Quadratic and
Cyclotomic Fields

In this chapter we investigate two special cases of number fields in the
light of our previous work, The quadratic fields are those of degree 2, and
are especially important in the study of quadratic forms. The cyclotomic
fields are generated by pth roots of unity, and we consider only the case
p prime; it is these which are central to Kummer’s approach to Fermat’s
Last Theorem and play a substantial role in all subsequent work, including
Wiles’s proof. We shall return to both types of field at later stages. For
the moment we content ourselves with finding the rings of integers, integral
bases, and digcriminants.

3.1 Quadratic Fields

A quadratic field is a number field K of degree 2 over Q. Then K = Q(6)
where f is an algebraic integer, and @ is a zero of

2 +tat+d  (a,bcZ).
Thus

—a £ +/(a? — 4b)
0= 5 .
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Let @® — 4b = r*d where r,d € Z and d is squarefree. (That this is always
possible follows from prime factorization in Z.) Then

—a+rvd

g = 5

and so Q(f#) = Q(+v/d). Hence we have proved;

Proposition 3.1. The quadratic fields are precisely those of the form Q(\/_
for d a squarefree rational integer.

Next we determine the ring of integers of Q(v/d), for squarefree d. The
answer, it turns out, depends on the arithmetic properties of d.

Theorem 3.2. Let d be a squarefree rational integer. Then the infegers of

Q(vd) are:

(a) Z[vd] if d £ 1 (mod 4),
(b) Z[2 + 4+/d] if d =1 (mod 4).

Proof: Every element o € Q(v/d) is of the form & = r + s+/d for r,s € Q.
Hence we may write

__a+b\/c_i

[

where a,b,¢c € Z, ¢ > 0, and no prime divides all of a,b,¢. Now « is an
integer if and only if the coeflicients of the minimum polynomial

(- (=) (- (=)

are integers. Thus

a? — bd

2 € Z, (3.1)

2—“ €Z. (3.2)

If ¢ and o have a common prime factor p then (3.1) implies that p divides
b (since d is squarefree) which contradicts our previous assumption. Hence
from (3.2) we have ¢ = 1 or 2. If ¢ = 1 then « is an integer of K in any
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cage, 0 we may concentrate on the case ¢ = 2. Now a and b must both be
odd, and (a? — b%d)/4 ¢ Z. Hence

o —b*d=0 (mod 4).

Now an odd number 2k + 1 has square 4k? + 4k + 1 = 1 (mod 4), hence
¢® =1 =1 (mod 4), and this implies d = 1 (mod 4). Conversely, if d = 1
(mod 4) then for odd a, b we have o an integer because (3.1) and (3.2)
hold.

To sum up: if d = 1 (mod 4) then ¢ = 1 and so (a) holds; whereas if
d = 1 (mod 4) we can also have ¢ = 2 and e, b odd, whence easily (b)
holds. O

The monomorphisms K — C are given by

al(r+3\/a) = r+svd,
oa(r+8vd) = r—sVd.

Hence we can compute discriminants:

Theorem 3.3. (a) If d 1 (mod 4) then Q(v4d) has an integral basis of
the form {1,v/d} and discriminant 4d. (b) If d = 1 (mod 4) then Q(vd)
has an integral basis of the form {1, ; + 1\/_ d} and discriminont d.

Proof: The assertions regarding bases are clear from Theorem 3.2. Com-
puting discriminants we work out:

2

141 2
il - e D

Since the discriminants of isomorphic fields are equal, it follows that for
distinct squarefree d the fields Q(+v/d) are not isomorphic. This completes
the classification of quadratic fields.

A special case, of historical interest as the first number field to be
studied as such, is the Gaussian field Q(v/—1). Since ~1 # 1 (mod 4) the
ring of integers is Z[+/—1| (known as the ring of Gaussian integers) and the
discriminant is —4.

Incidentally, these results show that Theorem 2.17 is not always ap-
plicable: an integral basis can have a discriminant which is not squarefree,
For instance, the Gaussian integers themselves.
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For future reference we note the norms and traces:

N(r+svd) = v2—ds?
T(r+sVd) = 2

We also note some useful terminology. A quadratic field Q(v/d) is said to
be real if d is positive, imaginery i 4 iz negative. (A real quadratic field
contains only real numbers, an imaginary quadratic field contains proper
complex numbers ag well.)

3.2 Cyclotomic Fields

A cyclotomic field is one of the form Q(¢) where ¢ = ™/ is a primitive
complex mth root of unity. (The name means ‘circle-cuiting” and refers
to the equal spacing of powers of { around the unit circle in the complex
plane.) We shall consider only the case m = p, a prime number. Further,
if p =2 then { = —1 so that Q({) = Q, hence we ignore this case and
assume p odd.

lLemma 3.4, The minimum polynomial of { = e*™/P, p an odd prime, over

Q) is
F@) =P 1P 24 41
The degree of Q(¢) isp— 1.

Proof: We have
-1
) =5—
Since ¢ —1 5 0 and {7 = 1 it follows that f(¢{) = 0, so all we need prove is
that f is irreducible. This we do by a standard piece of trickery. We have

f(t+1):wgi(z>)trml_

r
£ r=1

Now the binomial coefficient (%) is divisible by p if 1 < 7 < p -1, and
(1) = p is not divisible by p?.
Hence by Eisenstein’s criterion (Theorem 1.8) f(t + 1} is irreducible.

Therefore f(t) is irreducible, and is the minimum polynomial of {. Since
8f =p—1 we have [Q({) : Q] = p — 1 by Theorem 1.11. 0
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The powers ¢,(%,...,¢{?? are also pth roots of unity, not equal to 1,
and so by the same argument have f(f) as minimum polynomial. Clearly
FO) == —-¢)... =) (3.3}

and thus the conjugates of ¢ are ¢,¢%,...,(P~%. This means that the
monomorphisms from Q(¢{) to C are given by

oi((y=¢ (1<i<p-1).

Because the minimum polynomial f() has degree p — 1, a basis for Q(¢)
over Qis 1,¢,...,¢P 2, so for a general element

a=a0+a1§+...+ap_2CP“2 (CLZ'EQ)
we have
ai(oo + ¢+ HapalP ) = a0 + ¢+ 4 ap o

From this formula the norm and trace may be calculated using the basic
definitions

p—1
N{a) = ]___[ oia),
i=1

p—1
T(a) = Zai(a).
i=1
In particular

NE) =¢-¢*...¢r

Now ¢ and ¢*(1 < i < p—1) are conjugates, so have the same norm, which
can be calculated by putting ¢ = 0 in (3.3) to give

N(Q) = N(KH = (-1
and since p is odd,
N¢) =1 (1<i<p-1) (3.4)
The trace of ¢* can be found by a similar argument. We have

T) =T =¢+¢+...4+¢7 1,
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and using the fact that
FO=14(+...+(1 =0

we find
T =-1 (L<iZp-1). (3.5)
For o € QQ we trivially have
N{a) = aP*
T(@) = (p—1)a.
Since ¢P = 1, we can use these formulas to extend (3.4) and (3.5) to
N({*)=1 forallseZ (3.6)

and

-1 if sZ 0 (mod p)

Ty = { p—1 if s =0 (mod p). (3.7)

For a general element of Q((), the trace is easily calculated:

T CJZ a,@-g*’) pZ—:T(a.,;q*)

i=0

i

1l

p—2
T(ao) + Y T(ai()

=1

p—2
(p — 1)a0 - Z [22]
1=0

i

and so

p—2 p—2
T (Z G.,;qi) = pag — Za,;. (38)
=0 i=1

The norm is more complicated in general, but a useful special case is

NG - ¢) = [[ (1)

i=1

which can be calculated by putting ¢ = 1 in (3.3) to obtain

o= (39)
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80
N{1-¢)=p. (3.10)

‘We can put these computations fo good use, first by showing that the
integers of Q{{) are what one naively might expect:

Theorem 3.5. The ring O of integers of Q(() is Z[(].

Proof: Suppose & = ag + a1 + ... + 6,—2¢?~? is an integer in Q(¢).
We must demonstrate that the rational numbers a; are actually rational

integers.
For 0 € k < p— 2 the element
al™* —af
is an integer, go its trace is a rational integer. But
T(ag™* - ()
T(agl ™+ ... +ax+...+ a,p_ggp*kfz —apl — ...~ apal*h)
= pap — (ag~+—...+a,p_2) - (—ao—...—ap_z)
pog.

Hence by, = pay is a rational integer.
Put A=1—¢(. Then

poe = b+ b+, +bpo(P?
= cptadt...+ep P2 (3.11)

where (substituting ¢ =1 — A and expanding)

o :pf(—w' ( ] )bj ¢z

=i

Since A =1 — ¢ we also have, symmetrically,

p—2 ' .
by = ;(—1)1 ( / ) ¢;. (3.12)

We claim that all ¢;, are divisible by p, Proceeding by induction, we may
assume this for all ¢; with ¢ < &k — 1, where 0 < k < p— 2. Since ¢y =
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bo+ ... +by_g = p(—T(a) + bo), we have pleg, so it is true for & = 0. Now
by (3.9)

p = 1:[(1—?)

p—1
= (- [Ja+¢+ + D
= M lk . (3.13)

where & € Z[¢] € 9. Consider (3.11) as a congruence modulo the ideal
{AFH1) of 9. By (3.13) we have

p=0  (mod (A1)

and go the left-hand side of (3.11), and the terms up to ce_1 A", vanish;
further the terms from Ck+1Ak-l-1 onwards are multiples of A*+! and also
vanish. There remains:

ceA® =0 (mod {AT1}).
This is equivalent to
CRA = L
for some py € ), from which we obtain
Crp = pA
Taking norms we get
& =N(e) = N(®N() = pN(p),
since N()\} = p by (3.10). Hence pic,’;_l, 0 plcy. Hence by induction pleg

for all &, and then (3.12) shows that p|b for all k. Therefore oy € Z for
all & and the theorem is proved. O

Now we can compute the discriminant.

Theorem 3.6. The discriminant of Q(C), where ¢ = €*™/? and p is an odd
prime, s

(1) 1/2 . 2,
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proof: By Theorem 3.5 an integral basis is {1,¢,... , (P72}, Hence by
Proposition 2.18 the discriminant is equal to

(_1)('9—1)(10—2)/2 -N(DF(¢))

with f(t) as above. Since p is odd the first factor reduces to (—1)®—1/2,
To. evaluate the second, we have

w1
£ = =
go that
GRS i G

Df(t) - (t . 1)2
whence

_ =g

D) = B

where A = 1 — { as before, Hence

N(p)N(¢)P~*

Nor) = M
G e
B P
= pp—z_ D

The case p = 3 deserves special mention, for Q({) has degree p—1 =2,
so it ig a quadratic field. Since

273 =1++-3
2

it is equal to Q(+/—3). As a check on our discriminant calculations:
Theorem 3.3 gives —3 (since —3 = 1 (mod 4)), and Theorem 3.6 gives
(-1)*/231 = —3 as well.

3.3 Exercises

1. Find integral bases and discriminants for:
(a) Q(V3)
(b) Q(v=7)
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() Q(V1I)
(4) Q(v-11)
(e) Q(VE)
() Q(v--6)

. Let K = Q(() where { = &?™/%, Calculate Ny (c) and Tk (a) for the

following values of a:

(1) €2 (i) ¢+ €7 (i) 1-+¢ 4+ ¢+ P+ ¢

. Let K = Q(¢) where ¢ = e2™¥/? for a rational prime p. In the ring of

integers Z[(¢], show that & € Z[({] is a unit if and only if Ng(a} = £ 1.

CIf ¢ = e2™/3 K = Q(C), prove that the norm of o € Z[¢] is of the

form §(a®+3b?) where @, b are rational integers which are either both
even or both odd. Using the result of Exercise 3, deduce that there
are precigely six units in Z[{] and find them all.

CIf ¢ = €275 K = Q((), prove that the norm of a € Z[(] is of the

form §(a?-56%) where a, b are rational integers. {(Hint: in calculating
N{a), first calculate o1(a)os(c) where o;(¢) = ¢*. Show that this is
of the form ¢+ r@ - s¢ where ¢, 7, s are rational integers, § = ¢ 4 ¢*,
¢ = (* 4 (3. In the same way, establish oz(a)os(a) = g + 56 + ré.)
Using Exercise 3, prove that Z{(] has an infinite number of units.

. Let ¢ = /5, For K = Q((), use the formula Ny (o + ) = (a® +

¥%)/(a + b} to calculate the following norms:
(1) Nx (¢ +2) (i) Nxe(¢ —2) (i) Nic(¢ + 3).
Using the fact that if of = «, then Ng{a)Ng(3) = Nx{v), deduce

that ¢ + 2, { — 2, ¢ + 3 have no proper factors (i.e. factors which are
not units) in Z[(].

Factorize 11, 31, 61 in Z[(].

. If ¢ = €™/% 39 in Exercise 6, calculate

() Nx (¢ +4) (it} Ng (¢ - 3).

Deduce that any proper factors of ¢ + 4 in Z[¢] have norm 5 or 41.
Given ¢ — 1 is a factor of { + 4, find another factor. Verify { — 3 isa
unit times (¢? +2)? in Z[¢].

. Show that the multiplicative group of non-zerc elements of Z; is

cyclic with generator the residue class of 3. If ¢ = ¢2"%/7, define the
monomorphism o : Q(¢) - C by ¢({} = {5 Show that all other
monomorphisms from Q(¢) to. C are of the form ¢*(1 <4 < 6) where
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10.

% = 1. For any o € Q((), define c(a) = ac?(a)o*{a), and -show
N{a) = ¢(a) - oc(a). Demonstrate that e(a) = o%c(a) = otc(a).
Using the relation 1+ ¢ + ...+ ¢% = 0, show that every element
a € Q) can be written umquely as zl_ a;(*(a; € Q). Deduce
that C((l’) = g6, + azfs where & = C + (2 -+ <4 Oy = Cs + C5 + Cs.
Show 8;+-8; = —1 and calculate 6:65. Verify that c{a} may be written
in the form bg - b ) where by, by € Q, and show ac(a) = by + b1 8.
Deduce

N(a) = b2 — byby + 203.
Now calculate N{¢ -+ 5¢8).

. Suppose p is a rational prime and ¢ = €2"¥/?, Given that the group

of non-zero elements of Z, is cyclic (see Appendix 1, Proposition 6
for a proof) show that there exists & monomorphism o : Q(¢) — C
such that ¢! is the identity and all monomorphisms from Q(¢)

to C are of the form ¢*(1 < i < p—1). If p—1 = kr, define

cx(a) = ac™()o¥ (o). .. c® (). Show
N(a) = ex(a) - oep(a@) ... o™ e (a).

Prove every element of Q(¢) is uniquely of the form > 2~ a,q,C and
by demonstrating that o"(cx(0)) = cx{a), deduce that cx(a) = bym +
..+ bpny, where

={+0"() + ™) +...+ T I()

and 7.1 = o).

Interpret these results in the case p = 5, & = r = 2, by showing
that the residue class of 2 is a generator of the multiplicative group
of non-zero elements of Zs. Demonstrate that ca{a) is of the form
bim +bana where iy = ¢ + (%, =2 + (3.

Calculate the norms of the following elements in Q{¢):

(i) ¢ +2¢2 (i) ¢+ ¢* (i) 15¢ + 15¢% (i) ¢+ + 3+ ¢

In Z[+/=5], prove 6 factorizes in two ways as

6=23=(1++v=5)(1—+v-5)

Verify that 2,3,1++/=5, 1 —+/=5 have no proper factors in Z[+/—5|.
{(Hint: Take norms and note that if  factorizes as v = a3, then
N(y} = N{a)N(8) is a factorization of rational integers.) Deduce
that it is possible in Z[v/—5] for 2 to have no proper factors, yet 2
divides a product «f without dividing either o or 8.




