Algèbre et Arithmétique 1

Feuille n°5 : Nombres premiers

1 Exercices à savoir faire

Exercice 1

- 1 Écrire la liste des nombres premiers inférieurs à 100.
- 2 161 est-il premier?
- 3 On appelle nombres premiers jumeaux, deux nombres premiers qui comme 11 et 13, diffèrent de 2. A l'aide du crible d'Erathosthène, déterminer deux nombres premiers jumeaux, compris entre 200 et 250.

Exercice 2

- 1 Rappeler le critère de divisibilité par 3.
- 2 Déterminer un critère de divisibilité par 11.
- 3 Déterminer le pgcd(41, 11111).
- 4 Les nombres 111, 1111, 11111, 111111 sont-ils premiers?

Exercice 3

- 1 Décomposer en facteurs premiers les entiers $a=46\,848,\ b=2379,\ c=8\,633,\ d=4\,183.$
- **2** En déduire pgcd(a, b) et pgcd(c, d). Calculer ppcm(a, b) et ppcm(c, d).
- **3** Comparer avec l'algorithme d'Euclide.
- 4 Calculer le pgcd(46 848,2379).

Exercice 4

- 1. Déterminez le pgcd de 2873 et 1001, ainsi que deux entiers relatifs u et v tels que 2873 u + 1001 v = pgcd(2873, 1001).
- $2.\,$ Décomposez 2873 et 1001 en facteurs premiers.
- 3. Existe-t-il des entiers relatifs u et v vérifiant

$$2873 u + 1001 v = 15$$
 ?

Exercice 5

Déterminer les couples d'entiers naturels de pgcd 18 et de somme 360. De même avec pgcd 18 et produit 6480.

Exercice 6

- 1 Calculer toutes les puissances de 3 modulo 7, c'est à dire $3^0 \pmod{7}, 3^1 \pmod{7}, 3^2 \pmod{7}, \cdots$.
- 2 Calculer toutes les puissances de 38 modulo 7.

Exercice 7

On remarque que $7 \equiv -1 \pmod{8}$. Démontrer que le nombre $7^n + 1$ est divisible par 8 si n est impair; dans le cas n pair, donner le reste de sa division par 8.

Exercice 8

Montrer que $2^{70} + 3^{70}$ est divisible par 13.

Exercice 9

- 1 Calculer les restes modulo 13 des entiers 5^{206} , 5^{381} , 5^{883} , puis 5^n pour tout entier naturel n.
- **2** Calculer les restes modulo 13 des entiers 1617^{206} , 1617^{381} , 1617^{883} , 1617^n , pour $n \in \mathbb{N}$.

Exercice 10

Pour quelles valeurs de l'entier n,

- 1 le nombre $4^n + 2^n + 1$ est-il divisible par 7?
- 2 le nombre $9^n + 3^n + 1$ est-il divisible par 13?
- 3 le nombre $25^n + 5^n + 1$ est-il divisible par 31?

Exercice 11

- 1 Résoudre dans N, l'équation 6a + 11b = 1.
- **2** Trouver une solution dans **N** de l'équation 6a + 11b = 6, puis résoudre dans **N**, l'équation 6a + 11b = 6.
- **3** Résoudre dans **N**, l'équation 6a + 12b = 5.

Exercice 12

- 1 Que peut-on dire d'un entier nul modulo 3, 5, et 16?
- **2** Soit n un nombre entier qui n'est multiple ni de 2, ni de 3, ni de 5. Montrer que $n^4 \equiv 1 \pmod{240}$.

Exercice 13

1 Soit a et b deux entiers relatifs premiers entre eux. Montrer que a et a+b sont premiers entre eux.

- 2 Montrer que si a est premier avec b et c, il est premier avec leur produit bc.
- 3 Soit a et b deux entiers relatifs premiers entre eux. Montrer que pour tout $(k, l) \in \mathbb{N}^2$, a^k et b^l sont premiers entre eux.

2 Exercices à chercher

Exercice 14

Montrer que l'ensemble des nombres premiers est infini. On pourra raisonner par l'absurde : supposer que l'ensemble des nombres premiers est fini et considérer le nombre égal au produit de tous les nombres premiers plus 1.

Exercice 15

Démontrer que, si a et b sont des entiers premiers entre eux, il en est de même des entiers a+b et ab. (On pourra raisonner par l'absurde en supposant l'existence d'un diviseur premier commun à a+b et ab.)

Exercice 16

- **1** Soit p un nombre premier et soit x un entier tel que $x^2 \equiv 1 \pmod{p}$. Montrer que l'on a $x \equiv 1 \pmod{p}$ ou $x \equiv -1 \pmod{p}$.
- 2 Calculer 2¹⁴⁰ (mod 561). En déduire que 561 n'est pas un nombre premier.

Exercice 17

- Décomposer 51 et 216 en facteurs premiers; calculer pgcd(51, 216). Déterminer toutes les expressions de 216 comme le produit de deux entiers naturels premiers entre eux.
- 2 Soit a et b des entiers strictement positifs tels que a + b = 51, a < b et ppcm(a, b) = 216. Montrer que $d = \operatorname{pgcd}(a, b)$ divise $\operatorname{pgcd}(51, 216)$.
- **3** Montrer que a' = a/d et b' = b/d sont premiers entre eux. Que vaut ppcm(a', b')? En déduire la liste des couples (a, b) possibles.

Exercice 18

- 1 Montrer que le reste de la division euclidienne par 8 du carré de tout nombre impair est 1.
- **2** Montrer de même que tout nombre pair vérifie $x^2 \equiv 0 \pmod{8}$ ou $x^2 \equiv 4 \pmod{8}$.
- **3** Quelles sont les valeurs possibles de $2x^2 \pmod{8}$?
- 4 Soient a, b, c trois entiers impairs. Déterminer le reste modulo 8 de $a^2 + b^2 + c^2$ et celui de 2(ab + bc + ca).
- **5** En déduire que ces deux nombres ne sont pas des carrés puis que ab + bc + ca non plus. (Quelle est la parité de ab + bc + ca?)

Exercice 19

Soit n un nombre entier et posons $M_n = 2^n - 1$ (nombre de Mersenne).

- 1 Si M_n est un nombre premier, montrer que n est premier. On pourra utiliser la contraposé.
- **2** Trouver le plus petit nombre premier n tel que M_n ne soit pas premier.

Exercice 20

Pour $n \ge 0$, on pose $F_n = 2^{2^n} + 1$ (nombre de Fermat).

- 1 Montrer que F_0, F_1, \ldots, F_4 sont des nombres premiers.
- Montrer que si $2^k + 1$ est un nombre premier, k est une puissance de 2. (Si k = ab, avec a impair, montrer que $2^b + 1$ divise $2^k + 1$.) (Si k = ab, avec a premier impair, montrer en utilisant une factorisation de $x^a + 1$ que $2^b + 1$ divise $2^k + 1$.)
- 3 Montrer que F_5 n'est pas un nombre premier (Euler), contrairement à une affirmation de Fermat que tous les F_n sont des nombres premiers. Précisément, montrer que 641 divise F_5 . (Écrire $2^{32} + 1 = 16(2^7)^4 + 1$ et remarquer que 16 = 641 625.)
- 4 Démontrer que $\prod_{k=0}^{n-1} F_k = F_n 2$. Si $m \neq n$, en déduire que F_n et F_m sont premiers entre eux.

Exercice 21

- 1 Montrer qu'aucun des entiers $n! + 2, \dots, n! + n$ n'est un nombre premier.
- 2 En s'inspirant de la question précédente, montrer qu'il existe des suites d'entiers consécutifs arbitrairement longues telles qu'aucun d'entre eux ne soit la puissance d'un nombre premier (Olympiades internationales de mathématiques, 1989).

Exercice 22

Soit n un entier strictement positif; on note $n = \prod_{i=1}^{r} p_i^{n_i}$ sa décomposition en facteurs premiers, les p_i sont des nombres premiers deux à deux distincts, les n_i des entiers ≥ 1 .

- 1 Montrer qu'un entier d > 0 divise n si et seulement si il existe des entiers m_i , $0 \le m_i \le n_i$ tel que $d = \prod_{i=1}^r p_i^{m_i}$.
- **2** Montrer que le nombre de diviseurs strictement positifs de n est égal à $\prod_{i=1}^{r} (1+n_i)$.
- **3** Calculer en fonction des p_i et des n_i la somme des diviseurs positifs de n.

Exercice 23

- 1 Si tous les facteurs premiers p d'un entier n vérifient $p \equiv 1 \pmod{4}$, montrer que l'on a $n \equiv 1 \pmod{4}$.
- 2 Si $n \ge 4$, en déduire qu'au moins un facteur premier de n! 1 est congru à -1 modulo 4, puis qu'il existe une infinité de nombres premiers de la forme 4n + 3.
- 3 Montrer de même qu'il existe une infinité de nombres premiers de la forme 6n + 5.