Hodge filtration
analogously to (2.6). Then, by [Kol86, Prop. 2.9 & Lemma 2.11]6, the extended Hodge filtration
uF • has locally free successive quotients uF p /uF p+1. By loc. cit., if k = n+ i the last piece of the
filtration has the form

uF n = R i f∗ωX /D,

where n is as usual the fiber dimension of the family. We thus have a counterpart of Corollary
2.8 which generalizes our previous [EFiMM18, Theorem A] for the direct image of the relative
canonical sheaf of a degenerating family of Calabi–Yau varieties:

Proposition 2.10. Let f : X → D be a projective degeneration between complex manifolds. If
g : Y →D denotes a semi-stable reduction as in diagram (2.8), there is a natural inclusion of locally
free sheaves

R i g∗ωY /D→ ρ∗R i f∗ωX /D.

6The discussion in loc. cit. and the references used therein are valid over a one-dimensional disc.
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The quotient is of the form
⊕hn,i

j=1
OD,0

t
a j OD,0

. Then the rational numbers a j /degρ ∈ [0,1)∩Q are

independent of the choice of semi-stable reduction, and exp(2πi a j /degρ) are the eigenvalues of
Ts acting on F n∞H n+i (X∞).

3. KÄHLER EXTENSIONS OF DETERMINANTS OF HODGE BUNDLES

In the theory of the BCOV line bundle, it is frequent to work with the Kähler extensions of the
sheaves of differentials, rather than their logarithmic counterparts (see e.g. [FLY08, EFiMM18]).
In this section we compare the determinant of cohomology of these two kinds of extensions.
While in the comparison properties addressed in the previous section we found eigenvalues of the
monodromy operator, in this section we encounter other invariants such as the total dimension
of vanishing cycles.

3.1. Kähler extensions. Let f : X → S be a projective degeneration between complex manifolds,
of relative dimension n. We assume that S is a connected complex curve. Let S× ⊆ S be the
(non-empty and Zariski open) locus of regular values of f . Write X × = f −1(S×). Then Ωp

X ×/S× is
a locally free sheaf and its determinant of cohomology λ(Ωp

X ×/S×) = detR f ×∗ (Ωp
X ×/S×) is defined

(cf. [KM76] for the notion of determinants of perfect complexes. It generalizes the concept of
maximal exterior powers of vector bundles).

Definition 3.1. For each 0 ≤ p ≤ n, consider the complex of locally free sheaves

Ω̃
p
X /S :

(
f ∗ΩS

)⊗p → (
f ∗ΩS

)⊗p−1 ⊗ΩX →···→ (
f ∗ΩS

)⊗Ωp−1
X →Ω

p
X ,

quasi-isomorphic on X × to Ωp
X ×/S× . We define the Kähler extension of λ(Ωp

X ×/S×), as

(3.1) λ(Ω̃p
X /S) =

p⊗
k=0

λ
((

f ∗ΩS
)⊗k ⊗Ωp−k

X

)(−1)k

.

Remark 3.2. In [Sai04, Example 4.2], the complex Ω̃p
X /S is referred to as the derived exterior power

complex LΛq K , applying a functor LΛq to K = [ f ∗ΩS →ΩX ]. We refer the reader to loc. cit. for
further discussions of this notion.

3.2. Compatibility with Serre duality. We study the compatibility of the formation of λ(Ω̃p
X /S)

with Serre duality. For simplicity, we restrict to the local case S =D and f is a submersion onD×. As
X is smooth, the relative dualizing sheaf ωX /D of f : X →D is isomorphic to detΩX /D ' KX ⊗K −1

D
.

Then there is a canonical pairing

Ω̃
p
X /D× Ω̃

n−p
X /D −→ Ω̃n

X /D −→ωX /D.

The pairing is described in [Sai04, p. 420]7 and extends the natural pairing on relative Kähler
differentials. In particular, on the smooth locus, it is a perfect pairing. We conclude there is a
morphism of complexes

ρp : Ω̃p
X /D −→ R Hom(Ω̃n−p

X /D ,ωX /D).

The cone of ρp is acyclic on the smooth locus and its homology is supported on the singular
locus. By Grothendieck-Serre duality, we have a quasi-isomorphism

R f∗R Hom(Ω̃n−p
X /D ,ωX /D[n]) ' R Hom(R f∗Ω̃

n−p
X /D ,OD).

7To be strictly conform with loc. cit., we should work with the projective morphism of regular schemes over
SpecC{t } induced by f . The reader will get easily convinced that this abuse of notation is justified, for the results of
this section can be checked after localization at the origin.
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Taking determinants we obtain an isomorphism

det
(
R Hom

(
Ω̃

n−p
X /D ,ωX /D

))' detR f∗(Ω̃n−p
X /D)(−1)n+1

.

We conclude that there is an isomorphism, where we write the tensor products of line bundles
additively for lighter notations,

λ(Ω̃p
X /D) ' (−1)n+1λ(Ω̃n−p

X /D)−δp ·O ([0])

where δp ∈ Z. Outside of the origin, it extends the (canonical) Serre duality isomorphism. By
dévissage we find that

δp =∑
(−1)k`OD,0

(
Rk f∗ cone(ρp )

)
.

Here `R denotes the length of an R-module. It follows from [Sai04, Cor. 4.9],

δp = (−1)n−p degc X0
n+1(ΩX /D).

Since we suppose that the total space X is smooth, we have the formula (cf. [Ful98, Ex. 14.1.5])

(3.2) degc X0
n+1(ΩX /D) = (−1)n (

χ(X∞)−χ(X0)
)

where χ(X∞) (resp. χ(X0)) denotes the topological Euler characteristic of a general (resp. special)
fiber of f : X →D.

We summarize the above observations in the following proposition:

Proposition 3.3. Outside the origin, Serre duality induces an isomorphism

λ(Ωp
X ×/D×) ' (−1)n+1λ(Ωn−p

X ×/D×).

It extends to an isomorphism of Kähler extensions

λ(Ω̃p
X /D) ' (−1)n+1λ(Ω̃n−p

X /D)+ (−1)n+1−p c ·O ([0]).

Here c = degc X0
n+1(ΩX /D) is the degree of the localized top Chern class, which is computed by (3.2).

Corollary 3.4. In even relative dimension n = 2m, there is an isomorphism

2λ(Ω̃m
X /D) ' (−1)m+1c ·O ([0]).

The above results adapt to a general one dimensional base S and the case of several singular
fibers, and integrating over a compact Riemann surface we obtain the following corollary:

Corollary 3.5. Suppose that S is a compact Riemann surface and f : X → S is a degeneration
with at most ordinary double point singularities, of even relative dimension. Then the number of
singularities is even.

Proof. For ordinary double point singularities, it follows from (3.2) that the localized Chern
classes compute the number of singular points in the fibers (cf. [Ful98, Ex. 14.1.5 (d)]). We
conclude by Corollary 3.4. �

Remark 3.6. In the special case of a Lefschetz pencil of degree d hypersurfaces in P2m+1, the
above corollary indicates that there are an even number of singular fibers. This is compatible
with the fact that the degree of the discriminant variety is (2m +2)(d −1)2m+1 by Boole’s formula
[GKZ08, Chap. 1].
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3.3. Comparison with the logarithmic extensions. Let f : X → D be as before. If the special
fiber X0 has not-necessarily reduced normal crossings, then λ(Ωp

X ×/D×) affords two natural ex-
tensions: the Kähler extension λ(Ω̃p

X /D) and the logarithmic extension λ(Ωp
X /D(log)). Both can be

compared:

(3.3) λ(Ω̃p
X /D) =λ(Ωp

X /D(log))+µp ·O ([0]),

for some integer µp . We now describe general expressions for µp in terms of the geometry of
X0. More generally, without any assumption on the special fiber, we can reduce to the normal
crossings case by an embedded resolution of singularities. One then needs to keep track of
the change of the determinant of cohomology of the Kähler differentials under the blowing-up
process. This setting will be partially treated in a second step, after the easier normal crossings
case.

Suppose that the special fiber of f : X → D is a normal crossings divisor of the form X0 =∑r
i=1 mi Di , with smooth Di . Define for I ⊆ {1, . . . ,r }, D I = ⋂

i∈I Di . For k ≥ 0 an integer, also
define the codimension k stratum in X

D(k) = ⊔
I⊆{1,...,r }
|I |=k

D I

and denote by ak : D(k) → X0 the natural map. Finally, given a cohomological complex C •, denote
by C •≤k the bête truncation of the complex up to degree k, namely . . . → C k−2 → C k−1 → C k .
This notation will be applied below for holomorphic de Rham complexes.

Proposition 3.7. Assume that f : X →D is a projective normal crossings degeneration, and write
X0 =∑

i mi Di , where the Di are the reduced irreducible components, assumed to be smooth. Then

µp = (−1)p−1χ(Ω•≤p−1
X∞ )−

p∑
k=1

(−1)p−kχ(Ω•≤p−k
D(k) ).

In particular,

µ1 =χ(OX∞)−∑
χ(ODi ).

If moreover f is semi-stable, i.e. X0 is in addition reduced, then

µ1 =− ∑
k≥2

(−1)kχ(OD(k)).

Proof. Applying the projection formula to the definition (3.1) we find

λ(Ω̃p
X /D) =

p∑
k=0

(−1)k det(Ω⊗k
D ⊗R f∗Ω

p−k
X ).

Here R f∗Ω
p−k
X is the whole right derived image ofΩp−k

X , which is a perfect complex onD. We now
want to use that for a product of two perfect complexes A,B , we have det(A⊗B) = (rkB)(det A)+
(rk A)(detB). The rank of R f∗Ω

p−k
X can be computed on the generic fiber X∞, and hence equals

to χ(Ωp−k
X |X∞). From the cotangent sequence of f , one can derive the relation

χ(Ωp−k
X |X∞) =χ(Ωp−k

X∞ )+χ(Ωp−k−1
X∞ ),
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with the convention χ(Ω−1
X∞) = 0. We find that the determinant Kähler extension can be written

λ(Ω̃p
X /D) =

p∑
k=0

(−1)k k
(
χ(Ωp−k

X∞ )+χ(Ωp−k−1
X∞ )

)
ΩD+

p∑
k=0

(−1)kλ(Ωp−k
X )

=
p−1∑
k=0

(−1)p−kχ(Ωk
X∞)ΩD+

p∑
k=0

(−1)kλ(Ωp−k
X ) = (−1)pχ(Ω•≤p−1

X∞ )ΩD+
p∑

k=0
(−1)kλ(Ωp−k

X ).

(3.4)

On the other hand, the sheaf ΩX /D(log) is already locally free, so in fact the p-th derived exterior
power is a resolution of Ωp

X /D(log). Then in a similar way we find

(3.5) λ(Ωp
X /D(log)) = (−1)pχ(Ω•≤p−1

X∞ )ΩD(log[0])+
p∑

k=0
(−1)kλ(Ωp−k

X (log X0)).

Comparing (3.4) and (3.5), we find

(3.6) λ(Ωp
X /D(log))−λ(Ω̃p

X /D) = (−1)pχ(Ω•≤p−1
X∞ )O ([0])+

p∑
k=0

(−1)k
(
λ(Ωp−k

X (log X0))−λ(Ωp−k
X )

)
.

For the second term on the right hand side of (3.6), we introduce the filtration by the order of
poles on Ωk

X (log):

WmΩ
k
X (log X0) =Ωk−m

X ∧Ωm
X (log X0), m ≤ k with GrW

m Ωk
X (log X0)

∼→ (am)∗Ωk−m
D(m).

We find

λ(Ωk
X (log X0))−λ(Ωk

X ) =
k∑

m=1
λ((am)∗Ωk−m

D(m)) =
k∑

m=1
χ(Ωk−m

D(m))O ([0]),

and then

(3.7)
p∑

k=0
(−1)k

(
λ(Ωp−k

X (log X0))−λ(Ωp−k
X )

)
=

p∑
k=1

(−1)p−kχ(Ω•≤p−k
D(k) )O ([0]).

To sum up, equations (3.6)–(3.7) combine to

λ(Ωp
X /D(log))−λ(Ω̃p

X /D) =
(

(−1)pχ(Ω•≤p−1
X∞ )+

p∑
k=1

(−1)p−kχ(Ω•≤p−k
D(k) )

)
O ([0]),

hence

µp = (−1)p−1χ(Ω•≤p−1
X∞ )−

p∑
k=1

(−1)p−kχ(Ω•≤p−k
D(k) ),

as was to be shown. This completes the proof of the first part of the statement. The first claimed
expression for µ1 is readily checked. In the semi-stable case, we consider the natural exact
sequence

(3.8) 0 →OX0 →OD(1) →OD(2) →OD(3) → . . . →OD(n) → 0.

Taking Euler characteristics, we derive

χ(OX0 ) =−
n∑

k=1
(−1)kχ(OD(k)).

By flatness of f : X →Dwe have χ(OX∞) =χ(OX0 ). The second claimed expression for µ1 follows.
�
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We now discuss a variant of Proposition 3.7 for morphisms which are not necessarily in normal
crossings form. Before the statement, we need a preliminary observation. If f : X → D is a
projective normal crossings degeneration, with X0 =∑

mi Di as above, we have a commutative
diagram of exact sequences

(3.9) 0

��

0

��

0

��

P

��

0 // f ∗ΩD //

��

f ∗ΩD(log[0])

��

res
// OX0

//

��

0

0 // ΩX
//

��

ΩX (log X0)

��

res
// OD(1)

//

��

0

0 // P // ΩX /D
//

��

ΩX /D(log)

��

// Q

��

// 0

0 0 0

We derive the existence of a quasi-isomorphism of complexes

cone[ΩX /D→ΩX /D(log)]
∼
99K cone[OX0 →OD(1)].

Proposition 3.8. Suppose f : X → D is a projective degeneration between complex manifolds.
Write X0, red =∑

Di , and D̃i for a desingularization of the irreducible components Di . Denote by
π : X̃ → X a simple normal crossings model. Then there is a canonical isomorphism

λ(ΩX /D)
∼−→λ(ΩX̃ /D(log))+

(
χ(OX∞)−∑

χ(OD̃i
)
)
O ([0])

which induces the identity on the smooth locus.

Proof. The bundle λ(ΩX̃ /D(log)) is independent of the specific normal crossings model X̃ , since
it is built up from lower extensions of Hodge bundles. We construct one model by applying
embedded resolution of singularities to X0 ,→ X . This means that X̃ is obtained by a sequence of
blow ups in the special fibers, of Xi →D say, along regular centers Zi . Denote by ν : Xi+1 → Xi

the blowup. In that case Zi is necessarily regularly embedded in Xi and the exceptional divisor
Ei is a projective bundle over Zi . We moreover have the exact sequence

(3.10) 0 −→ ν∗ΩXi /D −→ΩXi+1/D −→ΩEi /Zi −→ 0,

where the exactness on the left can be justified by a direct computation.
Recalling that Rν∗OXi+1 'OXi , and taking the determinant of the cohomology, we find that

λ(ΩXi+1/D)
∼−→λ(ΩXi /D)+χ(ΩEi /Zi ) ·O ([0]).

We notice that χ(ΩEi /Zi ) =−χ(OEi ). Indeed, the Euler exact sequence for the cotangent sheaf of a
projective bundle readily implies Rpν∗OEi ' Rp+1ν∗ΩEi /Zi for all p. Hence, for corresponding
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Leray spectral sequences we have

H q (Zi ,Rpν∗OEi ) +3 H q+p (Ei ,OEi )

H q (Zi ,Rp+1ν∗ΩEi /Zi ) +3 H q+p+1(Ei ,ΩEi /Zi ),

and we conclude by taking Euler characteristics. At the end of the sequence of blow ups, we thus
find

λ(ΩX̃ /D)
∼−→λ(ΩX /D)− (∑

χ(OEi )
) ·O ([0]).

On the other hand, from (3.9) there is a quasi-isomorphism

(3.11) cone[ΩX̃ /D→ΩX̃ /D(log)]
∼
99K cone[OX̃0

→⊕
OD ′

i
⊕⊕

OE ′
i
],

where the D ′
i (resp. E ′

i ) are the strict transforms of the Di (res. Ei ). Recall that the Euler character-
istics of the form χ(OD ) are birational invariants of complex manifolds, so that χ(OD ′

i
) =χ(OD̃i

)
and χ(OE ′

i
) =χ(OEi ). We derive

λ(ΩX̃ /D(log)) 'λ(ΩX̃ /D)+
(∑

χ(OD̃i
)+∑

χ(OEi )−χ(OX̃0
)
)
·O ([0]).

Since the family X̃ →D is flat, we have χ(OX̃0
) =χ(OX̃∞) =χ(OX∞). The result follows by compos-

ing the isomorphisms deduced from (3.10) and (3.11). �

Corollary 3.9. Under the hypothesis of Proposition 3.8, if X0 has at most rational singularities,
then

λ(ΩX /D)
∼−→λ(ΩX̃ /D(log)).

This in particular holds whenever n ≥ 2 and X0 admits at most ordinary double point singularities.

Proof. Since X0 is connected with at most rational singularities, it is in particular normal ir-
reducible. Hence, with notations as in Proposition 3.8, we have X0 = D. We then observe
χ(OD̃ ) =χ(OX0 ) by the rational singularities assumption and χ(OX0 ) =χ(OX∞) by flatness. �

3.4. Families with at most ordinary double point singularities. In this subsection we study
the Hodge bundles of morphisms whose singular fibers have at most ordinary double point
singularities.

Let f : X →D be a projective degeneration between complex manifolds, with fibers of dimen-
sion n . We assume that the special fiber X0 has at most ordinary double point singularities.
Hence, on a neighborhood (in X ) of a singular point of f −1(0), there exist holomorphic coor-
dinates (z0, . . . , zn , s) such that X is locally given by s = z2

0 + . . .+ z2
n and f is the projection to s.

Let p1, . . . , pr be the set of singular points. Let ν : X̃ → X be the blow-up in X of p1, . . . , pr and
g : X̃ →D the natural morphism. Then the special fiber of g has normal crossings of the form
X̃0 = Z +2

∑r
i=1 Ei , where the Ei = ν−1(pi ) ' Pn

C
are disjoint and Z is the strict transform of X0.

Moreover, the intersection Wi := Z ∩Ei ⊂ Ei is isomorphic to a smooth quadric in Pn
C

. As an
application of Corollary 2.8, we compare the Hodge bundles of such families before and after
semi-stable reduction.

Proposition 3.10. Let ρ :D→D, ρ(t ) = t`, denote a base change realizing a semi-stable reduction
h : Y →D of f : X →D. Then there is a natural morphism

ρ∗Rq g∗Ω
p

X̃ /D
(log)−→Rq h∗Ω

p
Y /D(log).
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If n is odd or (p, q) 6= (n/2,n/2), this is an isomorphism. In the case (p, q) = (n/2,n/2), the cokernel
is isomorphic to (

OD,0

tOD,0

)⊕#sing(X0)

Proof. The statement can be derived from Corollary 2.8, by studying the monodromy operator on
the limiting mixed Hodge structure on H n(X∞). It is described by the Picard-Lefschetz theorem.
For simplicity, assume that there is a single ordinary double point. If the relative dimension n is
odd, then the monodromy acting on any H k (X∞) is unipotent, and hence Ts is trivial on it. We
now focus on the case when n is even. Since the monodromy is non-trivial at most on H n(X∞),
we only need to consider p +q = n. We have to show that Ts acts trivially on Grk

F∞ H n(X∞) for
k 6= n. We use the fact that Ts is an endomorphism of mixed Hodge structures on H n(X∞). We
have

GrW
k H n(X∞) = 0, k 6= n

(cf. for instance [Wan97, Sec. 3]). Hence, it is enough to analyze the action of Ts on Gr•F∞ GrW
n H n(X∞).

But F •∞ induces a pure Hodge structure of weight n on GrW
n H n(X∞). If Ts acts non-trivially on

Grp
F∞ GrW

n H n(X∞), then it acts non-trivially on Grq
F GrW

n H n(X∞), p +q = n. Since the only non-
trivial eigenvalue of Ts on H n(X∞) is −1, with multiplicity one, then necessarily p = q = n/2. This
concludes the proof. �

4. L2 METRICS

This section revolves around the L2 metrics and their asymptotics for one-parameter degener-
ations of projective varieties. We provide precise expressions for the dominant and subdominant
terms of the asymptotics of the L2 metrics on determinants of Hodge bundles. For this, we rely
on the general statements in Section 2 and Schmid’s metric characterisation of the limiting mon-
odromy weight filtration [Sch73]. Throughout, we will freely exploit the compatibility of Schmid’s
limiting mixed Hodge structures with Steenbrink’s geometric approach [Ste76, Ste77, GNA90].

4.1. Generalities on L2 metrics. We recall known facts about L2 metrics, mainly to fix notations
and normalizations.

Let X be a compact Kähler manifold of dimension n. Let hX be a Kähler metric on the
holomorphic vector bundle TX , and ω the associated Kähler form. The expression for ω in local
holomorphic coordinates is

(4.1) ω= i
∑
j ,k

hX

(
∂

∂z j
,
∂

∂zk

)
d z j ∧d zk .

Most of the time, we will only refer to the Kähler form, since it determines hX by the rule (4.1).
On the De Rham cohomology H k (X ,C) there is a natural L2 metric: given classes α,β and

harmonic representatives α̃, β̃, we put

(4.2) 〈α,β〉L2 =
∫

X
α̃∧?β̃=

∫
X
〈α̃, β̃〉ω

n

n!
.

Here ? denotes the Hodge star operator and the inner product in the second integral is the
induced pairing on differential forms, coming from the Kähler metric hX . On Dolbeault coho-
mology H p,q (X ) = H q (X ,Ωp

X ) we may similarly define an L2 metric. The Hodge decomposition

H k (X ,C) = ⊕
p+q=k

H p,q (X )
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is then an orthogonal sum decomposition for the L2 metrics.
Recall that, for any integer k ≤ n, we define the primitive cohomology subspace of H k (X ,C) by

H k
prim(X ,C) = ker

(
Ln−k+1 : H k (X ,C) → H 2n−k+2(X ,C)

)
,

where L =ω∧• is the Lefschetz operator. Then, for any k ≥ 0 we have the Lefschetz decomposition

H k (X ,C) = ⊕
max{0,2(k−n)}≤2r≤k

Lr H k−2r
prim (X ,C).

This decomposition is orthogonal for the L2 metric. On each piece of the decomposition, the
Hodge star operator is given by the rule

(4.3) ?Lrα= (−1)(k−2r )(k−2r+1)/2 r !

(n −k + r )!
Ln−k+r Cα,

where C is the Weil operator acting as multiplication by i p−q on H p,q (X ). Therefore, the L2 metric
on Lr H k−2r

prim (X ,C) reads

(4.4) 〈Lrα,Lrβ〉L2 = (−1)(k−2r )(k−2r+1)/2 r !

(n −k + r )!

∫
X
α∧Cβ∧ωn−k+2r .

One also defines H p,q
prim(X ) = H p+q

prim(X ,C)∩H p,q (X ). Primitive cohomology groups can be put in
families, in the setting of a Kähler morphism f : X → S. The construction produces holomorphic
vector bundles for which we employ similar notations, for instance (Rk f∗C)prim or (Rq f∗Ω

p
X /S)prim.

The analogue of the Lefschetz decomposition holds in this generality, as a decomposition of
holomorphic vector bundles. For this we notice that the Lefschetz operator induced by the Kähler
structure is horizontal with respect to the Gauss–Manin connection, and hence holomorphic.

At a later point we will exploit the integral structure of the cohomology groups. For aZ-module
of finite type Λ, we denote by Λnt the maximal torsion free quotient of Λ.

Definition 4.1. Let X be a compact Kähler manifold, with Kähler formω. We define volL2 (H k (X ,Z),ω)
as the square of the covolume of the lattice H k (X ,Z)nt ⊂ H k (X ,R), with respect to the Euclidean
structure induced by the L2 metric. We adopt the convention volL2 (H k (X ,Z),ω) = 1 if bk (X ) = 0.

Proposition 4.2. The following statements hold:

(1) Let X be a compact Kähler manifold, and ω a Kähler form on X .
(a) volL2 (H k (X ,Z),ω) is independent of the complex structure and only depends on the

cohomology class [ω].
(b) volL2 (H k (X ,Z),ω) is a rational number, if [ω] is rational.

(2) Let f : X → S be a Kähler morphism, andω a Kähler form on X . Then s 7→ volL2 (H k (Xs ,Z),ω|Xs
)

is locally constant on S.

Proof. The L2 metric is determined by the Hodge star operator, which is computed for images
under the Lefschetz operator of primitive classes by (4.3). Since the Lefschetz decomposition
is orthogonal for the L2 metric, we can restrict to these cases. Except for the Weil operator, all
operators are independent of the complex structure. Passing to determinants, the Weil operator
disappears. Indeed,

(4.5) detC = ∏
p,q

i (p−q)h
p,q
prim = 1,

since hp,q
prim = hq,p

prim. This proves (1a). It implies the statement for Kähler morphisms, since such a

family is a locally trivial C ∞ fibration, and the Kähler form defines a flat section of R2 f∗R.
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To prove that the volume is a rational number, it is enough to prove that for a given basis
e1, . . . ,ebk of H k (X ,Q), the expression det〈ei ,e j 〉L2 is rational. To this end, notice that the Lefschetz
decomposition can be defined overQ, since the Kähler form is rational:

H k (X ,Q) =⊕
r

Lr H k−2r
prim (X ,Q), H k

prim(X ,Q) = ker
(
Ln−k+1 : H k (X ,Q) → H 2n−k+2(X ,Q)

)
.

As remarked before, this decomposition is orthogonal for the L2 metric and we can hence restrict
ourselves to considering det〈vi , v j 〉L2 for a basis v1, . . . , vd of Lr H k−2r

prim (X ,Q). Recalling now (4.3),

we see that ?Lr acting on H k−2r
prim (X ,Q) can be decomposed as

(4.6) H k−2r
prim (X ,C)

C−→ H k−2r
prim (X ,C)

Ln−k+r

−→ H 2n−k+r (X ,C)
q−→ H 2n−k+r (X ,C),

where q is multiplication by a rational number. Furthermore, the determinant of the Weil
operator C is 1 as remarked in (4.5). Hence, since the other operators in (4.6) preserve the rational
structure, we have in fact

det?Lr H k−2r
prim (X ,Q) = detLn−k+r H k−2r

prim (X ,Q).

The pairing det〈vi , v j 〉L2 hence reduces to the determinant of a matrix of integrals of top degree
rational cohomology classes, i.e. the determinant of a matrix with rational entries. It is therefore
a rational number. �

4.2. The singularities of L2 metrics. Let f : X → D be a projective normal crossings degener-
ation, with n-dimensional fibers. We fix a Kähler form on X × which is rational on fibers, e.g.
induced by a projective embedding. The Hodge bundles Rq f∗Ω

p
X /D(log) are then endowed with

singular L2 metrics, smooth over D×. The determinant bundle detRq f∗Ω
p
X /D(log) inherits a

singular L2 metric. In [Zuc82, Pet84, CKS86], building on the work of Schmid [Sch73], the asymp-
totic expansion of the L2 metric is considered, including first and second order derivatives. The
coefficients of the asymptotic expressions provided therein are not neatly formulated in terms
of the limiting mixed Hodge structure. Our aim is to address this point for the dominant and
subdominant terms.

To formulate our results, consider the limiting mixed Hodge structure (F •∞,W•) on H k (X∞)
(k = p +q), where F •∞ is the limiting Hodge structure and W• is the monodromy weight filtration
(cf. Schmid [Sch73]). We introduce the following invariants:

(4.7) αp,q =− 1

2πi
tr

(
` logTs | Grp

F∞ H k (X∞)
)

and

(4.8) βp,q =
k∑

r=−k
r dimGrp

F∞ GrW
k+r H k (X∞).

In the course of the proof of Theorem 4.4 below, we need the following lemma.

Lemma 4.3. The invariants βp,q satisfy the following two identities:

(1) βp,q =−βq,p .
(2) βp,q =βn−q,n−p .

In particular, βp,q =−βn−p,n−q .
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Proof. Since GrW
k+r H k (X∞) is a pure Hodge structure of weight k + r we have

dimGrp
F∞ GrW

k+r H k (X∞) = dimGrk+r−p
F∞ GrW

k+r H k (X∞).

Moreover, the limiting mixed Hodge structure is equipped with a nilpotent operator N on H k (X∞)
which induces an isomorphism

N r : Grp
F∞ GrW

k+r H k (X∞)
∼→ Grp−r

F∞ GrW
k−r H k (X∞).

A direct combination of these observations proves the first point.
The second point follows from the Lefschetz isomorphism, which induces isomorphisms (cf.

Schmid [Sch73, Theorem 6.16])

Ln−k : Grp
F∞ GrW

k+r H k (X∞)
∼→ Grp+n−k

F∞ GrW
r+2n−k H 2n−k (X∞).

�

The statement of the following theorem refers to Mumford good hermitian metrics on holo-
morphic vector bundles [Mum77]. In rank one, this notion can be formally extended toQ-line
bundles. For instance, if aQ-line bundle is represented by a couple (L,m) formed by a line bundle
L together with an integer m, then a good hermitian metric on (L,m) will just be a good hermitian
metric on L.

Theorem 4.4. (1) Let σ be a holomorphic trivialization of detRq f∗Ω
p
X /D(log). Then there is

an asymptotic expansion

loghL2 (σ(t ),σ(t )) =αp,q log |t |2 +βp,q loglog |t |−1 +C +O

(
1

log |t |
)

for some real constant C .
(2) On theQ-line bundle detRq f∗Ω

p
X /D(log)⊗O (αp,q [0]), the L2 metric induces a good hermit-

ian metric, in the sense of Mumford.

Proof of Theorem 4.4. First of all, we reduce both (1) and (2) to the semi-stable case: by Corollary
2.8, the change of the L2 metric under semi-stable reduction is accounted for by the term |t |2αp,q

.
For the rest of the argument, we can hence assume that f : X →D is semi-stable.

In the semi-stable case, the proof of (2) was first outlined by Zucker [Zuc82, Sec. 1]. Further
details were later worked out by Peters [Pet84, Sec. 2 & 3]. A complete argument is provided by
Cattani–Kaplan–Schmid [CKS86, Thm. 5.21 & Prop. 5.22]. These authors deal with degenerations
of Hodge structures in several variables. In the particular case of one-parameter degenerations,
their results imply the Mumford goodness of the L2 metric on detRq f∗Ω

p
X /D(log).

For the proof of (1) in the semi-stable case, Schmid’s nilpotent orbit theorem [Sch73] implies a
general expansion of the form

(4.9) loghL2 (σ(t ),σ(t )) =β loglog |t |−1 +C +O

(
1

log |t |
)

,

for some integer β and some constant C . This is a weak form of [Pet84, Sec. 2.2], whose proof
follows the same lines. The rest of the argument will be devoted to showing that β=βp,q .

We claim it is enough to establish the weaker inequality β≤βp,q , namely

(4.10) hL2 (σ(t ),σ(t )) =O
(
(log |t |)βp,q

)
.
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Indeed, suppose this estimate is satisfied for all p, q . Let σ′ be a trivializing section of
detRn−q f∗Ω

n−p
X /D(log). Then we have the estimate

(4.11) hL2 (σ′(t ),σ′(t )) =O
(
(log |t |)βn−p,n−q

)
=O

(
(log |t |)−βp,q

)
,

where we applied Lemma 4.3. These norms can be compared, since Serre duality induces an L2

isometry

(4.12) detRq f∗Ω
p
X /D(log) ' detRn−q f∗Ω

n−p
X /D(log)∨.

Here we implicitly used that detΩX /D(log) =ωX /D, since we are in the semi-stable setting. Com-
bining (4.11) and (4.12) we find the reverse inequality βp,q ≤β, and we thus conclude by (4.10).

We now proceed to prove (4.10). For the discussion, we rely on Section 2. First of all, we fix
a subset E = {e1, . . . ,eh} of F p

∞H k (X∞) which projects to a basis in Grp
F∞ H k (X∞) and which is

adapted to the weight type filtration

W`Grp
F∞ H k (X∞) =W`∩F p

∞/W`∩F p+1
∞ .

In other words, for each `, there is a subset E` of E such that the elements of E` are in
W`∩F p

∞ \W`−1 ∩F p
∞ and project to a basis of GrW

`
Grp

F∞ H k (X∞).

Secondly, lift the elements E to holomorphic sections {σ̃ j } of F
p
log. They project to a local

holomorphic frame {σ j } of F
p
log/F p+1

log = Rq f∗Ω
p
X /D(log), by Nakayama’s lemma. Also, introduce

the twisted sections ẽ j (t) = e−2πi Nτe j (τ), for τ ∈ H (cf. (2.1)). These can be identified with
holomorphic sections of Rk f∗Ω•

X /D(log). Under this identification, we have the equality σ̃ j (0) =
ẽ j (0) (cf. (2.2), (2.5) and (2.9)). Therefore,

σ̃ j (t )− ẽ j (t ) ∈ t ·Γ(D,Rk f∗Ω•
X /D(log)).

Together with [Gri84, Chap. II, Prop. 25], we derive for the L2 norm

‖σ̃ j (t )− ẽ j (t )‖2
L2 =O

(
|t |(log |t |)b

)
,

for some integer b. By Schmid’s theorem [Sch73, Thm. 6.6], adapted to the present setting by
Zucker [Zuc79, Prop. 3.9], we derive

(4.13) ‖σ̃ j (t )‖2
L2 =O

(
(log |t |)`−k

)
,

where ` is such that e j ∈ E`. Since the L2 norm on F
p
log/F p+1

log is the quotient norm of the L2

norm on F
p
log, we have:

(4.14) ‖σ1 ∧ . . .∧σh‖2
L2 (t ) ≤∏

j
‖σ j‖2

L2 (t ) ≤∏
j
‖σ̃ j‖2

L2 (t ).

Combining (4.13) and (4.14), together with GrW
`

Grp
F∞ H k (X∞) ' Grp

F∞ GrW
`

H k (X∞), we conclude
the claimed estimate (4.10) �

Remark 4.5. (1) Under a flatness assumption, Peters gives an expression for the leading term
of the asymtotics of loghL2 on detF p

log [Pet84, Prop. 2.2.1]. This is compatible with our

result, up to a sign mistake in loc. cit., due to a confusion between lower and upper
extensions.

27



BCOV INVARIANTS ERIKSSON, FREIXAS I MONTPLET, AND MOUROUGANE

(2) As for Theorem 2.6 and Corollary 2.8, there is a counterpart of Theorem 4.4 for more
general degenerations of Hodge structures, and in particular for the upper extension uF •
(and their graded quotients) in the geometric case. In this situation, only the exponent
αp,q needs to be changed to the corresponding elementary exponent for the upper exten-
sions. The rest of the asymptotic expansion remains the same, as it is determined after
semi-stable reduction.

5. BCOV METRICS AND INVARIANT FOR CALABI–YAU VARIETIES

In this section we recall the construction of the BCOV bundle following Fang–Lu–Yoshikawa
[FLY08]. It is named after Bershadsky–Cecotti–Ooguri–Vafa [BCOV94], who developed a mostly
conjectural technique for computing “higher loop string amplitudes”. For a Kähler family of
Calabi–Yau manifolds, the bundle can be endowed with a Quillen type metric, independent of
the particular choice of Kähler structure. In relative dimension 3, Fang–Lu–Yoshikawa could
extract from this Quillen metric an important invariant of Calabi–Yau 3-folds, called the BCOV
invariant. This is a suitable normalization of a combination of holomorphic analytic torsions. It is
actually this invariant, rather than the original quantity in [BCOV94], that is expected to fulfill the
predictions in loc. cit. in connection with mirror symmetry. The case of the mirror quintic family
was successfully solved in [FLY08]. The analogous of this conjectural program in dimension 4
has been proposed by Klemm-Pandharipande [KP08], and further studied in dimension 5 by
Pandharipande–Zinger [PZ10]. However a right counterpart of the BCOV invariant in arbitrary
dimension, independent of the Kähler structure, was still missing. Filling this gap is the ultimate
purpose of this section.

In this section, we wish to distinguish the dualizing (or canonical) sheaf, from Kähler forms.
We herein adopt the notation KX for the canonical sheaf of a complex manifold X , and similarly
for the relative setting.

5.1. Backround on Quillen metrics. We summarize the work of Bismut–Gillet–Soulé on Quillen
metrics on holomorphic determinant bundles, and notably the curvature formula. This is the
basis for the later construction of the Quillen-BCOV metric. The discussion is mostly based on
[BGS88c], for which [BGS88a, BGS88b] develop necessary foundations.

Let f : X → S be a Kähler morphism of complex manifolds of relative dimension n. Let hX be a
Kähler metric on TX , with Kähler form ω. Let (E ,hE ) be a hermitian holomorphic vector bundle
on X . The determinant line bundle λ(E) is a holomorphic line bundle on S with fibers

λ(E)s =
⊗

q
det H q

∂
(Xs ,E|Xs

)(−1)q
, s ∈ S.

Here H q

∂
(Xs ,E|Xs

) is the q-th Dolbeault cohomology group of the holomorphic vector bundle

E|Xs
. The construction is compatible with the Knudsen–Mumford determinant of cohomology

[KM76] (see [BGS88c, Sec. 2 & Sec. 3] for two different proofs). The C ∞ complex line bundle
underlying λ(E) is a particular instance of the general construction of Bismut–Freed [BF86a,
BF86b], generalizing ideas of Quillen [Kvi85]. Their method simultaneously produces a hermitian
metric (and a unitary connection), the so-called Quillen metric, that we now explain.

Introduce L2 hermitian inner products on the constituents of the Dolbeault complex A0,q (Xs ,E|Xs
)

of (0, q)-forms with values in E|Xs
. Given u, v ∈ A0,q (Xs ,E|Xs

), we put

(5.1) 〈u, v〉L2,s =
1

(2π)n

∫
Xs

〈u, v〉ω
n

n!
.
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On the right hand side, 〈·, ·〉 is the pointwise hermitian inner product on E|Xs
⊗Ω(0,q)

Xs
, depending

on the metrics hE on E and hX on TX . Next, we take the formal adjoint ∂
∗

of the Dolbeault

operator ∂, characterized by the equation 〈∂∗u, v〉L2,s = 〈u,∂v〉L2,s . The Dolbeault Laplacian is

then defined as ∆(0,q)

∂,s
= (∂+∂∗)2. This is a positive elliptic partial differential operator of second

order acting on A0,q (Xs ,E|Xs
). It has a discrete spectrum with finite multiplicites. The kernel

of ∆(0,q)

∂,s
is by definition the space of harmonic forms in A0,q (Xs ,E|Xs

). Hodge theory provides a

canonical isomorphism

H q

∂
(Xs ,E|Xs

)
∼−→ ker∆(0,q)

∂,s
⊂ A0,q (Xs ,E|Xs

).

Through this isomorphism, the restriction of the L2 metric to harmonic forms induces a hermitian
product on H q

∂
(Xs ,E|Xs

). By taking exterior products and duals, the determinant of cohomology

λ(E)s inherits a metric, denoted hL2,s and called L2 metric. We remark that the pointwise L2

metric on λ(E) thus defined is in general not smooth in s ∈ S. It is nevertheless smooth when all
the higher direct images Rq f∗E are locally free, which is for instance the case of Hodge bundles.
In any event, the possible lack of smoothness can be corrected by taking into account the rest of

the spectrum of ∆(0,q)

∂,s
, as follows. Let {λk }k≥1 be the strictly positive eigenvalues of ∆(0,q)

∂,s
, ordered

increasingly and repeated according to multiplicities. Introduce the spectral zeta function

ζ
(0,q)

∂
(u) = ∑

k≥1

1

λu
k

, Re(u) À 0.

This is absolutely convergent and holomorphic for Re(u) À 0, and meromorphically continues to
the whole complex plane C. It is holomorphic at u = 0, and one defines the determinant of the
Laplacian (with the zero eigenvalue removed) by

det∆(0,q)

∂,s
= exp

(
− d

du
ζ

(0,q)

∂
(u)

)∣∣∣
u=0

.

The holomorphic analytic torsion of (E|Xs ,hE ), computed with resepct to ω, is the real number

T (s) =∑
q

(−1)q q logdet∆(0,q)

∂,s
.

Sometimes it is convenient to spell out the hermitian data involved, and we may then write
T (E|Xs

,hE ,ω) or other self-explanatory variants of this notation. We notice that the function
s 7→ T (s) is in general not smooth. Finally, the Quillen metric on λ(E)s is

hQ,s = exp(T (s)) ·hL2,s .

The Quillen metric is a smooth hermitian metric on λ(E ) [BGS88c, Thm. 1.6]. In particular, when
the L2 metric is smooth, the function s 7→ T (s) is smooth as well. For the purpose of this article,
a relevant such example to bear in mind is λ(Ωp

X /S), where Ωp
X /S is endowed with the metric

deduced from hX .
The curvature theorem of Bismut–Gillet–Soulé [BGS88c, Thm. 1.27] computes the first Chern–

Weil form of (λ(E),hQ ). That is, if ∇λ(E),hQ is the Chern connection of hQ , then

c1(λ(E),hQ ) = i

2π
∇2
λ(E),hQ

∈ A1,1(S).
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The curvature formula lifts the codimension one part of the Grothendieck–Riemann–Roch rela-
tionship to an equality of differential forms on S:

(5.2) c1(λ(E),hQ ) = f∗ (ch(E ,hE )td(TX ,hX ))(1,1) .

Here ch(E ,hE ) and td(TX ,hX ) are the Chern–Weil representatives of ch(E) and td(TX ), and f∗ is
the fiber integral operation on differential forms.

An important property of Quillen metrics, central to the proof of the curvature formula, is the
anomaly equation [BGS88c, Thm. 1.23]. This describes the dependence of the Quillen metric
on the metrics hE and hX . Since we don’t explicitly apply the anomaly formula in this paper, we
refer the interested reader to loc. cit. for details.

5.2. The BCOV line bundle and its Quillen-BCOV metric. Let f : X → S be a Kähler morphism
whose fibers are Calabi–Yau manifolds of dimension n. Let ω be a Kähler form on X . We
endow the relative cotangent bundle Ω1

X /S and its exterior powers Ωp
X /S with the induced smooth

hermitian metrics.

Definition 5.1. The BCOV bundle of the family f : X → S is the line bundle on S

λBCOV (X /S) :=⊗
p
λ(Ωp

X /S)(−1)p p .

From the choice of Kähler structure and the induced metrics on the Ωp
X /S , the line bundle

λBCOV carries a L2 and a Quillen type metric, that we denote hL2 and hQ , respectively. Let
us momentarily assume that S is reduced to a point. Hence we deal with a single Calabi–Yau
manifold X . Following [FLY08, Sec. 4] we put

A(X ,ω) = exp

(
− 1

12

∫
X

(logϕ)cn(TX ,ω)

)
, with ϕ= i n2

η∧η
‖η‖2

L2

n!

ωn
.

Here η is a holomorphic trivialization of Ωn
X and cn(TX ,ω) is the Chern–Weil representative of

cn(TX ) associated to the Kähler metric. For a Ricci-flat Kähler metric, the factor A(X ,ω) simplifies
to

A(X ,ω) = vol(X ,ω)
χ(X )

12 , where vol(X ,ω) = 1

(2π)n

∫
X

ωn

n!
.

In the general family setting f : X → S, the function s 7→ A(Xs ,ω|Xs
) is clearly smooth, and will be

denoted A(X /S,ω).

Definition 5.2. The Quillen-BCOV metric on λBCOV is the smooth hermitian metric

hQ,BCOV := A(X /S,ω) ·hQ .

We refer to the pair (λBCOV ,hQ,BCOV ) as the BCOV hermitian line bundle.

Recall the characterization of the Weil–Petersson form ωW P = c1( f∗KX /S ,hL2 ) (cf. [Tia87]). The
curvature of the BCOV hermitian line bundle was computed in [FLY08, Thm. 4.9], building on
the curvature formula of Bismut–Gillet–Soulé (5.2):

Proposition 5.3. The curvature of (λBCOV ,hQ,BCOV ) is given by χ(X∞)
12 ωW P . In particular the BCOV

hermitian line bundle is independent of the choice of Kähler structure.
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5.3. The L2-BCOV metric. In this subsection, we work with general compact Kähler manifolds,
not necessarily of Calabi–Yau type. We define a renormalized L2 norm on the BCOV bundle. It
has the feature that it is independent of the choice of Kähler form (cf. Proposition 5.6).

Definition 5.4. (1) Let X be a compact Kähler manifold of dimension n, with Kähler form ω.
We define

(5.3) B(X ,ω) :=
2n∏

k=1
volL2 (H k (X ,Z),ω)(−1)k+1k/2.

(2) Let f : X → S be a Kähler morphism with Kähler structure formω, whose fibers are compact
complex manifolds of dimension n. We define a function B(X /S,ω)(s) := B(Xs ,ω|Xs

). It
follows from Proposition 4.2 that B(X /S,ω) is in fact locally constant.

(3) The L2-BCOV metric, or rescaled L2 metric, on λBCOV is the C ∞ metric

hL2,BCOV = B(X /S,ω) ·hL2 .

Remark 5.5. (i) The definition drives some inspiration from Kato’s formalism of heights of
motives [Kat14], see specially paragraph 1.3 in loc. cit.

(ii) Since Poincaré duality is a unimodular pairing, it is not difficult to prove that

volL2 (H k (X ,Z),ω)volL2 (H 2n−k (X ,Z),ω) = 1.

Hence the product in the definition of B(X ,ω) can be written more succinctly as

B(X ,ω) =
n−1∏
k=0

volL2 (H k (X ,Z),ω)(−1)k (n−k).

In particular for a (simply connected) Calabi–Yau 3-fold X with a Kähler formω, we find that

(5.4) B(X ,ω) = volL2 (H 0(X ,Z),ω)3 volL2 (H 2(X ,Z),ω).

Proposition 5.6. The L2-BCOV metric hL2,BCOV is independent of the Kähler structure.

Proof. We can check the statement pointwise, and hence we may work with a single compact
Kähler manifold (X ,ω). For each k, inspired by an identity from [Kat14, 1.3] we define

L(H k ) = ∑
p+q=k

p det H q (X ,Ωp
X ),

where as usual we adopt additive notations for tensor products. Consider also the complex
conjugate line

L(H k ) = ∑
p+q=k

pdet H q (X ,Ωp
X ) = ∑

p+q=k
(k −p)det H q (X ,Ωp

X ).

The L2 metric induces a metric on L(H k ), as well as L(H k ). Since complex conjugation

L(H k ) → L(H k ) is an isometry (as real vector spaces), we have an L2 isometry

2L(H k ) = L(H k )+L(H k ) = ∑
p+q=k

k det H p (X ,Ωq ) = k det H k (X ,C).

Up to sign, the line det H k (X ,C) has a natural element determined by the integral structure,
namely e1 ∧ . . .∧ebk for a basis e1, . . . ,ebk of H k (X ,Z)nt. Dividing by the norm of this section we
find that the right hand side, and hence the left hand side, don’t depend on the Kähler structure.
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More precisely the L2 metric on L(H k ) multiplied by volL2 (H k (X ,Z),ω)−k/2 is independent of the
choice of Kähler form. Since the BCOV bundle is clearly given by∑

0≤k≤2n
(−1)k L(H k ),

the proposition follows. �

5.4. The BCOV invariant for Calabi–Yau n-folds. Let now X be a compact Calabi–Yau n-fold,
with Kähler form ω. The vector bundles Ωp

X inherit smooth hermitian metrics. The “virtual”
vector bundle ⊕

p
(−1)p pΩp

X

has a well-defined holomorphic analytic torsion depending on ω and written TBCOV (X ,ω). It
also carries the metrics hQ,BCOV and hL2,BCOV .

Definition 5.7. Let X be a Calabi–Yau n-fold. The BCOV invariant of X is the real number given
by

τBCOV (X ) = hQ,BCOV /hL2,BCOV

In other words, for any auxiliary Kähler form ω,

τBCOV (X ) = A(X ,ω)

B(X ,ω)
TBCOV (X ,ω),

where A(X ,ω) and B(X ,ω) are as in definitons 5.2 and 5.4.

The terminology invariant is justified by the following proposition.

Proposition 5.8. The BCOV invariant τBCOV depends only on the complex structure of X .

Proof. This is the combination of Proposition 5.3 and Proposition 5.6. �

Remark 5.9. By Remark 5.5 (ii), it is easily seen that our BCOV invariant generalizes the BCOV
invariant defined by Fang–Lu–Yoshikawa for Calabi–Yau 3-folds [FLY08, Definition 4.13], up to an
explicit power of 2π due to different normalizations.

Let us now discuss the differential equation satisfied by the BCOV invariant for families. Let
f : X → S be a Kähler morphism between complex connected manifolds, whose fibers are n-
dimensional Calabi–Yau varieties. Then s 7→ logτBCOV (Xs) yields a smooth function on the space
of parameters. Let now ω be an auxiliary choice of Kähler form on X . Endow the Hodge bundles
of f with the associated L2 metrics. After Fang–Lu [FL05], we define the k-th Hodge form on S as
the following combination of Chern–Weil forms:

(5.5) ωH k =
k∑

p=0
c1(F p Rk f∗Ω•

X /S ,hL2 ).

By Griffiths’ computation of the curvature of Hodge bundles, this is known to be a semi-positive
(1,1) form on S, cf. loc. cit.. It can equivalently be written

(5.6) ωH k =
k∑

p=0
pc1(Rk−p f∗Ω

p
X /S ,hL2 ) ∈ c1(L(H k )).

Since B(X /S,ω) is constant, from the curvature formula for the Quillen-BCOV metric [FLY08,
Thm. 4.9], recalled in Proposition 5.3, and the very definition of τBCOV , we obtain the following
proposition:
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Proposition 5.10. Let f : X → S be a Kähler morphism between connected complex manifolds,
whose fibers are Calabi–Yau manifolds of dimension n. Then there is an equality of differential
forms on S

dd c logτBCOV =
2n∑

k=0
(−1)kωH k − χ

12
ωW P(5.7)

where χ is the topological Euler characteristic of any fiber of f .

Remark 5.11. (i) Proposition 5.10 actually holds for the slightly more general Kähler fibrations
considered by Bismut–Gillet–Soulé [BGS88b].

(ii) In the physics literature, equation (5.7) is referred to as the holomorphic anomaly equation
of F1, see [BCOV94, Eq. (3.10)]. In relative dimension 3, it is part of an infinite system of
differential equations relating some partition functions Fg , where g ≥ 0 runs over all the
possible genera of compact Riemann surfaces.

5.5. Triviality of the BCOV invariant for special geometries. Recall the Beauville-Bomogolov
classification, that any Calabi–Yau variety is an étale quotient of a product T ×V ×H , where T is
an complex torus, V is a product of strict Calabi–Yau varieties, and H is a product of hyperkähler
varieties. Recall that a hyperkähler variety is a Kähler manifold whose H 2,0 is spanned by a
holomorphic symplectic form. The facts we need regarding hyperkähler manifolds can be found
in [Hit92].

We are grateful to Ken–Ichi Yoshikawa for sharing with us his argument for the triviality of the
BCOV torsion for hyperkähler variety equipped with a Ricci flat metric.

Proposition 5.12. If f : X → S is a projective morphism of complex analytic spaces, whose fibers
are either abelian varities of dimension at least 2 or hyperkähler varieties, then the function
s 7→ τBCOV (Xs) is locally constant on S.

Proof. Since the statement is local over the base and only depends on Sred, we can first desingular-
ize S and further assume that S is a polydisc. By Proposition 4.2 it suffices to show that the BCOV
torsion s 7→TBCOV (Xs ,ω|Xs

) is constant if we compute it with respect to a Ricci flat metric ω in
the Kähler class providing a projective embedding. Even more, we claim that TBCOV (Xs ,ω|Xs

) = 1.
We may thus assume that S is reduced to a point, and work with a single variety X . The case of
abelian varieties is actually well-known, and we refer for instance to the remark in [Ber03, p. 154].

Now for the hyperkähler case. Let n be the dimension of X . Recall that n is necessarily even.
The BCOV torsion decomposes as a product,

TBCOV (X ,ω) =
n∏

p=1
T (Ωp

X ,ω)(−1)p p ,

where T (Ωp
X ,ω) is the holomorphic analytic torsion of Ωp

X endowed with the hermitian metric
induced by ω, and computed with respect to the Kähler structure ω. The holomorphic analytic
torsion of a hermitian vector bundle E satisfies (see for instance [GS91, Thm. 1.4])

(5.8) T (E ,ω) = T (E∨⊗KX ,ω)(−1)n+1
,

where KX is equipped with the metric coming from the Ricci flat metric on TX . For the Ricci-
flat metric, there is an isometry KX ' OX , where the latter is equipped with the trivial metric.
Indeed, if η is a holomorphic symplectic 2 form, then ηn/2 is a holomorphic trivialization of
KX . Furthermore, Ricci flatness implies that the pointwise norm of ηn/2 is constant. A suitable
rescaling of η thus provides the claimed isometry. From (5.8) we then infer T (E ,ω) = T (E∨,ω)−1.
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Therefore, to conclude, it will be enough to prove that the symplectic holomorphic form induces a
holomorphic isometry Ωp

X '∧p TX ' (Ωp
X )∨. This is the content of the following lemma, probably

well-known to the specialists, which we state separately. �

Lemma 5.13. Let X be a hyperkähler manifold, with non-degenerate holomorphic symplectic
form η. Then the induced isomorphism ∧p TX 'Ωp

X is, up to a constant, an isometry.

Proof. Since X is hyperkähler, the Ricci flat metric defines a Kähler form with respect to three
orthogonal parallel complex structures, I , J ,K , satisfying I 2 = J 2 = K 2 = I JK =−1. After renor-
malization by a scalar, it is possible to write

(5.9) η(•,•) = g (J•,•)+ i g (K •,•)

2
.

We prove that contracting η by a holomorphic tangent vector provides an isometry TX 'ΩX ,
where the holomorphic tangent and cotangent bundles are given by the complex structure I .
The general statement follows. If v ∈ TX , then I v = i v , and so v = ξ− i Iξ where ξ = Re v. A
direct computation shows that ‖v‖2 = 2‖ξ‖2. On the other hand, by (5.9) one can conclude
η(v,•) = g (Jξ+ i K ξ,•). By definition, ‖g (x,•)‖2 = 〈g (x,•), g (x,•)〉 = 〈x, x〉, and hence

‖η(v)‖2 = 〈Jξ+ i K ξ, Jξ− i K ξ〉 = 〈Jξ, Jξ〉+〈K ξ,K ξ〉 = 2‖ξ‖2 = ‖v‖2.

Here we have used that J and K preserve the metric. This concludes the proof. �

6. GENERAL ASYMPTOTICS OF THE BCOV INVARIANT

In this section we investigate the singular behaviour of the BCOV invariant along one-parameter
degenerations of Calabi–Yau manifolds.

After initially comparing, in the first subsection, the various extensions of the BCOV bundle,
we go on to establish the logarithmic behavior of the BCOV invariant along one-parameter
degenerations. There we provide a closed formula for general normal crossings projective
degenerations of Calabi–Yau varieties (cf. Theorem 6.5). This can be recast as providing the
boundary conditions of the holomorphic anomaly equation (cf. Proposition 5.10), and it has
proven to be key to the proof of the known cases of the BCOV conjecture, cf. [FLY08]. We then
proceed to determine the subdominant term of the BCOV invariant in terms of limiting mixed
Hodge structures (cf. Proposition 6.8). These statements will be the point of departure for the
computations for special geometries in Section 7.

6.1. Kähler and logarithmic extensions of the BCOV bundle. Let f : X → D be a projective
degeneration between complex manifolds. The BCOV line bundle λBCOV (X ×/D×) affords a
natural extension to D, the so-called Kähler extension:

Definition 6.1. The Kähler extension of the BCOV bundle λ(X ×/D×) is defined as

λ̃BCOV =⊗
p
λ(Ω̃p

X /D)(−1)p p ,

where we recall that λ(Ω̃p
X /D) is the Kähler extension of λ(Ωp

X ×/D×), cf. Definition 3.1.

If the singular fiber X0 has normal crossings, then there is another natural extension: the
logarithmic extension.

34



ERIKSSON, FREIXAS I MONTPLET, AND MOUROUGANE BCOV INVARIANTS

Definition 6.2. Let f : X → D be a projective normal crossings degeneration. The logarithmic
extension of the BCOV bundle is defined as

λBCOV (log) =⊗
p
λ(Ωp

X /D(log))(−1)p p .

In our previous work [EFiMM18], the singularities of the Quillen-BCOV metric were formulated
in terms of the Kähler extension of the BCOV bundle. In contrast, the degeneration of the L2-BCOV
metric is well understood for the logarithmic extension, thanks to Theorem 4.4. A comparison of
both extensions is needed in order to extract the singularities of the BCOV invariant. We define
µBCOV as the integer realizing this comparison, assuming that f : X →D is a normal crossings
projective degeneration:

λ̃BCOV =λBCOV (log)+µBCOV O ([0]).

Hence, recalling the definition (3.3) of the integers µp , we have

µBCOV =
n∑

p=0
p(−1)pµp .

We now exploit the explicit computation of µp provided by Proposition 3.7, in order to give an
expression for µBCOV . We make use of the notation introduced in section 3.3.

Proposition 6.3. Let f : X → D be a projective normal crossings degeneration, and write
X0 = ∑

mi Di . Assume that the smooth fibers are Calabi–Yau n-folds. Let d(k) = dimD(k) =
n −k +1. Then

µBCOV =− (9n +5)n

24
χ(X∞)−

n∑
k=1

(−1)k (9n +3k +2)d(k)

24
χ(D(k))

− (−1)n

12

n∑
k=1

∫
D(k)

c1(ΩD(k))cn−k (ΩD(k)).

Proof. Recall the expression we obtained for µp in Proposition 3.7:

µp = (−1)p−1χ(Ω•≤p−1
X∞ )−

p∑
k=1

(−1)p−kχ(Ω•≤p−k
D(k) ).

Therefore

µBCOV =−
n∑

p=1
pχ(Ω•≤p−1

X∞ )−
n∑

p=1

p∑
k=1

(−1)k pχ(Ω•≤p−k
D(k) )

=−
n∑

p=1
pχ(Ω•≤p−1

X∞ )−
n∑

k=1
(−1)k

n∑
p=k

pχ(Ω•≤p−k
D(k) ).

(6.1)

For an integer d ≥ 0, define Sd = 0+ . . .+d . Then

n∑
p=1

pχ(Ω•≤p−1
X∞ ) =

n∑
j=0

(−1) j (Sn −S j )χ(Ω j
X∞) = Snχ(X∞)−

n∑
j=0

(−1) j S jχ(Ω j
X∞)

= n2 +n

2
χ(X∞)−

n∑
j=0

(−1) j j 2 + j

2
χ(Ω j

X∞).

(6.2)
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There are formulas for such sums. We will invoke them below. Let’s first tackle the remaining
terms in (6.1). They have a similar structure:

n∑
k=1

(−1)k
n∑

p=k
pχ(Ω•≤p−k

D(k) ) =
n∑

k=1
(−1)k

n−k∑
p=0

(p +k)χ(Ω•≤p
D(k))

=
n∑

k=1
(−1)k

n−k∑
p=0

pχ(Ω•≤p
D(k))+

n∑
k=1

(−1)k k
n−k∑
p=0

χ(Ω•≤p
D(k))

=
n∑

k=1
(−1)k

d(k)∑
p=1

pχ(Ω•≤p−1
D(k) )+

n∑
k=1

(−1)k (k −1)
n−k∑
p=0

χ(Ω•≤p
D(k)),

(6.3)

where we used that d(k) = dimD(k) = n −k +1. The first term in (6.3) is computed as in (6.2):

(6.4)
n∑

k=1
(−1)k

d(k)∑
p=1

pχ(Ω•≤p−1
D(k) ) =

n∑
k=1

(−1)k

(
d(k)2 +d(k)

2
χ(D(k))−

d(k)∑
j=0

(−1) j j 2 + j

2
χ(Ω j

D(k))

)
.

For the second term in (6.3), we observe
∑n−k

p=0 χ(Ω•≤p
D(k)) = d(k)χ(D(k))−∑d(k)

p=1(−1)p pχ(Ωp
D(k)),

hence

n∑
k=1

(−1)k (k −1)
n−k∑
p=0

χ(Ω•≤p
D(k)) =

n∑
k=1

(−1)k (k −1)(n −k +1)χ(D(k))

−
n∑

k=1
(−1)k (k −1)

d(k)∑
p=1

(−1)p pχ(Ωp
D(k)).

(6.5)

To simplify (6.2)–(6.5), we infer from [EFiMM18, Lemma 4.6]:

d(k)∑
j=1

(−1) j jχ(Ω j
D(k)) = (−1)d(k) d(k)

2

∫
D(k)

cd(k)(ΩD(k)) =
d(k)

2
χ(D(k)),(6.6)

d(k)∑
j=1

(−1) j j 2 + j

2
χ(Ω j

D(k)) = d(k)(3d(k)+7)

24
χ(D(k))(6.7)

+ (−1)d(k)

12

∫
D(k)

c1(ΩD(k))cd(k)−1(ΩD(k)).

A similar expression holds for X∞ instead of D(k). Taking into account that c1(ΩX∞) = 0, it reads

(6.8)
n∑

j=1
(−1) j j 2 + j

2
χ(Ω j

X∞) = n(3n +7)

24
χ(X∞).

Also, thanks to (6.6), equation (6.4) simplifies to

(6.9)
n∑

k=1
(−1)k

d(k)∑
p=1

pχ(Ω•≤p−1
D(k) ) =

n∑
k=1

(−1)k (k −1)(n −k +1)

2
χ(D(k))

To conclude, it suffices to plug (6.6)–(6.9) into (6.2)–(6.5) and then add up. �
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6.2. Logarithmic behaviour of the BCOV invariant. Recall from the introduction that there
is a strong motivation for finding the asymptotic behaviour of the invariant. For the sake of
motivation, consider the special case of a projective degeneration of Calabi–Yau 3-folds f : X →D

admitting a single ordinary double point over the origin, Fang–Lu–Yoshikawa [FLY08, Theorem
8.2] proved that

logτBCOV (X t ) = 1

6
log |t |2 +O(loglog |t |−1).

This was used in loc. cit. in order to prove an instance of genus 1 mirror symmetry for the quintic
3-folds.

More recently, in [LX19], Liu and Xia study systematically the logarithmic behavior of the BCOV
invariant of [FLY08]. More precisely they study the limits

κ f := lim
t→0

logτBCOV (X t )

log |t |2
where t is a local parameter around 0 ∈ D for a projective degeneration X → D of Calabi–Yau
3-folds. It follows from [FLY08, Theorem 9.1] that the limit exists and is a real number. In [Yos15,
Thm. 0.1], Yoshikawa proved it is a rational number. In [LX19] formulas are obtained for sums
of local contributions, for a compact one-dimensional base S of a generically smooth family of
Calabi–Yau 3-folds X → S. They conjecture that these formulas localize in a precise sense under
some specific conditions. In this subsection we address the corresponding matters in arbitrary
dimension.

Before we proceed with the statement of the first theorem, we need to recall a definition from
[EFiMM18]. Given a projective degeneration f : X → D between complex manifolds, whose
smooth fibers are Calabi–Yau manifolds, we have an injective morphism of line bundles

ev : f ∗ f∗KX /D ,→ KX /D.

We may equivalently see ev as a global section of KX /D⊗ ( f ∗ f∗KX /D)−1.

Definition 6.4. We denote B = div ev. We say that f : X →D is a Kulikov family if B = 0.

The divisor B is effective. Because the smooth fibers have trivial canonical bundle, B is
supported on the special fiber X0. To sum up, we have

KX /D = f ∗ f∗KX /D⊗O (B), |B | ⊆ X0.

Theorem 6.5. Let f : X → D be a germ of a projective degeneration between complex algebraic
varieties, whose smooth fibers are Calabi–Yau manifolds. Then the limit

(6.10) κ f := lim
t→0

logτBCOV (X t )

log |t |2
exists and is a rational number. Moreover, if X is non-singular and the special fiber X0 =∑

mi Di

has normal crossings, then

κ f =
3n +1

12
(χ(X∞)−χ(X0))+

n+1∑
k=1

(−1)k (k −1)(3k +6n +2)

24
χ(D(k))

− (−1)n

12

∫
B

cn(ΩX )−
n∑

k=1

(−1)n

12

∫
D(k)

c1(ΩD(k))cn−k (ΩD(k))

− α

12
χ(X∞)− ∑

0≤p,q≤n
(−1)p+q pαp,q ,

(6.11)
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where α= 1
2πi tr

(
u logTs | Grn

F∞ H n(X∞)
)
.

Remark 6.6. (i) The restriction to germs of projective morphisms of algebraic varieties stems
from the application of our previous work [EFiMM18]. In turn loc. cit. relies on Yoshikawa’s
theorem on the singularities of Quillen metrics [Yos07], where the compactness of the
base of the fibration is needed. The germ assumption is a technical one, satisfied in most
applications. It should be possible to remove this assumption from a functorial lifting of the
Grothendieck–Riemann–Roch theorem to the level of line bundles. An example of this in the
case of curves is provided by [Eri13], where the first author applies Deligne’s Riemann–Roch
isomorphism to obtain the singularities of the Quillen metric.

(ii) The limit κ f depends only on the restriction of f to D×, although the existence of a model
over D is needed.

(iii) Notice that the first sum in the expression of κ f runs from k = 1 to n +1, in contrast to the
first sum in the expression for µBCOV (Proposition 6.3), which runs from k = 1 to n. Observe
that D(n +1) is zero dimensional, and that χ(D(n +1)) = #D(n +1) could be non-trivial.

(iv) The integral
∫

B cn(ΩX ) can be worked out explicitly in terms of the geometry/topology of
the components of the special fiber X0, and their incidence relations. Instead of giving a
cumbersome general expression, we refer the reader to the proof of Theorem 7.3 for an
example of use.

Proof of Theorem 6.5. Because κ f only depends on the restriction of f to D×, it is enough to
prove the second assertion. By resolution of singularities we can suppose that X is smooth and
X0 = ∑

ni Di is a divisor with normal crossings. Also we may take an auxiliary integral Kähler
structure ω induced by a projective embedding.

Let λ̃BCOV be the Kähler extension of the BCOV bundle. Let σ be a trivializing holomorphic
section. In [EFiMM18, Cor. 4.9] we showed that

loghQ,BCOV (σ,σ) =
{

9n2 +11n +2

24
(χ(X∞)−χ(X0))− α

12
χ(X∞)+ (−1)n+1

12

∫
B

cn(ΩX )

}
log |t |2

+o(log |t |).

(6.12)

Notice that in loc. cit. the last term in the asymptotics was written as
∫

B cn(ΩX /D), which equals∫
B cn(ΩX ) as stated above. Recall now the relation λ̃BCOV = λBCOV (log)+µBCOV O ([0]). This

means that if we are given trivializing sections σ as above, and σ′ of λBCOV (log), then the relation
between the respective Quillen-BCOV square norms is

loghQ,BCOV (σ,σ) = loghQ,BCOV (σ′,σ′)−µBCOV log |t |2 +continuous.

We can take σ′ of the form

σ′ =⊗
p,q

(σ(p,q))(−1)p+q p ,

where σ(p,q) trivializes detRq f∗Ω
p
X /D(log). Then, by Theorem 4.4 and because the L2 volumes

volL2 (H k (X t ,Z),ω|Xt
) stay constant by Proposition 4.2, we find

(6.13) loghL2,BCOV (σ′,σ′) =
(∑

p,q
(−1)p+q pαp,q

)
log |t |2 +O(loglog |t |−1).
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But logτBCOV (X t ) = loghQ,BCOV (σ′,σ′)−loghL2,BCOV (σ′,σ′). Therefore the conclusion is achieved
by combining equations (6.12)–(6.13) with Proposition 6.3, together with the relation

(6.14) χ(X0) =−
n+1∑
k=1

(−1)kχ(D(k)) =−
n∑

k=1
(−1)kχ(D(k))+ (−1)nχ(D(n +1)).

�

Corollary 6.7. Let f : X →D be a germ of a normal crossings projective degeneration of algebraic
varieties, whose smooth fibers are Calabi–Yau manifolds. Write X0 =∑r

i=1 mi Di and define M =
lcm(m1, . . . ,mr ). Then

12Mκ f ∈Z.

If all the monodromies are unipotent, then 12κ f ∈Z.

Proof. The first statement follows from the following observations. First, lcm(m1, . . . ,mr ) kills the
semi-simple part of the monodromy endomorphisms acting on the cohomology groups H k (X∞),
and hence all the Mα and Mαp,q are integers. Second, the numerators (k −1)(3k +6n +2) in the
second sum in (6.11) are always even integers. The second claim follows analogously, using that
the α and αp,q vanish. �

6.3. The subdominant term in the asymptotics of the BCOV invariant. Let f : X →D be a germ
of a projective degeneration between complex algebraic varieties, whose smooth fibers are Calabi–
Yau manifolds. In the previous subsection, we provided a general expression for the leading
term of the asymptotic behaviour of the function t 7→ logτBCOV (X t ). The following statement
describes the subdominant term.

Proposition 6.8. The assumptions being as above, we have an asymptotic expansion

logτBCOV (X t ) = κ f log |t |2 +% f loglog |t |−1 + continuous,

where % f is given in terms of the limiting Hodge structures by

% f =
χ(X∞)

12
βn,0 −∑

p,q
(−1)p+q pβp,q .

Proof. It is enough to combine the definition of the BCOV invariant (Definition 5.7), together
with [EFiMM18, Prop. 4.2], Theorem 6.5 and Theorem 4.4. �

An immediate consequence of the proposition is the existence of the following limit:

(6.15) τBCOV , lim = lim
t→0

τBCOV (X t )

|t |2κ f (log |t |−1)% f
∈R>0.

This limit actually depends on the choice of coordinate t on D. Under a change of coordinate
t 7→λ(t ), the limit changes to |λ′(0)|2κ f ·τBCOV , lim. This can be restated by saying that τBCOV , lim

defines a hermitian metric on the Q-complex line (ωD,0)⊗κ f . By construction, this metric only
depends on the restriction of f : X →D to D×, but not on the special fiber X0.

Remark 6.9. (1) As an application of Lemma 4.3, the expression for % f can equivalently be
written as

% f =
χ(X∞)

12
βn,0 +2

∑
p+q<n

q<p

(−1)p+q (q −p)βp,q + (−1)n
∑

p+q=n
q<p

(q −p)βp,q .
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(2) For maximally unipotent degenerations of Calabi–Yau varieties as above, the mirror
map provides a (quasi-)canonical coordinate on D. This choice of coordinate induces a
trivialization of ωD,0, so that τBCOV , lim becomes an unambigously defined quantity.

(3) For open Calabi–Yau manifolds with cylindrical ends, Conlon–Mazzeo–Rochon [CMR15]
have defined an avatar of the Quillen-BCOV metric. It would be interesting to explore the
connection between their work and our limiting invariant τBCOV , lim.

6.4. Extensions of the holomorphic anomaly equation. Let f : X → S be a flat projective mor-
phism of compact connected complex manifolds, with dimS = 1. We let S× ⊆ S be the locus
of regular values of f , which is necessarily Zariski open and non-empty. Write {P1, . . . ,Pr } for
the complement S \ S×. If the smooth fibers of f are Calabi–Yau manifolds, then they have a
well-defined BCOV invariant. By Theorem 6.5 the smooth function s 7→ logτBCOV (Xs) on S×
extends to a locally integrable function on S. For every point Pi , the singularity of logτBCOV (Xs)
is of logarithmic type, with an attached coefficient κ f (Pi ) defined as in (6.10). In general, for a
locally integrable differential form θ on S, we denote by [θ] the current of integration against θ.

Lemma 6.10. The differential form dd c logτBCOV on S× is locally integrable on the whole of S.
Moreover, we have the equality of currents

(6.16) dd c [logτBCOV ]− [dd c logτBCOV ] =
r∑

i=1
κ f (Pi ) ·δPi .

Proof. For the proof one needs a complement to the analysis of the subdominant term in Propo-
sition 6.8, in order to include its d and dd c derivatives. On the one hand, we need a control
on the remainder of the asymptotics of the Quillen-BCOV metrics (6.12). This was addressed
in [EFiMM18, Prop. 4.2]: the remainder, together with its d and dd c derivatives, is modeled on
loglog |t |−1 and its d and dd c derivatives. On the other hand, we have a similar property for the
L2 metrics on Hodge bundles for a choice of fiberwise rational Kähler structure, by Theorem 4.4
(2). One easily concludes from these facts that dd c logτBCOV has at worst Poincaré growth, and is
in particular locally integrable. Also (6.16) follows from the indicated behaviour of the remainder
term and by Theorem 6.5, by a standard evaluation of the current dd c [logτBCOV ]−[dd c logτBCOV ]
on test functions. �

Let us now choose a Kähler structure on f , fiberwise rational on the smooth locus. We let
ωH k be the corresponding Hodge forms, defined on S× by (5.5)–(5.6). Denote as before ωW P

the Weil–Petersson form on S×. By Theorem 4.4, the differential forms ωH k and ωW P are locally
integrable and have at most Poincaré growth singularities on S. Hence they define currents
[ωH k ] and [ωW P ] by integration. These are all closed semi-positive currents of type (1,1), and in
particular they have well-defined (current) cohomology classes on S, denoted {ωH k } and {ωW P }.
The cohomology classes of δPi are identified to the cycle cohomology classes of the points Pi ,
denoted {Pi }.

Proposition 6.11. We have an equality in H 1,1(S)

χ

12
{ωW P }−

2n∑
k=1

(−1)k {ωH k } =∑
i
κ f (Pi ){Pi },

where χ is the topological Euler characteristic of a general smooth fiber of f . Consequently, there is
a relation

χ

12

∫
S
ωW P −

2n∑
k=1

(−1)k
∫

S
ωH k =

r∑
i=1

κ f (Pi ).
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Proof. From (6.16) we infer that the extension from S× to the level of currents by integration of
dd c logτBCOV is cohomologous to the sum of cycle cohomology classes {Pi }. The first equality
then follows from the differential equation in Proposition 5.10, applied over S× and extended to
the level of currents by integration. The second claim is obtained by integration over S. �

7. ASYMPTOTICS FOR SPECIAL GEOMETRIES

The general discussion in the previous section can be bolstered if further assumptions on the
degeneration : X → S are imposed. We initially treat the cases of semi-stable minimal (or Kulikov)
degenerations (cf. Proposition 7.1) as well as for ordinary double point singularities (cf. Theorem
7.3). For the small dimensions 3 and 4, we can give refined statements for general degenerations
(cf. Theorem 7.6 and Theorem 7.13). As a corollary we will then deduce the conjecture of Liu-Xia
of [LX19, Conj. 0.5]. We conclude the article with some algebraic geometric applications of our
results, summarized here as constraints to the existence of particular degenerations of Calabi–Yau
varieties.

7.1. Kulikov degenerations. In this subsection we consider a semi-stable germ of a projective
degeneration f : X →D of smooth algebraic varieties. Furthermore, we suppose that f is Kulikov,
i.e. B = 0. We write X0 =∑

i Di .

Proposition 7.1. With the above assumptions and notations, we have

(7.1) κ f =
n+1∑
k=1

(−1)k k(k −1)

24
χ(D(k)).

Proof. First, from Theorem 6.5 easily follows the intermediate expression

(7.2) κ f =
n+1∑
k=1

(−1)k k(k −1)

8
χ(D(k))−

n∑
k=1

(−1)n

12

∫
D(k)

c1(ΩD(k))cn−k (ΩD(k)).

Indeed, in the semi-stable case, the monodromy is unipotent, and therefore α=αp,q = 0 for all
p, q . A standard computation, see e.g. [Sai04, Lemma 1.4], shows that if D◦

i = Di \
⋃

j 6=i Di j , then

(7.3) χ(X∞) =∑
χ(D◦

i ) =
n+1∑
k=1

(−1)k+1kχ(D(k)).

Combining with equation (6.14), we derive

χ(X∞)−χ(X0) =
n+1∑
k=1

(−1)k+1(k −1)χ(D(k)).

Now it is enough to plug this relation in the general expression for κ f (6.11), together with the
vanishing of B and α, αp,q , to conclude with (7.2).

We next proceed to simplify the contribution of the integrals in (7.2). For this, we establish a
recursion relating the integral over D(k) to the integral over D(k+1). Enumerate the components
of X0 as D1, . . . ,Dr . Let I ⊆ {1, . . . ,r } be a multi-index subset of order k. Accordingly, define
D I =∩i∈I Di and BI = D I ∩ (∪ j 6∈I D j ). The Kulikov assumption, together with the triviality (as a
Cartier divisor) of X0 =∑

i Di and the adjunction formula guarantee that the pairs (D I ,BI ) are
log-Calabi–Yau, i.e. KD I +BI = 0. Combining this with the conormal exact sequence for the
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inclusions D I∪{ j } ,→ D I ( j 6∈ I ), we obtain the equalities∫
D(k)

c1(ΩD(k))cn−k (ΩD(k)) = − ∑
|I |=k

∫
D I

[BI ]∩ cn−k (ΩD(k))

= −(k +1)
∫

D(k+1)
cn−k (ΩD(k+1))+

∑
|I |=k

j 6∈I

∫
D I∪{ j }

[D j ]|DI∪{ j }
cn−k−1(ΩD I∪{ j }))

= (−1)n−k+1(k +1)χ(D(k +1))+
∫

D(k+1)
c1(ΩD(k+1))cn−k−1(ΩD(k+1)).

In the last equality we used that
∫

D I
cn−k (ΩD I ) = (−1)n−kχ(D I ) and KD I =−BI =∑

i∈I [Di ]|D I . The
result follows by applying this recursion to (7.2). �

Remark 7.2. In the case of K3 surfaces, an application of adjunction shows that the right hand
side of (7.1) vanishes. This is in agreement with the constancy of the BCOV invariant established
in Proposition 5.12, which also implies the vanishing of κ f .

7.2. Ordinary double point singularities. In this subsection, let f : X →D be a germ of a projec-
tive degeneration between smooth algebraic varieties, with general Calabi–Yau fibers of dimen-
sion n. Suppose that X0 admits at most ordinary double point singularities.

Theorem 7.3. With the above assumptions and notations, we have

κ f =
n +1

24
#sing(X0) and % f = #sing(X0) if n is odd,

or

κ f =−n −2

24
#sing(X0) and % f = 0 if n is even,

where #sing(X0) denotes the number of singular points in the fiber X0.

For later use we record the following lemma, which follows from the conormal exact sequence
for the cotangent bundle, and the Euler sequence on Pn

C
restricted to W :

Lemma 7.4. Let W be an irreducible degree d smooth hypersurface in Pn
C

. Then∫
W

c1(OW (1))cn−2(ΩW ) = (−1)n−1

d
χ(W )+ (−1)n n(n +1)

2
.

For the following lemma, the reader is advised to review the description of the blow up of X
along the ordinary double point singularities §3.4. Also, we notice that for the morphism f , the
divisor of the evaluation map ev is trivial, hence KX =OX is trivial as well: f is a Kulikov family.

Lemma 7.5. Let ν : X̃ → X be the blow up of the ordinary double points in X0. Let Z be the strict
transform of X0 in X̃ . Then∫

Z
c1(ΩZ )cn−1(ΩZ ) =

(
(−1)n−1 3(n −2)

2
χ(Q)+ (−1)n (n −2)n(n +1)

2

)
#sing(X0),

where Q is any smooth quadric in Pn
C

, and hence χ(Q) = n + (1+ (−1)n+1)/2.

Proof. Let E = E1 + . . .+Er be the exceptional divisor, where r is the number of ordinary double
point singularities. Each Ei is isomorphic to Pn

C
. Since the canonical bundle KX is trivial, we have

K X̃ =O (nE).
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Hence, because X̃0 = 2E +Z , we find by the adjunction formula

KZ =OZ ((n −2)E) =OZ ((n −2)W ),

where W =∑
Ei ∩Z , and each Ei ∩Z is an irreducible smooth quadric in Pn

C
. Hence

(7.4)
∫

Z
c1(ΩZ )cn−1(ΩZ ) = (n −2)

∫
W

cn−1(ΩZ |W ).

From the conormal exact sequence of the immersion W ,→ Z , we derive∫
W

cn−1(ΩZ |W ) =
∫

W
cn−1(ΩW )−

∫
W

c1(NW /Z )cn−2(ΩW )

=(−1)n−1χ(W )−
∫

W
c1(NW /Z )cn−2(ΩW ).

(7.5)

To compute the last integral in (7.5), we notice that NW /X̃ = NW /Z ⊕ NW /E , because Z and E
intersect transversally. It becomes

c1(NW /Z ) = c1(KW )− c1(K X̃ |W )− c1(NW /E ).

Together with the adjunction formula for W ,→ E , we infer

c1(NW /Z ) = c1(KE |W )− c1(K X̃ |W ).

Now recall that KE = OE (−n − 1) and K X̃ |W = OE (nE) |W = OE (−n) |W . Therefore c1(NW /Z ) =
c1(OE (−1) |W ) and

(7.6)
∫

W
c1(NW /Z )cn−2(ΩW ) =−

∫
W

c1(OW (1))cn−2(ΩW ).

To conclude, we apply Lemma 7.4 and add up (7.4)–(7.6). �

Proof of Theorem 7.3. The computation of the subdominant term is a consequence of the de-
scription of the limiting Hodge structure of ordinary double points [Ste77, Example 2.15].

For the dominant term, we let X̃ → X be the blow up of the ordinary double point singularities,
and we apply Theorem 6.5 to the projection f̃ : X̃ → D. The special fiber X̃0 = 2E + Z is as in
the previous lemma: Z is the strict transform of X0, E =∑

Ei is a disjoint union of Pn
C

, and the
intersections Wi = Z ∩Ei are irreducible smooth quadrics in these projective spaces. We put
W = ∑

Wi in Z . Finally, the divisor of the evaluation map ev for f̃ is nE . We evaluate all the
contributions to κ f̃ .

For the Euler characteristic of the general fiber X̃∞ we have

χ(X̃∞) = 2χ(E)+χ(Z )−3χ(W ).

To verify this, we first notice that the degree of cn(ΩX̃ /D(log)) on fibers is constant. On a general
fiber this is (−1)nχ(X̃∞). On the special fiber, we find it is equal to the degree of 2cn(ΩE (logW ))+
cn(ΩZ (logW )). This can be computed through the residue exact sequence (see e.g. (3.9)), and
the result follows. Also,

χ(X̃0) =χ(E)+χ(Z )−χ(W ).

Using that χ(E) = (n +1)#sing(X0) and χ(W ) = [n + (1+ (−1)n+1)/2]#sing(X0), we obtain

(7.7)
3n +1

12
(χ(X̃∞)−χ(X̃0)) = (3n +1)(−n + (−1)n)

12
#sing(X0).

The next term in (6.11) equals

(7.8)
3n +4

12
χ(W ) = 3n +4

12

(
n + 1+ (−1)n+1

2

)
#sing(X0).
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By the conormal exact sequence of E ,→ X̃ , and taking into account that c(ΩE ) = (1−c1(OE (1)))n+1

and O (E) |E=OE (−1), we have

(7.9) − (−1)n

12

∫
nE

cn(ΩX̃ ) =
{

n2(n +1)

24
− n(n +1)

12

}
#sing(X0).

For the following terms, we apply lemmas 7.4 and 7.5. Using again c(ΩE ) = (1−c1(OE (1)))n+1 and
KW =OW (−n +1), we find

− (−1)n

12

{∫
E

c1(ΩE )cn−1(ΩE )+
∫

Z
c1(ΩZ )cn−1(ΩZ )+

∫
W

c1(ΩW )cn−2(ΩW )

}
={

−n2(n +1)

24
+ 2n −5

24

(
n + 1+ (−1)n+1

2

)}
#sing(X0).

(7.10)

Finally, by Proposition 3.10 we know: i) if n is odd, then αp,q = 0 for all p, q ; ii) if n is even, then
αp,q = 0 for (p, q) 6= (n/2,n/2) and

αn/2,n/2 = 1

2
#sing(X0).

Since moreover α= 0, we therefore conclude

(7.11) − α

12
χ(X∞)−∑

p,q
(−1)p+q pαp,q =

{
0 if n is odd

−n
4 #sing(X0) if n is even.

To complete the proof, one just needs to evaluate the sum (7.7)+ . . .+(7.11). �

7.3. Strict Calabi–Yau varieties: dimensions 3 and 4. In the case of degenerating families of
strict Calabi–Yau 3-folds and 4-folds we can give general results on the asymptotic behaviour of
the BCOV invariant, not supposing that the central fiber is a normal crossings divisor.

We suppose first that f : X → D is a germ of a projective degeneration between smooth
algebraic varieties, whose smooth fibers are strict Calabi–Yau 3-folds and with special fiber
X0 =∑

mi Di , not necessarily of normal crossings.

Theorem 7.6. With the above assumptions and notations,

(1) we have

κ f =−1

6
(χ(X∞)−χ(X0))−

(
χ(X∞)

12
+3

)
α+α1,1 −α1,2 −∑

χ(OD̃i
)+ 1

12

∫
B

c3(ΩX )

where D̃i denotes a desingularization of each Di and α= 1
2πi

(
u logTs | Gr3

F∞ H 3(X∞)
)
.

(2) If f : X →D has unipotent monodromies,

κ f =−1

6
(χ(X∞)−χ(X0))+

(
χ(OX∞)−∑

χ(OD̃i
)
)
+ 1

12

∫
B

c3(ΩX )

The proof is given below. We first deduce an immediate corollary.

Corollary 7.7. Suppose furthermore that X0 has at most rational singularities.

(1) Then

κ f =−1

6
(χ(X∞)−χ(X0))+α1,1 −α1,2.

(2) If the singularities are moreover isolated, we have

κ f =
1

6
µ f −α1,2

where µ f denotes the Milnor number of the special fiber.
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Proof. Since X0 is normal, f : X → D is automatically Kulikov, i.e. B = 0. If X0 has rational
singularities one finds that χ(OX̃0

) =χ(OX0 ) =χ(OX∞) = 0 where we used the flatness of f and the
strict Calabi–Yau condition on smooth fibers. Finally, for isolated singularities the monodromy
acts trivially on H 2 so α1,1 = 0, and since rational and canonical singularities are equivalent
for Gorenstein complex varieties (see e.g. [Kol97, Corollary 11.13]) it follows from [EFiMM18,
Proposition 2.8] that α= 0. For isolated singularities in X0 the total dimension of the vanishing
cycles −(χ(X∞)−χ(X0)) is the Milnor number µ f . �

Proof of Theorem 7.6. By the definition of the BCOV invariant, it suffices to study the asymptotic
behavior of the L2- and Quillen-BCOV metrics on the Kähler extension of the BCOV bundle. We
fix a Kähler metric on the total space X , whose Kähler form is fiberwise integral on the smooth
locus. The asymptotic behavior of the Quillen-BCOV metric was established in [EFiMM18, Cor
4.9] (see (6.12)) and states that for a local trivialization of λ̃BCOV

(7.12) log‖σ‖2
Q,BCOV =

(
29

6
(χ(X∞)−χ(X0))− α

12
χ(X∞)+ 1

12

∫
B

c3(ΩX )

)
log |t |2 +o(log |t |).

In fact this also holds without the assumption of having normal crossings in the special fiber.
To control the asymptotic behaviour of the L2-BCOV metric, we first notice that the renormal-

izing factors are constant by Proposition 4.2, so we only need to consider the non-renormalized
L2 metric on the BCOV bundle. We can then apply Serre duality (cf. Proposition 3.3) and find that
there is an isometry

λ̃BCOV ,L2 '−3λ(OX )+λ(ΩX /D)+5c ·O ([0])

where O ([0]) is equipped with the trivial singular metric and c =−(χ(X∞)−χ(X0)) is a localized
Chern class. We first compare with the logarithmic extension, whose L2 norm is easier to handle.

By Proposition 3.8 we have λ(ΩX /D) =λ(ΩX /D(log))+
(
χ(OX∞)−∑

χ(OD̃i
))

)
O ([0]) hence, as X∞ is

a strict Calabi–Yau threefold, we find the isometry

(7.13) λ̃BCOV ,L2 '−3λ(OX )+λ(ΩX /D(log)))+
(
5c −∑

χ(OD̃i
))

)
·O ([0]).

We study individually the asymptotic behaviour of the various L2 metrics. First of all, notice
that all the R i f∗OX are locally free and commute with restriction to the fibers. To see this, if
X̃ → X is a birational morphism of complex manifolds such that f̃ : X̃ →D is a projective normal
crossings degeneration, then R i f∗OX ' R i f̃∗OX̃ , and the latter is locally free as it is a higher direct
image of a logarithmic sheaf. It easily follows, by connectedness of the fibers, that f∗OX =OD. By
Grothendieck-Serre duality, there is then an isomorphism
(7.14)
λ(OX ) 'OD−detR1 f∗OX +detR2 f∗OX −R3 f∗OX 'OD−detR1 f∗OX +detR2 f∗OX + f∗ωX /D.

This is an isometry for the L2 norms. The squared L2 norm of 1 in the first factor is a constant
multiple of the volume of the fixed Kähler form on the fiber, and hence constant. For the
next two terms, by Theorem 4.4, for a local trivialization σp,q of detRq f∗Ω

p
X /D(log) we have

log‖σp,q‖2
L2 = αp,q log |t |2 +o(log |t |). Also, for a local trivialization η of f∗ωX /D, by [EFiMM18,

Theorem A] we have log‖η‖2
L2 = −α log |t |2 + o(log |t |) so that a local trivialization σ of λ(OX )

satisfies

log‖σ‖2
L2 =

(−α0,1 +α0,2 −α)
log |t |2 +o(log |t |).
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For the L2 metric on λ(ΩX /D(log))), expanding the determinant and performing the same
analysis as in (7.14), we find that the norm of a local trivialization σ of λ(ΩX /D(log)) is

log‖σ‖2
L2 =

(
α1,0 −α1,1 +α1,2 −α1,3) log |t |2 +o(log |t |).

All in all, combining (7.12), (7.13) and the subsequent computations we find a general expression
for κ f . The assumption that a general fiber is strict Calabi–Yau assures the vanishing of several
terms (α0,1 = α0,2 = α1,0 = α1,3 = 0), giving the first part of the theorem. The case of unipotent
monodromies is a simplification of the main result under this assumption. �

For the purposes of the statements below, we use the notation Di j ,Di j k , etc. for Di ∩D j ,
Di ∩D j ∩Dk etc. We also abuse notation and write e.g. [D2

i D j ] for the class c1(O (Di ))∩ [Di j ]
and identify top degree intersection products with their degrees. We call quadruple points those
points lying on four components on a normal crossings union of three dimensional varieties.
With this understood, we can then record the following lemma.

Lemma 7.8. Let f : X →D be a semi-stable projective degeneration, with strict Calabi–Yau 3-fold
smooth fibers, and write X0 =∑

Di . Denote by Q the number of quadruple points on X0. Then we
have ∑

k 6=i ,k 6= j ,i< j
c1(O (Dk ))2 ∩ [Di j ] =−4Q.

If f is furthermore assumed to be Kulikov, then∑
i< j

c1(KDi j )2 ∩ [Di j ] = 8Q.

Proof. First note the relation 0 = c1(O (X0)) = ∑
c1(O (Di ). Then it follows that, since [Di j k ] =

c1(O (Dk ))∩ [Di j ],

0 =∑
`

c1(O (D`))∩ [Di j k ] = [D2
i D j Dk ]+ [Di D2

j Dk ]+ [Di D j D2
k ]+ ∑

l 6∈{i , j ,k}
[Di j kl ].

The last sum is the number of quadruple points on Di j k . As any quadruple point appears on four
different components, taking sums over all possible combinations we find the first identity. If
f is Kulikov, then all the components Di j are log-Calabi–Yau so that KDi j =−∑

l 6=i ,l 6= j c1(O (Dl )).
Then, ∑

i< j
c1(KDi j )2 ∩ [Di j ] = ∑

i< j

( ∑
l 6=i ,l 6= j

c1(O (Dl ))

)2

∩ [Di j ] =−4Q +2

(
4

2

)
Q = 8Q.

�

Corollary 7.9. Suppose that f : X →D is a semi-stable, Kulikov germ of a projective degeneration
between smooth algebraic varieties, with strict Calabi–Yau 3-fold generic fibers. Then, if Q denotes
the number of quadruple points, we have

12κ f =χ(D(2))−6Q

= 12χ(D(1),OD(1))−2Q.

Notice that in particular κ f ≡ −Q
6 mod 1.

Proof. According to Proposition 7.1 we have

(7.15) 12κ f =χ(D(2))−3χ(D(3))+6χ(D(4)).
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Since KDi j k +Bi j k is trivial (see the proof of the same Proposition 7.1), we have

χ(Di j k ) = #
{
quadruple points on Di j k

}
so that χ(D(3)) = 4Q, which provides the first equality. Using the same argument and the se-
quence (3.8) we find as χ(OX0 ) =χ(OX∞) = 0

χ(OD(1)) =χ(OD(2))−χ(OD(3))+Q =χ(OD(2))−Q.

This expression together with an application of the Noether formula, for the surfaces Di j , and
Lemma 7.8 furnishes the second formula in the corollary. �

Remark 7.10. The corollary implies the conjecture of Liu–Xia [LX19, Conj. 0.5], simplified with
the computations as in the previous lemma,∑

i< j
c1(O (Di ))c1(O (D j ))∩ [Di j ]−

(∑
i< j

c1(O (Di ))c1(O (D j ))

)
∩

(∑
i< j

[Di j ]

)
=−2Q.

Proposition 7.11. Let f : X → D be a germ of a projective degeneration of 3-dimensional strict
Calabi-Yau varieties, which is moreover semi-stable and Kulikov, of maximal unipotent mon-
odromy. Then κ f ≥ 0. In other words, Conjecture A in the introduction is true under these assump-
tions.

Proof. First of all, since a quadruple point lies on 6 different double surfaces, we find that the
expression for κ f in Corollary 7.9 takes the form

(7.16) 12κ f =
∑
i j ;a

(
χ(Di j ;a)−ni j ;a

)
,

where the sum is over the irreducible components Di j ;a of all double surfaces Di j and ni j ;a

denotes the number of quadruple points on each such component.
Second, the hypotheses on the morphism impose the following restrictions on the geometry

of the special fiber: after [CL16, Lemma 4.1], the components Di j ;a are rational surfaces, and
the triple curves draw a cycle Ci j ;a of rational curves on each of them. As in the proof of Propo-
sition 7.1, Ci j ;a is an anti-canonical divisor of Di j ;a . On Di j ;a , the number ni j ;a of quadruple
points equals the number of triple curves, and the dual graph of Ci j ;a is homeomorphic to a
circle. Together with (7.16), we see that the proposition follows from the lemma below. �

Lemma 7.12. Suppose S is a rational surface and D ∈ |K −1
S |. Then one of the following holds:

• D has a dual graph homeomorphic to a star.
• The number d of irreducible components of D is bounded above by χ(S).

Proof. By the birational classification of surfaces, S is a succession of r blowups p : S → Smin of a
minimal rational surface Smin. These are either P2 or the Hirzebruch surfaces
Fe =P(OP1 ⊕OP1 (−e)). We first provide an argument reducing to these cases.

The anti-canonical bundles of S and Smin are related by

(7.17) K −1
S = p∗(K −1

Smin
)⊗O (−E),

where E = ∑r
`=1 E` is the exceptional divisor. Notice that the relationship (7.17) implies that

D +E ∈ |p∗K −1
Smin

| = |K −1
Smin

|. In other words, there exists a global section s ∈ H 0(K −1
Smin

) such that
D +E = div p∗s. Let d ′ be the number of irreducible components of div s. Then the number of
irreducible components of div p∗s is bounded by d ′+ r . It follows that d ≤ d ′+ r . If we can show
that d ′ ≤χ(Smin) we conclude that d ≤χ(Smin)+ r =χ(S).
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If S =P2, then K −1
S =O (3) and χ(S) = 3 from which the statement in the lemma easily follows.

If S = Fe , then χ(S) = 4 and K −1
S ≡ 2C0 + (e +2) f , where C0 is the unique irreducible curve such

that C 2
0 =−e and f is any fiber of the natural map π : S →P1. Write

D = aC0 +
b∑

k=1
fk +D ′

where fk denote fibers of π and D ′ contains neither any fiber nor C0. Since D ′. f = 2−a ≥ 0, we
proceed according to the possibilities of a.

If a = 2, then D ′ is empty. Since C0 is a section of π, this means that the dual graph of D is a
star. Notice that this topological type does not change under blowup.

If a = 1, then D ′. f = 1 and hence D ′ is irreducible. On the one hand, D.C0 = −e +2. On the
other hand, D.C0 =−e +b +D ′.C0 ≥−e +b from which we infer that b ≤ 2. Hence the number of
components is bounded by 4 =χ(S). The case a = 0 is similar to the case a = 1. �

In the case that f : X →D is a projective degeneration of Calabi–Yau 4-folds, a similar proof
as in Theorem 7.6 yields the below theorem. As in the 3-dimensional case, for simplicity, we
state it only for strict Calabi–Yau 4-folds. It is a refinement of the case of normal crossings in
Theorem 6.5.

Theorem 7.13. Suppose that f : X → D is a germ of a projective degeneration between smooth
algebraic varieties, whose smooth fibers are strict Calabi–Yau 4-folds and with special fiber X0 =∑

mi Di , not necessarily of normal crossings. Then

κ f =− 1

12
(χ(X∞)−χ(X0))+

(
−χ(X∞)

12
+4

)
α+2α1,1−2α1,2+2α1,3+2

(
2−∑

χ(OD̃i
)
)
− 1

12

∫
B

c4(ΩX )

where D̃i denotes a desingularization of Di . Here α= 1
2πi

(
u logTs | Gr4

F∞ H 4(X∞)
)
.

The following is a straightforward corollary following the lines of Corollary 7.7.

Corollary 7.14. Suppose moreover that X0 has at most rational singularities.

(1) Then κ f =− 1
12 (χ(X∞)−χ(X0))+2α1,1 −2α1,2 +2α1,3.

(2) If the singularities are moreover isolated, we have

κ f =−µ f

12
+2α1,3

where µ f denotes the Milnor number of the special fiber.

Proof. We just comment on the vanishing of α1,1 and α1,2 implicit in the second claim: since the
singularities are isolated, the monodromy action is trivial on H 2(X∞) and H 3(X∞). �

Remark 7.15. For ordinary double point singularities, the corollaries 7.7 and 7.14 are compatible
with Theorem 7.3. Indeed, for ordinary double points the Milnor number equals the number of
singular points, and we know the monodromy from the Picard-Lefschetz theorem.

7.4. Bounds on ordinary double point singularities. In [FL05], Fang–Lu used the differential
equation satisfied by the BCOV invariant to prove the non-existence of complete curves in some
moduli spaces of polarized Calabi–Yau varieties. In this section, we apply Theorem 7.3 to improve
on their work. We also remark, in Proposition 7.19, a consequence for abelian varieties and
hyperkähler varieties.

We first place ourselves in the setting of §6.4 and Propostion 6.11. Hence, f : X → S is a flat
projective morphism of compact connected complex manifolds, with dimS = 1. We let S× ⊆ S be
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the locus of regular values of f , and we write {P1, . . . ,Pr } for the complement S \ S×. We suppose
that the smooth fibers have trivial canonical bundle, with topological Euler characteristic χ. We
choose a Kähler structure on f , fiberwise rational on the smooth locus, and we denote by ωH k

the corresponding Hodge forms, and ωW P the Weil–Petersson form. Recall these are smooth
semi-positive (1,1) forms on S×, with at worst Poincaré growth along S \ S×. Following Fang–Lu,
we will say that the family f : X → S is primitive if the Hodge forms ωH k vanish for all k 6= n.8

They establish in loc. cit., Corollary 2.10, the following inequality:

(7.18) ωH n ≥ 2ωW P .

While the authors work with strict Calabi–Yau manifolds, an examination of their proof shows the
validity of this inequality for Calabi–Yau varieties in the broad sense. Combining (7.18) together
with Proposition 6.11, we readily infer:

Proposition 7.16. If f : X → S is a primitive family of Calabi–Yau varieties as above, then

(−1)n
r∑

i=1
κ f (Pi ) ≤

(
−2+ (−1)n χ

12

)
vol(ωW P ),

where vol(ωW P ) = ∫
SωW P .

It follows from the proposition that if (−1)n+1χ > −24 and f is non-isotrivial, then f has at
least one singular fiber. This observation was already made by Fang–Lu [FL05, Cor. 1.3]. We now
prove variants of their result.

Corollary 7.17. In odd relative dimension n, assume that χ > −24 and f : X → S as above is a
non-isotrivial primitive degeneration of Calabi–Yau manifolds. Suppose furthermore that f has at
most ordinary double points. Let #sing(X /S) be the total number of singular points in the fibers of
f . Then

#sing(X /S) ≥ 48+2χ

n +1
.

Proof. The inequality results as an application of Proposition 7.16 and Theorem 7.3. We need
to observe that ωW P = c1( f∗KX /S ,hL2 ) and that the L2 metric is Mumford good on f∗KX /S by
[EFiMM18, Thm. A & Prop. 2.8]. Alternatively, in this case f∗KX /S is a lower extension and we can
apply Theorem 4.4 and the fact that αn,0 = 0. In any event, this entails

vol(ωW P ) = deg f∗KX /S ≥ 1,

the later inequality being due to the non-isotriviality assumption [Pet84, Thm. 5.3.1]. �

Corollary 7.18. In even relative dimension n ≥ 4, assume that χ< 24 and f : X → S as above is a
non-isotrivial primitive degeneration of Calabi–Yau manifolds, admitting at most ordinary double
point singularities. Then

#sing(X /S) ≥
⌈

48−2χ

n −2

⌉even

,

where for x ∈R, dxeeven denotes the smallest even integer n with n ≥ x.

Proof. For the inequality #sing(X /S) ≥ (48−2χ)/(n −2), the proof goes as in Corollary 7.17, and
is left as an exercise to the reader. To conclude we apply Corollary 3.5. �

8Actually Fang–Lu define the primitive Calabi–Yau manifolds as those strict Calabi–Yau manifolds whose Kuranishi
deformations have this vanishing property for the Hodge forms. Also they define primitivity by vanishing for k < n.
In the integrally polarized case, our notion coincides with theirs as follows from Serre duality.
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For particular geometries we have a stronger non-existence result, which can be proven by
other means. We include it as an illustration of our techniques:

Proposition 7.19. If f : X → S is a projective degeneration of abelian varieties of dimension at
least 2 or hyperkähler varieties of dimension at least 4, then no fibers of f have only ordinary
double point singularities.

Proof. This follows from the constancy of the BCOV invariant for such families (cf. Proposition
5.12) and Theorem 7.3, which expresses the logarithmic term of the BCOV invariant in terms of
the number of ordinary double point singularities. �
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