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Lattices

At this stage we take a radical new view of the theory, turning from purely
algebraic methods to techniques inspired by geometry, This approach re-
quires a different attitude of mind from the reader, in which formal ideas
are built on a visual foundation. We begin with basic properties of lattices:
subsets of R™ which in some sense generalize the way 7 is embedded in R.
We characterize lattices topologically as the discrete subgroups of R™. We
introduce the fundamental domain and guotient torus corresponding to a
lattice and relate the two concepts. Finally we define a concept of volume
for subsets of the quotient torus.

6.1 Lattices

Let ey,...,em be a linearly independent set of vectors in R™ (so that
m < n). The additive subgroup of (R",+) generated by ey,... &, is
called & lottice of dimension m, generated by e1,... ,en. Figure 6.1 shows

a lattice of dimension 2 in R?, generated by (1,2) and (2,—1). (Do not
confuse this with any other uses of the word ‘lattice’ in algebra.} Obviously,
as regards the group-theoretic structure, a lattice of dimension m is a free
abelian group of rank m, so we can apply the terminology and theory of
free abelian groups to lattices.

We shall give a topological characterization of lattices. Let R™ be
equipped with the usual metric (& la Pythagoras), where ||z — y|| denotes
the distance between x and y, and denote the (closed) ball centre ¢ radius
7 by By[z]. Recall that a subset X C R™ is bounded if X C B,[0] for some
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Figure 6.1, The lattice in R? generated by e1 = (1,2) and ez = (2, —1).

r. We say that a subset of R™ is discrete if and only if it intersects every
B.[0] in a finite set.

Theorem 6.1. An additive subgroup of R™ is a lattice if and only if it is
discrete.

Proof: Suppose L is a lattice. By passing to the subspace spanned by L
we may assume L has dimension n. Let L be generated by ey, ... ,en; then
these vectors form a basis for the space R™. Every v € R™ has a unique
representation

v=Aer + ...+ Aen (A ER).
Define f: R” — R"™ by
Flher 4. 4 Anen) = A1y A
Then f(B,[0]) is bounded, say
[|f(v}]] £k for v € B, [0].
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IS aie; € By[0] (a; € Z), then certainly ||{ay,... ,@y)|| < k. This implies
las] < [[(@1,... ,an)|| < & (6.1)

The number of integer solutions of (6.1) is finite and so L B,[0], being a
gubset of the solutions of (6.1), is also finite, and L is discrete.
Conversely, let G be a discrete subgroup of R™. We prove by induction
on 7 that G is a lattice. Let {g1,...,gm} be a maximal linearly indepen-
dent subset of G, let V' be the subspace spanned by {g1,... ,0m-1}, and
let Gog = G NV. Then Gy is discrete so, by induction, is a lattice. Hence

there exist linearly independent elements Ay, ... ,hn, generating Gy, Since
the elements g1,... ,¢m—1 € G we have m' = m — 1, and we can replace
{o1y--+ s8m—1} by {h1,... , hm—1}, Or equivalently assume that every ele-
ment of Gy is a Z-linear combination of ¢1,... ,gm—1. Let T be the subset

of all z € G of the form
T=a191+ ...+ @&nm
with a; € R, such that

0<a; <1 (i=1,...,m—1)
0<am <1

Then T is bounded, hence finite since G is discrete, and we may therefore
choose &' € T' with smallest non-zero coefficient a,,, say

= bigi+ ...+ bngm.

Certainly {¢i,..- ,8m_1,2'} is linearly independent. Now starting with
any vector g € (7 we can select integer coefficients ¢; so that

' /
g =g—Cn®& —C1g1 — ..~ Cn—19m—1

lies in 7", and the coeflicient of gy, in ¢ is less than b,,, but non-negative.
By choice of #' this coeflicient must be zero, so ¢ € Gp. Hence
{#',¢1,... , gm-1} generates G, and G is a lattice. W]

If L is a lattice generated by {ei,...,e,} we define the fundamental
domain T' to consist of all elements 3 a4e; (2; € R) for which

0<a; <.

Note that this depends on the choice of generators.

Lemma 6.2. Each clement of R™ lies in exactly one of the sets T +1 for
e L.
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Figure 6.2, A fundamental domain T for the lattice of Figure 1, and a translate
T 4+ {. Dotted lines indicate omission of boundaries.

Proof: Chop off the integer parts of the coefficients. d

Figure 6.2 illustrates the concept of a fundamental domain, and the
result of Lemma 6.2, for the lattice of Figure 6.1.

6.2 The Quotient Torus

Let L be a lattice in R™, and assume to start that L has dimension n. We

shall study the quotient group R"/L.
Let § denote the set of all complex numbers of modulus 1. Under
multiplication 8 is a group, called for obvious reasons the circle group.

Lemma 6.3. The quotient group R/Z is isomorphic to the circle group S.

Proof: Define a map ¢: R — 8 by

¢($) — e21\“im .
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R

Figure 6.3. The Cartesian product of two circles is a torus.

Then ¢ is a surjective homomorphism with kernel Z, and the lemma follows.
-

Next let T™ denote the direct product of n copies of S, and call this
the n-dimensional torus. For instance, T2 = 8 x 8 is the usual torus (with

a group structure) as sketched in Figure 6.3.

Theorem 6.4. If L is an n-dimensional lattice in R™ then R™/L is iso-
morphic to the n-dimensional torus T™.

Proof: Let {ej,...,e,} be generators for L. Then {ey,...,e,} is a basis
for R"™. Define ¢ : R* — T" by

dlater + ...+ anen) = (32’"’:‘11, . ’627”:0‘“)‘
Then ¢ is a surjective homorphism, and the kernel of ¢ is L. O

Lemma 6.5. The map ¢ defined above, when restricted to the fundamental
domain T, yields a bijection T — T™. O

Geometrically, T" is obtained by ‘glueing’ (i.e. identifying) opposite
faces of the closure of the fundamental domain, as in Figure 6.4.

Figﬁre 6.4, The quotient of Fuclidean space by a lattice of the same dimension is
a torus, obtained by identifying opposite edges of a fundamental domain.
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Figure 6.5, The quotient of Euclidean space by a lattice of smaller dimension is
a cylinder.

If the dimension of I is less than n, we have a similar result:

Theorem 6.6. Let L be an m-dimensional lattice in R™. Then R*/L is
isomorphic to T™ x R*™™,

Proof: Let V be the subspace spanned by L, and choose a complement
W so that R® = V@ W. Then L C V, V/L 2 T™ by Theorem 6.4,
W = R ™, and the result follows. O

For example, R?/Z = T! x R, which geometrically is a cylinder as in

Figure 6.5.
The volume v(X) of a subset X C R™ is defined in the usual way: for

precision we take it to be the value of the multiple integral

f dml...dxn
X

where (i1, ... , ) are coordinates. Of course the volume exists only when
the integral does.

Let L C R™ be a lattice of dimension 7, so that R™/L = T™. Let T' be
a fundamental domain of L. We have noted the existence of a bijection
¢ T T
For any subset X of T™ we define the volume v{X) by
v(X) = v(p7(X))

which exists if and only if ¢~ 1{X) has a volume in R™.
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Let v : R® — T™ be the natural homomorphism with kernel L. It
is infuitively clear that » is ‘locally volume-preserving’, that is, for each
z € R™ there exists a ball B.[x] such that for all subsets X C B,[z] for
which v(X) exists we have

v(X) = v(¥(X))

It is also intuitively clear that if an injective map is Jocally volume-preserving
then it is volume-preserving. We prove a result which combines these two
intuitive ideas: .

Theorem 6.7. If X is a bounded subset of R and v(X) exists, and if
v(( X)) # v(X), then v|x is not injective.

Proo.f: Agsume v|x is injective. Now X, being bounded, intersects only
s finite number of the sets T+ [, for T' a fundamental domain and [ € L.
Put

Xi=Xn{T+1D).
Then we have
X=X, U..uX,.
For each I; define
Y, =X, —1;

so that ¥;, C T". We claim that the Y}, are disjoint. Since v{z — ;) = v(x)
for all z € R™ this follows from the assumed injectivity of v. Now

'U(Xh) = v(Yii)
for all 4. Also
v(X) = $(¥i)
where ¢ is the bijection T - T". Now we compute:
o(V(X)) = B(p(UXy,))
= U(UYii)
= qu(iﬁi) by disjointness
= Z ""(Xh)
= v(X),

which is a contradiction. 1

The idea of the proof can be summed up pictorially by Figure 6.6.
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Figure 6.6, Proof of Theorem 6.7: if a locally volume-preserving map does not
preserve volume globally, then it cannot be injective.

6.3 [LExercises

1. Let I be a lattice in R2 with L C Z2. Prove that the volume of a

fundamental domain 7' is equal to the number of points of Z? lying
inT.

Generalize the previous exercise to R™ and link this to Lemma 9.3
by using Theorem 1.17.

Sketch the lattices in R? generated by:

(a) (0,1) and (1,0).

(b) (—1,2) and (2, 2).

(c) (1,1) and (2,3).

(d) (—2,~7) and (4, —3).

(e) (1,20) and (1,--20).

(f) (1,7) and (m,1).

Sketch fundamental domains for these laitices.

Hence show that the fundamental domain of a lattice is not uniquely
determined until we specify a set of generatars.

6. Verify that nonetheless the volume of a fundamental domain of a

given lattice is independent of the set of generators chosen.

6.3. Exercises 137

7. Find two different fundamental domains for the lattice in R3 gener-
ated by (0,0,1), (0,2,0), (1,1,1). Show by direct calculation that
they have the same volume. Can you prove this geometrically by
dissecting the fundamental domains into mutually congruent pieces?
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Minkowski’s Theorem

The aim of this chapter is to prove a marvellous theorem, due to Minkowski

in 1896. This asserts the existence within a suvitable set X of a non-zero

point of a lattice L, provided the volume of X is sufficiently large relative to
that of a fundamental domain of L. The idea behind the proof is deceptive
in its simplicity: it is that X cannot be squashed into a space whose volume
is less than that of X, unless X is allowed to overlap itself. Minkowski
discovered that this essentially trivial observation has many non-trivial
and important consequences, and used it as a foundation for an extensive
theory of the ‘geometry of numbers’. As immediate and accessible ingtances
of its application we prove the two- and four-squares theorems of classical
number theory.

7.1 Minkowski’s Theorem

A subset X C R" is conwez if whenever &, ¥ € X then all points on the
straight line segment joining @ to y also lie in X. In algebraic terms, X is
convex if, whenever z, y € X, the point

Az 4+ (1 — Xy

belongs to X forallreal A, 0 < A < 1.

For example a circle, a square, an ellipse, or a triangle is convex in
R?, but an annulus or crescent is not (Figure 7.1). A subset X C R” is
(centrally) symmetric if z € X implies —2 € X. Geometrically this means
that X is invariant under reflection in the origin. Of the sets in Figure 7.1,
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Figure 7.1. Convex and non-convex sets. The circular disc, square, ellipse, and
triangle are convex; the annulus and crescent are not. The circle, square, ellipse,
and annulus are centrally symmetric about *; the triangle and crescent are not.

assuming the origin to be at the positions marked with an asterisk, the
circle, square, ellipse, and annulus are symmetric, but the triangle and
crescent are not.

We may now state Minkowski’s theorem.

Theorem 7.1. (Minkowski’s Theorem.} Let L be an n-dimensional lattice
in R™ with fundamental domain T, and let X be a bounded symmetric
convex subset of R™. If

w(X) > 2(T)

then X contains a non-zere point of L.

Proof: Double the size of L to obtain a lattice 27 with fundamental
domain 27" of volume 2™v(7"). Consider the torus

T" = R"/2L.
By definition,
w(T™) = v(2T) = 2"u(T').

Now the natural map v : R™ — T™ cannot preserve the volume of X, since
this is strictly larger than v(T™): since #(X) C T™ we have

v(p(X)) < o(T") = 2"(T") < v(X).
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It follows by Theorem 6.7 that v|x is not injective. Hence there exist
1 # ®g, 1,23 € X, such that

v(a) = v(zs),

or equivalently
x1 —®g € 2L, (7.1)

But z2 € X, so —x3 € X by symmetry; and now by convexity
1) + 312(—z) € X,

that is,
—;—(wl — :Uz) cX.

But by Equation (7.1),

L(zy ~ z5) € L.
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Figure 7.2, Proof of Minkowski’s theorem. Fxpand the original lattice (o) to
double the size (@) and form the quotient torus. By computing volumes, the
natural quotient map is not injective when restricted to the given convex set.
From point 1 and 2 with the same image we may construct & non-zero lattice
point %(931 - 2a)-




142 7. Minkowski’s Theorem

Hence
0# Hzy —z2) € XN Ly

as required. O

The geometrical reasoning is illustrated in Figure 7.2. The decisive step
in the proof is that since T™ has smaller volume than X it is impossible to
squash X into T™ without overlap: the ancient platitude of quarts and pint
pots. That such olde-worlde wisdom becomes, in the hands of Minkowski, a
weapon of devastating power, was the wonder of the 19th century and a les-
son for the 20th. We will unleash this power at several crucial stages in the
forthcoming battle. (Note that our original Thespian metaphor has been
abandoned in favour of a military one, reinforcing the change of viewpoint
from that of the algebraic voyeur to that of the geometric participant.} As
a more immediate affirmation, we now give two traditional applications to
number theory: the ‘two-squares’ and ‘four-squares’ theorems.

7.2 The Two-Squares Theorem
We start by proving:

Theorem 7.2. If p is prime of the form 4k + 1 then p is @ sum of two
integer squares.

Proof: The multiplicative group G of the field Z,, is cyclic (Garling [28]
Corollary 1 to Theorem 12.3, p. 105; Stewart (71}, p. 171) and has order
p — 1 = 4k. Tt therefore contains an element u of order 4. Then v? = —
(mod p) since —1 is the only element of order 2 in G.

Let I C 2?2 be the lattice in R? consisting of all pairs (a,b) (a,b € Z)
guch that

b=ua (mod p).

This is a subgroup of Z? of index p (an easy verification left to the
reader) so the volume of a fundamental domain for L is p. By Minkowski’s
theorem any circle, centre the origin, of radius r, which has area

e > 4p

contains a non-zero point of L. This is the case for r? = 3p/2. So there
exists a point (a,b) € L, not the origin, for which

0#£a24+b% <r?=3p/2<2p.
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But modulo p we have
o2+ =a?2+4u%? =0.

Hence a”+b*, being a multiple of p strictly between 0 and 2p, must equal p.
O

The reader should draw the lattice I and the relevant circle in a few
cases (p = 5,13,17) and check that the relevant lattice point exists and
provides suitable a, b.

Theorem 7.2 goes back to Fermat, who stated it in a letter to Mersenne
in 1640, He sent a sketch proof to Pierre de Carcavi in 1659, Euler gave a
complete proof in 1754.

7.3 The Four-Squares Theorem
Refining this argument leads to another famous theorem:
Theorem 7.3. Every positive integer is a sum of four integer squares.

Proof: We prove the theorem for primes p, and then extend the result to
all integers. Now
2=1%+12+0? +0?
80 we may suppose p is odd. We claim that the congruence
w +v*+1=0 (mod p) |

has a solution u,v € Z. This is because u? takes exactly (p+ 1)/2 distinct
values as « runs through 0,... ,p— 1; and —1 — v? also takes on (p+1)/2
values: for the congruence to have no solution all these values, » + 1 in
total, will be distinct: then we have p + 1 < p which is absurd.

For such a choice of u, v consider the lattice L C Z* consisting of
(a,b,c,d) such that

c=ua-tvh, d=ub-wva (modp).

Then L has index p* in Z* (another easy computation) so the volume of a
fundamental domain is p?. Now a 4-dimensional sphere, centre the origin,
radius r, has volume

74 /2

and we choose r to make this greater than 16p?; say r? = 1.9p.
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Then there exists a lattice point 0 # (a, b, ¢, d) in this 4-sphere, and so
O#£a®+02 4+ +d% <r®=19p < 2p

Modulo p, it is easy to verify that o® + b + ¢? + d% = 0, hence as before

must equal p.
To deal with an arbitrary integer n, it suffices to factorize n into primes

and then use the identity
(a® + 0+ + &) (A% + B* + % + D)

= (aA — bB — ¢C — dD)? + (aB + bA + eD — dC)?

+(aC — bD) + cA + dB)? + (aD + bC — cB + dA)*.
|

Theorem 7.3 also goes back to Fermat. Euler spent 40 years trying to
prove it, and Lagrange succeeded in 1770.

7.4 Exercises

1. Which of the following solids are convex? Sphere, pyramid, icosahe-
dron, cube, torus, ellipsoid, parallelepiped.

2. How many different convex solids can be made by joini’ng n unit cubes
face to face, so that their vertices coincide, for n = 1,2,3,4,5,6;
counting two solids as different if and only if they cannot. be mapped
to each other by rigid motions? What is the result for general n?

. Verify the two-squares theorem on all primes less than 200,
Verify the four-squares theorem on all integers less than 100.

Prove that not every integer is a sum of three squares,

. Prove that the number u(n) of pairs of integers (z,y) with 2> +¢* < n
satisfies pu{n)/n — 7 as n — oo.

8

Geometric Representation of
Algebraic Numbers

The purpose of this chapter is to develop a method of embedding a number
fleld K in a real vector space of dimension equal to the degree of K, in such
a way that ideals in K map to lattices in this vector space. This opens the
way to applications of Minkowski’s theorem. The embedding is defined in
terms of the monomorphisms K — C, and we have to distinguish between
those which map K into R and those which do not.

8.1 The Space L*

Let K = Q{f) be a number field of degree n, where # is an algebraic integer.
Let 01,... ,05 be the set of all monomorphisms K — C (see Theorem 2.4).
If 0;(K) € R, which happens if and only if 0;(f) € R, we say that o, is
real; otherwise o; is complez. As usual denote complex conjugation by bars
and define

gi(a) = a;(a).

Since complex conjugation is an automorphism of C it follows that &, is a
monomorphism_ K — C, so equals o; for some j. Now o; = &; if and only if
o; is real, and &; = oy, 50 the complex monomorphisms come in conjugate

pairs. Hence
n=s+2t




