Licence 1 — Mathématiques 2014–2015

Algèbre et Arithmétique 1

Feuille n^o 2 Théorie des ensembles, applications

Exercices à savoir faire

Théorie des ensembles

Exercice 1

Soit \mathcal{F} l'ensemble des femmes. Qu'est-ce qu'un élément $x \in \mathcal{F}$? Pour tout élément $x \in \mathcal{F}$, on note B(x) l'assertion « x est brune » et N(x) l'assertion « x a les yeux noirs ».

- **1** Sous la forme d'un schéma, représenter, dans \mathcal{F} , l'ensemble \mathcal{B} des éléments x de \mathcal{F} pour lesquels B(x) est vraie, et l'ensemble des éléments y de \mathcal{F} pour lesquels N(x) est vraie.
- 2 Indiquer si les assertions suivantes sont vraies ou fausses.

 $\forall x \in \mathcal{F}, (B(x) \text{ ou } N(x));$

 $(\forall x \in \mathcal{F}, B(x))$ ou $(\forall x \in \mathcal{F}, N(x))$.

B Expliquer ce que signifierait que ces assertions soient vraies, puis fausses.

Exercice 2

- 1 Soient A et B deux sous-ensembles d'un ensemble E. Montrer que $A \cap \mathcal{C}_E(B) \neq \emptyset \iff A \not\subset B$.
- **2** Soient P et Q deux assertions. Montrer que (P et non $(Q)) \iff \text{non}(P \Longrightarrow Q)$.

Exercice 3

Soient A, B, C trois parties d'un ensemble E.

Si $C \subset A \cup B$, a-t-on forcément $C \subset A$ ou $C \subset B$?

Exercice 4

Soit E un ensemble et A, B deux parties de E. Montrer les formules suivantes :

- 1 $A = B \Leftrightarrow A \cap B = A \cup B$.
- $2 A \backslash B = A \Leftrightarrow B \backslash A = B.$
- $\mathbf{3} \quad A \cap B = A \cap C \Leftrightarrow A \cap \mathcal{C}_E B = A \cap \mathcal{C}_E C.$

Exercice 5

Soit E un ensemble et A, B, C trois parties de E. Montrer les formules suivantes :

- $1 \qquad (A \cap B) \cup C = (A \cup C) \cap (B \cup C)$
- 2 $C_E(C_EA) = A$
- 3 $\mathcal{C}_E(A \cap B) = (\mathcal{C}_E A) \cup (\mathcal{C}_E B)$
- 4 $\mathcal{C}_E(A \cup B) = (\mathcal{C}_E A) \cap (\mathcal{C}_E B)$

Illustrer les résultats avec des patates et des couleurs.

Exercice 6

Soit E un ensemble. Démontrer les formules suivantes :

- 1 $\forall A, B \in \mathcal{P}(E), (A \cup B \subset A \cap B) \Rightarrow A = B,$
- $\mathbf{2} \quad \forall A,B,C \in \mathcal{P}(E), \quad (A \cap B \subset A \cap C \text{ et } A \cup B \subset A \cup C) \Rightarrow B \subset C.$
- 3 $\forall A, B, C \in \mathcal{P}(E), (A \cap B = A \cap C \text{ et } A \cup B = A \cup C) \Rightarrow B = C.$

Exercice 7

Montrer que l'ensemble $C = \{(x,y) \in \mathbb{R} \times \mathbb{R} ; x^2 + y^2 \le 1\}$ ne peut s'écrire comme produit cartésien de deux sous-ensembles de \mathbb{R} .

Exercice 8

Déterminer toutes les parties de $E = \{0, 1, 2, 3\}$.

Exercice 9

- 1 Soit $E = \{0, 1\}$. Déterminer $\mathcal{P}(E)$, $E \times E$ et $\mathcal{P}(E \times E)$.
- **2** Déterminer $F = \mathcal{P}(\emptyset)$ et $\mathcal{P}(F)$.

Exercice 10

Soient E et F deux ensembles.

- **1** Un sous-ensemble X de $E \cup F$ est-il toujours de la forme $A \cup B$ où A appartient à $\mathcal{P}(E)$ et B appartient à $\mathcal{P}(F)$?
- **2** Un sous-ensemble X de $E \times F$ est-il toujours de la forme $A \times B$ où A appartient à $\mathcal{P}(E)$ et B appartient à $\mathcal{P}(F)$?

Applications

Exercice 11

- Soit $f: \mathbf{R} \to \mathbf{R}$, $x \to x^2$, et soit A = [-1, 4]. Déterminer l'image directe f(A) de A par f, puis l'image réciproque $f^{-1}(A)$ de A par f.
- **2** On considère la fonction sinus $sin : \mathbf{R} \to \mathbf{R}$. Quelle est l'image directe, par sin, de \mathbf{R} ? de $[0, 2\pi]$? de $[0, \pi/2]$?
- **3** Quelle est l'image réciproque, par sin, de [0,1]? de [3,4]? de [1,2]?

Exercice 12

Les fonctions suivantes sont-elles injectives? surjectives? bijectives?

- 1 $f_0: \mathbf{Z} \to \mathbf{Z}, n \to 2n$.
- 2 $f_1: \mathbf{N} \to \mathbf{N}^*, n \to n+1.$
- 3 $f_2: \mathbf{Z} \to \mathbf{Z}, n \to -n$.
- 4 $f_3: \mathbf{R} \to \mathbf{R}, x \to x^2$.
- 5 $f_4: \mathbf{R} \to \mathbf{R}^+, x \to x^2.$
- 6 $f_5: \mathbf{C} \to \mathbf{C}, z \to z^2$.

Exercice 13

- 1 Dessiner un graphe qui ne représente pas une application.
- **2** Dessiner, si possible, le graphe d'une application surjective f et d'une application g dont la composée $f \circ g$ ne soit pas surjective.
- **3** Dessiner, si possible, le graphe d'une application surjective f et d'une application g dont la composée $g \circ f$ ne soit pas surjective.
- 4 Dessiner, si possible, le graphe d'une application surjective f et d'une application g surjective dont la composée $g \circ f$ ne soit pas surjective.
- 5 Reprendre les questions précédentes avec « injective » au lieu de « surjective ».

Exercice 14

Soient E, F et G trois ensembles, $h: E \to F, f: F \to G$ et $g: F \to G$ trois applications. $g \circ h = f \circ h$ implique-t-il que g = f? Et si h est injective? surjective?

Exercice 15

Soient les applications

Étudier l'injectivité, la surjectivité et la bijectivité de f, g, $f \circ g$ et $g \circ f$.

Exercice 16

Soient E et F deux ensembles et $f:E\to F$ une application. Montrer que :

- 1 $\forall A \in \mathcal{P}(E), A \subset f^{-1}(f(A)).$
- $\mathbf{2} \quad \forall B \in \mathcal{P}(F), f(f^{-1}(B)) \subset B.$
- 3 A-t-on égalité en général?

Exercice 17

Soient E et F deux ensembles et f une application $E \to F$.

- 1 Démontrer les formules suivantes :
 - 1. $\forall A, B \in \mathcal{P}(E) \quad A \subset B \Rightarrow f(A) \subset f(B),$
 - 2. $\forall A, B \in \mathcal{P}(F)$ $A \subset B \Rightarrow f^{-1}(A) \subset f^{-1}(B)$,
 - 3. $\forall A, B \in \mathcal{P}(E)$ $f(A \cap B) \subset f(A) \cap f(B)$,
 - 4. $\forall A, B \in \mathcal{P}(E)$ $f(A \cup B) = f(A) \cup f(B)$,
 - 5. $\forall A, B \in \mathcal{P}(F)$ $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$,
 - 6. $\forall A, B \in \mathcal{P}(F)$ $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$,
 - 7. $\forall A \in \mathcal{P}(F) \quad f^{-1}(F \setminus A) = E \setminus f^{-1}(A)$.
- **2** La formule $\forall A, B \in \mathcal{P}(E)$ $A \subset B \Leftrightarrow f(A) \subset f(B)$ est-elle toujours vraie? On pourra, si besoin, donner un contre-exemple.
- **3** La formule $\forall A, B \in \mathcal{P}(E)$ $f(A \cap B) = f(A) \cap f(B)$ est-elle toujours vraie? On pourra, si besoin, donner un contre-exemple.

Exercice 18

Soit $f: X \to Y$ une application. Montrer que les deux conditions suivantes sont équivalentes :

- $\mathbf{1}$ f est injective.
- **2** Pour toutes les parties A et B de X, $f(A \cap B) = f(A) \cap f(B)$.

Exercices à chercher

Théorie des ensembles

Exercice 19

- Soit A un sous-ensemble de \mathbb{N} dont tous les éléments sont strictement plus grands que 100. Que peut-on dire du plus grand élément du complémentaire de A?
- **2** Donner (si possible) l'exemple de deux sous-ensembles A et B de \mathbb{N} tels que le plus petit élément de $A \cap B$ ne soit ni le plus petit élément de A, ni le plus petit élément de B.
- 3 Donner (si possible) l'exemple de deux sous-ensembles A et B de \mathbb{N} tels que le plus petit élément de $A \cup B$ ne soit ni le plus petit élément de A, ni le plus petit élément de B.

Exercice 20

Soit E un ensemble et A et B des parties de E.

- 1 Déterminer toutes les parties X de E vérifiant $A \cup X = B$ (on pourra commencer par remarquer que si A n'est pas inclus dans B, de telles parties n'existent pas ; il reste à examiner le cas où A est inclus dans B; on pourra s'aider de patates).
- **2** Déterminer toutes les parties X de E vérifiant $A \cap X = B$.

Exercice 21

Pour n entier naturel, on note p(n) le nombre de parties d'un ensemble à n éléments. Le nombre de parties du produit cartésien $A \times B$ d'un ensemble A à 5 éléments avec un ensemble B à 4 éléments est-il le produit $p(5) \times p(6)$? (Sinon que représente le nombre $p(5) \times p(6)$?)

Exercice 22

Le but de cet exercice est de montrer que « l'ensemble de tous les ensembles n'existe pas ».

Énoncé de l'exercice : Il s'agit de montrer que l'existence d'un ensemble dont les éléments sont tous les ensembles aboutit à une contradiction. Supposons qu'il existe un tel ensemble X. En considérant l'ensemble $y = \{x \in X, x \notin x\}$, aboutir à la contradiction cherchée (indication : y appartient-il à y? cf. également le paradoxe du barbier ci-dessous). Ainsi l'ensemble X ne peut pas exister.

Commentaires : La découverte de ce « paradoxe » par le logicien Bertrand Russel en 1901 a permis par la suite de dégager de « bons » axiomes pour la formalisation de la théorie des ensembles. Une version « grand public » de ce paradoxe est connue sous le nom de paradoxe du barbier : le barbier du village est celui qui rase tous les hommes du village qui ne se rasent pas eux-mêmes, et eux seulement ; le barbier se rase-t-il lui même?

Applications

Exercice 23

Soit X un ensemble. Pour $f \in \mathcal{F}(X,X)$, on définit $f^0 = id$ et, par récurrence, pour tout $n \in \mathbb{N}$ $f^{n+1} = f^n \circ f$.

- 1 Montrer que $\forall n \in \mathbf{N} \ f^{n+1} = f \circ f^n$.
- **2** Montrer que si f est bijective alors $\forall n \in \mathbf{N} \ (f^{-1})^n = (f^n)^{-1}$.

Exercice 24

Soient E un ensemble et $f: \mathcal{P}(E) \to \mathbb{R}$ une application, telle que, pour toutes les parties disjointes A et B de E, on ait $f(A \cup B) = f(A) + f(B)$.

- 1 Montrer que $f(\emptyset) = 0$.
- **2** Montrer que, pour toutes les parties A et B de E, on a $f(A \cup B) = f(A) + f(B) f(A \cap B)$.

Exercice 25

Soient E un ensemble, A et B deux parties de E. Soit l'application :

$$\begin{array}{ccc} f: & \mathcal{P}(E) & \to & \mathcal{P}(A) \times \mathcal{P}(B) \\ & X & \mapsto & (X \cap A, X \cap B) \end{array}$$

- 1 Démontrer que : f injective $\iff A \cup B = E$.
- **2** Déemontrer que : f surjective $\iff A \cap B = \emptyset$.
- **3** À quelle condition f est-elle bijective? Expliciter alors f^{-1} .

Exercices pour aller plus loin

Exercice 26

Le principe d'inclusion-exclusion donne lieu à des inégalités : si A_1, \ldots, A_n sont des parties d'un ensemble X, montrer par exemple que

$$\sum_{i} |A_{i}| - \sum_{i \neq j} |A_{i} \cap A_{j}| \le \left| \bigcup_{i} A_{i} \right| \le \sum_{i} |A_{i}|.$$

Généraliser.

Exercice 27

Les trois premières questions sont indépendantes de la dernière :

- 1 Déterminer une bijection entre N et N^* .
- **2** En déduire une bijection entre $\{1/n, n \ge 1\}$ et $\{1/n, n \ge 2\}$.
- **3** En déduire une bijection entre [0,1] et [0,1].
- 4 Trouver une bijection entre N et Z.

Exercice 28

Soit X un ensemble et f une application de X dans l'ensemble $\mathcal{P}(X)$ des parties de X. On note A l'ensemble des $x \in X$ vérifiant $x \notin f(x)$. Démontrer par l'absurde qu'il n'existe aucun $x_0 \in X$ tel que $A = f(x_0)$. En déduire qu'il n'existe pas de bijection entre X et $\mathcal{P}(X)$.

Exercice 29

Soit X un ensemble. Si $A \subset X$, on note χ_A la fonction caractéristique associée : $\chi_A : X \to \{0,1\}$ définie par $\chi_A(x) = 1$ si $x \in A$ et $\chi_A(x) = 0$ si $x \notin A$. Montrer que l'application Φ , définie ci-dessous, est bijective :

$$\begin{array}{cccc} \Phi & : & \mathcal{P}(X) & \to & \mathcal{F}(X, \{0, 1\}) \\ & A & \mapsto & \chi_A \end{array}$$

Exercice 30

Soient E et F des ensembles. On suppose qu'il existe une application injective $f: E \to F$ et une application injective $g: E \to F$. On se propose de montrer qu'il existe alors une bijection de E sur F. Ce résultat est connu sous le nom de théorème de Cantor-Bernstein ou parfois théorème de Cantor-Bernstein-Schröder.

- 1 Montrer le résultat si l'on suppose en outre que E ou F est un ensemble fini.
- **2** Désormais on suppose E et F quelconques. Soit $h = g \circ f$ et $G = E \setminus g(F)$. Soit \mathcal{F} l'ensemble des parties X de E vérifiant $G \cup h(X) \subset X$. Montrer que \mathcal{F} est non vide et que si $X \in \mathcal{F}$ alors $G \cup h(X) \in \mathcal{F}$.
- **3** Soit A l'ensemble des éléments x de E tels que pour tout $X \in \mathcal{F}$ on a $x \in X$. En d'autres termes $A = \bigcap_{X \in \mathcal{F}} X$. Montrer qu'on a $G \subset A$, puis que A appartient à \mathcal{F} , puis que $G \cup h(A) = A$ (pour cette dernière propriété, utiliser le dernier point de la question précédente).
- 4 Soit $B = E \setminus A$, A' = f(A) et $B' = g^{-1}(B)$. Montrer qu'on a $A' \cap B' = \emptyset$ et $A' \cup B' = F$.
- 5 Montrer que l'application $\varphi: E \to F$ définie par

$$\varphi(x) = \begin{cases} f(x) & \text{si } x \in A \\ g^{-1}(x) & \text{si } x \in B \end{cases}$$

est une bijection de E sur F.