

Exercises on foliations

Exercise 1.

(Intersection of curves)

- a) Let p and q be two different positive integers. Compute the intersection number at (0,0) and at (1,1) of the curves with equation x = y and $x^p = y^q$.
- b) What happens when p = q?

Exercise 2.

(Germ of curve)

- a) In the complex plane \mathbb{C}^2 , compute the intersection number at (0,0) of the curve with equation $(y^2 = x^3 + x^2)$ and, case by case, of the curve with equation
 - *i*) (x = 0)
 - *ii*) (y = 0)
 - *iii*) (x = y)

$$iv) (x = -y)$$

b) Deduce the shape of the curve with equation $(y^2 = x^3 + x^2)$ near the point (0, 0).

Exercise 3.

(Fibration)

Let $[X_1 : Y_1][X_2 : Y_2]$ be the homogeneous coordinates on $\mathbb{P}^1 \times \mathbb{P}^1$. Consider in $\mathbb{P}^1 \times \mathbb{P}^1$ the \mathcal{F} holomorphic foliation by complex curves given by the fibers of the projection p_1 onto the first factor \mathbb{P}^1 .

- a) Recall that the cohomology group $H^2(\mathbb{P}^1 \times \mathbb{P}^1, \mathbb{Z}) = \mathbb{Z}F_1 \oplus \mathbb{Z}F_2$ where F_1 is the fiber of a point by p_1 , and F_2 by p_2 . Write the intersection form on $H^2(\mathbb{P}^1 \times \mathbb{P}^1, \mathbb{Z})$.
- b) Determine the normal and tangent bundle of \mathcal{F} by giving defining vector fields on all four canonical charts. Write $c_1(N_{\mathcal{F}})$ as $aF_1 + bF_2$ with explicit a and b.
- c) Verify the self-intersection formula of the normal bundle.
- d) Compute the number of tangencies of \mathcal{F} with the curve C_1 of equation $X_2 = 0$ by explicitly determining the points of tangency and their order. Write the Poincaré dual $[C_1]$ as $aF_1 + bF_2$ with explicit a and b.
- e) Compute the number of tangencies of \mathcal{F} with the curve of equation $X_1 = 0$ by explicitly determining the points of tangency and their order.
- f) Calculate the number of tangencies of \mathcal{F} with the curve C_2 of equation $X_2^2 Y_1 = X_1 Y_2^2$ by explicitly determining the points of tangency and their order. Write the Poincaré dual $[C_2]$ as $aF_1 + bF_2$ with explicit a and b.
- g) For curves C_1 and C_2 , check the formula for the degree of $T\mathcal{F}$.
- h) Check the formula for the degree of $T\mathcal{F}$ on the curve with equation $X_1 = 0$.

Exercise 4.

(Chern classes)

Let ζ be the first Chern class of the tautological quotient line bundle $\mathcal{O}_{\mathbb{P}^3}(1)$ on the complex projective space \mathbb{P}^3 . Recall the Euler sequence on the complex projective space \mathbb{P}^3 .

$$0 \to \mathcal{O}_{\mathbb{P}^3} \to \mathcal{O}_{\mathbb{P}^4}(1)^{\oplus 4} \to T\mathbb{P}^3 \to 0$$

- a) Determine the canonical bundle $K_{\mathbb{P}^3} = (\det T\mathbb{P}^3)^{\vee}$ of the complex projective space \mathbb{P}^3 .
- b) Determine the Chern classes $c_1(\mathbb{P}^3)$ and $c_2(\mathbb{P}^3)$ of the tangent bundle of \mathbb{P}^4 .

c) Let X be a hypersurface of \mathbb{P}^3 of degree 4. Explain the origin of the exact sequence

$$0 \to TX \to T\mathbb{P}^4_{|X} \to \mathcal{O}_{\mathbb{P}^3}(4)_{|X} \to 0$$

- d) Deduce the canonical bundle of X and the Chern classes of its tangent bundle.
- e) What is the nature of the space X (smoothness, dimension, sign of the canonical bundle, classification)? Take for granted that X is, like \mathbb{P}^3 , simply connected (Lefschetz theorem)

Exercise 5.

(Chern classes)

Let ζ be the first Chern class of the tautological quotient line bundle $\mathcal{O}_{\mathbb{P}^4}(1)$ on the complex projective space \mathbb{P}^4 . Recall the Euler sequence on the complex projective space \mathbb{P}^4 .

$$0 \to \mathcal{O}_{\mathbb{P}^4} \to \mathcal{O}_{\mathbb{P}^4}(1)^{\oplus 5} \to T\mathbb{P}^4 \to 0$$

- a) Determine the canonical bundle $K_{\mathbb{P}^4}$ of the complex projective space \mathbb{P}^4 .
- b) Determine the Chern classes $c_1(\mathbb{P}^4)$ and $c_2(\mathbb{P}^4)$ of the tangent bundle of \mathbb{P}^4 .
- c) Let X be a transverse everywhere intersection of a hypersurface H_2 of \mathbb{P}^4 of degree 2 and another H_3 of degree 3. Explain the origin of the exact sequence

$$0 \to TX \to T\mathbb{P}^4_{|X} \to \mathcal{O}_{\mathbb{P}^4}(2) \oplus \mathcal{O}_{\mathbb{P}^4}(3)_{|X} \to 0$$

- d) What is the nature of space X? Take for granted that X is, like \mathbb{P}^4 and H_2 , simply connected (Lefschetz's Theorem).
- e) Compute the signature $\sigma(X) = \frac{1}{3} (c_1^2(X) 2c_2(X)).$