1, Algebraic Background

. Let Z be a Z-module with the obvious action. Find all the submod-
ules.

. Let R be aring, and let M be a finitely generated R-module. Is it true 1 |

that M necessarily has only finitely many distinct R-submodules? If

not, is there an extra condition on R which will lead to this conclu-
sion?

. An abelian group G is said to be torsion-free if g € G, g 5 0 and

kg = 0 for k € Z implies ¥ = 0. Prove that a finitely generated ' Algebraic Numbers

torsion-free abelian group is a finitely generated free group.

. By examining the proof of Theorem 1.16 carefully, or by other means, i
prove that if H is a subgroup of a free group G of rank n then there
exists a basis uy,...,u, for & and a basis vy,... ,v, for H where
s <mand v; = a;u; (1 < i < s) where the a; are positive integers !
and a divides a1 (1 <4< s —1). |
In this chapter we introduce the algebraic numbers ag solutions of polyno-
: mial equations with integer coefficients. Among these numbers, the major
| players are the solutions of equations with integer coefficients whose lead-
b ing coeflicient is 1. These are the algebraic integers. We shall develop a
theory of factorization of algebraic integers, analogous to factorization of
whole numbers. In many ways the theories are alike, but in at least one es-
sential way—uniqueness of factorization—there are important differences.
I Factorization into irreducible elements depends on the ring in which the
] factorization is performed. In Z the number 5 is irreducible. The only
ways to write it as a product are trivial: multiply 45 and +1. However, in
Z[v/5] it can be written as the non-trivial product 5 = v/5 - +/B; moreover,
| it turns out that /5 cannot be further factorized in this ring, Thus 5 is
i irreducible in Z, yet reducible in Z[+/5].

: To clarify these issues it is therefore essential to specify in which ring
the factorization is to be carried out. The natural context is a ring of
i algebraic integers, contained in its associated algebraic number field. We
begin with algebraic number fields that obey a finiteness condition: they
are finite-dimensional as vector spaces over the rationals. It will follow that
such a field is of the form Q[f] for a single algebraic number 8.

i We introduce the conjugates of an algebraic number and the discrim-
inant of a basis for Q[f] over Q, using the conjugates of # to show that
the discriminant is always a non-zero rational number. Algebraic integers
are defined and shown to form a ring. The ring of algebraic integers in a
number field is shown to have an integral basis whose discriminant is an
integer, This integer is independent of the choice of integral basis and is
called the discriminant of the number field.
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Finally, we introduce the norm and trace of an algebraic number, which
prove to be ordinary integers when the algebraic number is an algebraie
integer. Using the norm and trace in later chapters we ghall be able to
translate statements about algebraic integers into statements about ordi-
nary integers which are easier to handle.

2.1 Algebraic Numbers

A complex number o will be called algebraic if it is algebraic over Q,
that is, it satisfies a non-zero polynomial equation with coefficients in Q.
Equivalently (clearing out denominators) we may assume the coefficients
to be in Z. We let A denote the set of algebraic numbers. In fact A is a
field, by virtue of:

Theorem 2.1. The set A of algebraic numbers is a subfield of the complex
field C.

Proof: We use Theorem 1.11, which in this case says that « is algebraic
if and only if [Q(c) ; Q] is finite. Suppose that «, f are algebraic. Then

Qe,8): Q= [Qe 8): Q)] [Q(e) : Q]

Now since 3 is algebraic over Q it is certainly algebraic over Q(c), so the
first factor on the right is finite; and the second factor is also finite. Hence
[Q(ev, B) : Q) is finite. But each of a+ 3, @ - 3, af, and {for B #0) o/f8
belongs to Q(c, 8). So all of these are in A, and the theorem is proved. [l

The whole field A is not as interesting, for us, as certain of its subfields.
We define a number field to be a subfield X of C such that [K : Q] is finite.
This implies that every element of K is algebraic, and hence K CA.
The trouble with A is that [A : Q] is not finite (see Chapter 1, Exercise
7, or Stewart [71], Exercise 4.8, p. 55). If K is a number field then K =
Q(ai, . . . , &) for finitely many algebraic numbers o, ... , G (for instance,
a basis for K as vector space over Q). We can strengthen this observation
considerably:

Theorem 2.2. If K is a number field then K = Q(8) for some algebraic
number 6.

Proof: Arguing by induction, it is sufficient to prove that if K = K3 {e, B)
then K = K1(8) for some 6, {where K, is a sub-field of K). Let p and
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g respectively be the minimum polynomials of o, 8 over K, and suppose
that over C these factorize as

p(t) = {t-a)...(t o),
q(t) = (- B1)... (¢ Bm),

where we choose the numbering so that oy = «, 8; = §. By Cerollary 1.6
the ¢ are distinct, as are the 8;. Hence for each ¢ and each k # 1 there is
at most one element & € KA, such that

o + 20k = oy + 2.

Since there are only finitely many such equations, we may choose ¢ 5 (0 in
K, not equal to any of these x's, and then

o+l # aq +chy

for 1 <i<n, 2<k<m. Define
9 =a+cs.

We shall prove that Ky(8) = Ky (e, ). Obviously K1(8) C K;i{a,3), and
it suffices to prove that g € K, (f) since & =8 — ¢f.
Now

p(0 — cB) = pla) = 0.
We define the polynomial
r(t) = p(6 —ct) € K1 (O)[t]

and then 3 is a zero of both ¢(¢) and r(t) as polynomials over K1(#). Now
these polynomials have only one common zero, for if ¢{¢) = r(£) = 0 then
Lisoneof #,...,08,, and also # —¢f is one of avy,... , . Our choice of ¢
forces £ = 3. Let h(t) be the minimum polynomial of 3 over K;(@). Then
h(t) | g(t) and h(¢) | r(¢). Since g and r have just one common zero in C
we must have h = 1, so that

R(t)=t+p

for p € K1(9). Now 0 = h(8) = 3+ u so that 8 = —u € K1 (f) as required.
d
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Example 2.3. Q(+/2, ¥/5).

We have
a4 = \/51 &g = *’\/‘E,

= %7/32 :w%}ﬁS :wz%

where
w=3-1++v-3)

is a complex cube root of 1. The number ¢ = 1 satisfies

oy + By # oo

for i = 1,2, k = 2,3; since the number on the left is not real in any of the
four cases, whereas that on the right is. Hence Q(f 2,5 5) = (\/_ + 5 5).

The expression of K as Q(8) is, of course, not unique; for Qf) =
Q-0 =Q(8+1)=... etc.

2.2 Conjugates and Discriminants

If K = Q(f) is a number field there will, in general, be several distinct
monomorphisms ¢ : K — C. For instance, if K = Q(i) where ¢ = +/—1
then we have the possibilities

oz +iy) = z+iy,
ooz +iy) = Ty,

for 2,y € Q. The full set of such monomorphisms will play a fundamental
part in the theory, so we begin with a description.

Theorem 2.4. Let K = Q(6) be a number field of degree n over Q. Then
there are exactly n distinct monomorphisms o; : K — C (i = 1,...,n).
The elements o;(8) = 6; are the distinct zeros in C of the m?:m'mum poly-
nomicl of 8 over Q.

Proof: Let 0y,... 0, be the (by Corollary 1.3 distinct) zeros of the mini-
mum polynomial p of 0. Then each #; also has minimum polynomial p (it
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must divide p, and p is irreducible) and so there is a unigue field isomor-
phism o; : Q(f) = Q(#;) such that o;(6) = 6;. In fact, if « € Q(f) then
o = r(8) for a unique r € Q[f] with 8r < n; and we must have

T (CE) = 'n‘"(&;).

(See Garling [28] Corallary 2 to Theorem 7.4, p. 66; Stewart [71], Theorem
3.8, p. 43.) Conversely if ¢ : K —» C is a monomorphism then o is the
identity on Q). Then we have

= a(p(f)) = p(c(9))

so that o{@) is one of the 8;, hence ¢ is one of the o;. 0

Keep this notation, and for each a € X = Q(#) define the field polyno-
mial of o over K to be

folt) = H(t — (o).

As it stands, this is in K[¢]. In fact more is true:

Theorem 2.5. The coefficients of the field polynomial are rational numbers,
so0 that f.(f) € Q]

Proof: We have o = r(9) for r € Q[t], r < n. Now the field polynomial
takes the form

= H(t —r{8))

where the &; run through all zeros of the mininowm. polynomial p of &, whose
coefficients are in Q. It is easy to see that the coefficients of f,(t) are of
the form

h(B1,... ,8,)

where h(t1,...,t,) is a symmetric polynomial in Q[t1,... ,#,]. By Corol-
lary 1.14 the result follows. O

The elements o;(c), for £ = 1,... ,n, are called the K-conjugates of a.
Although the ¢; are distinct (and are the K-conjugates of #) it is not always
the case that the K-conjugates of « are distinct: for instance a;(1) = 1 for
all i. The precise situation is given by:
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Theorem 2.6. With the above notation,
(a) The field polynomial f, is a power of the minimum polynomial p,,
(b) The K -conjugates of o are the zeros of po in C, each repeated n/m
times where m = Op, 18 a divisor of n, '
(c) The element o € Q if and only if oll of its K-conjugates ore equal,
/d) Qla) = Q(0) if and only if all K -conjugates of o are distinct.

Proof: The main point is {(a). Now ¢ = p, i8 irreducible, and a is a
zero of f = fu, so that f = ¢*h where g and h are coprime and both are
monic. (This follows from factorizing f into irreducibles.) We claim that A
is constant. If not, some o; = o3{) = r(8;) is a zero of h, where a = r(#).
Hence if g(t) = h(r(£)) then g(6;) = 0. Let p be the minimum polynomial
of § over Q, and hence also of each 6;. Then p|g, so that g(f;) = 0 for all
4, and in particular g(6) = 0. Therefore, h{c} = h{r(#)) = g(#) = 0 and so0
g divides h, a contradiction. Hence h is constant and monic, so 2 =1 and
f=q.

(b} is an immediate consequence of (a) on referring to the definition of
the field polynomial.

To prove (c), it is clear that o € Q implies ;(c) € Q. Conversely if all
o;(a) are equal then, since the zeros of ¢ = p. are distinet and f, = ¢°,
then 8¢ =1 and so o € Q.

Finally for (d): if all o;(ca) are distinct then dp, = n, and hence
[Q(e): Q] =n =[Q(#):Q]. This implies that Q(a) = Q(¢). Conversely if
Q(a) = Q(f) then dp, = n and so the o;{c) are distinct. O

Warning, Note that the K-conjugates of o need not be elements of K.
Even the #; need not be elements of K. For example, let 8 be the real cube
root of 2. Then Q(@) is a subfield of R. The K-conjugates of 8, however,
are 8, wh, w26, where w = (—1++/—3). The last two of these are nonreal,
hence do not lie in Q(8).

Still with K = Q(#) of degree n, let {as,... ,an} be a basis of K (as
vector space over Q). We define the discriminant of this basis to be

A [OJ]_, A ,an] = {det{ai(aj)}}z. (21)

If we pick another basis {81,...,0n} then

L)

Oy = Zcikaz‘

i=1

(ciw € Q)

fork=1,...,n,and

det(cvék) = (.
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The product formula for determinants, and the fact that the @ are MONomor-
phisms (and hence the identity on Q) shows that

A[ﬁl, Bl = [det(cik)]zA[al, coe 0]

Theorem 2.7. The discriminant of any basis for K = Q(6) is rational and
non-zero. If oll K-conjugates of & are real then the discriminant of any
basis 18 posgitive.

Proof: First we pick a basis with which we can compute: the obvious one
is {1,8,...,0""'}. If the conjugates of @ are 64,... ,0, then
AL, 8,...,60" 1 = (det 67)2,

A determinant of the form D = det(tf ) is called a Vandermonde determi-
nant, and has value

D= [ -t (2.2)

1€i<j<n
To see this, think of everything as lying inside Q[t,...,¢,]. Then for
t; = t; the determinant has two equal rows, so vanishes. Hence D is

divisible by each (t; — ;). To avoid repeating such a factor twice we take
4 < §. Then comparison of degrees eagily shows that I} has no other non-
constant factors; comparing coeflicients of #;43 .. .7 gives 2.2.

Hence

A= ALS,... 6 = [ — o)1

Now D is antisymmetric in the #;, so that D? is symmetric. Hence by the
usual argument on symmetric polynomials (Corollary 1.14), A is rational.
Since the 8; are distinct, A £ 0,

Now let {31,...,8n} be any basis. Then

A[ﬂli e th] = (det Ctk)zA

for certain rational numbers ¢, and det(ci) # 0 so that

AlBr, ... Ba] # 0,

and is rational. Clearly if all 8; are real then A is a positive real number,
hence so is A[84,..., 8] O

With the above notation, A vanishes if and only if some 6; is equal to
another ;. Hence the non-vanishing of A allows us to ‘discriminate’ the
6;, which motivates calling A the discriminant.
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2.3 Algebraic Integers

A complex number & is an algebroic integer if there is a monic polynomial
p(t) with integer coefficients such that p(¢) = 0. In other words,

0" 4 @18 4 .. +ag=0

where a; € Z for all 4.

For example, 8§ = /=2 is an algebraic integer, since FPL2=0T=
(1 + +/5) is an algebraic integer, since 72 -7 —1=10. But ¢ = 22/7
is not. It satisfies equations like 7¢p — 22 = 0, but this is not monic; or
like ¢ - 22/7 = 0, whose coefficients are not integers; but it can be shown
without difficulty that ¢ does not satisfy any monic polynomial equation
with integer coefficients.

We write B for the set of algebraic integers. One of our aims is to prove
that B is a subring of A. We prepare for this by proving:

Lemma 2.8. A complez number @ is an algebraic integer if and only if the
additive group generated by all powers 1,8,8%,... is finitely generated.

Proof: If ¢ is an algebraic integer, then for some n we have

0" + Q16 4.+ ag=0 (2.3)

where the a; € Z. We claim that every power of & lies in the additive
group generated by 1,4,... ,0m~1, Call this group [. Then (2.3) shows
that 87 € I'. Inductively, if m > n and 6™ € T' then

9m+1 — 9m+1—n9n — 6m+1—n(_aﬂ_19n—l — = ﬂO) cT.

This proves that every power of 8 lies in T', which gives one implication.

For the converse, suppose that every power of @ lies in a finitely gen-
erated additive group G. The subgroup I’ of G generated by the powers
1,6,62,...,6™ must also be finitely generated (Proposition 1.19), so we
will suppose that T’ has generators vy,... ,¥n. Each v; is a polynomial in
6 with integer coefficients, so fv; is also such a polynomial. Hence there
exist integers b;; such that

n
91‘),; = Z b,;j'uj.
=1
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This leads to & system of homogeneous équa,tions for the v; of the form

(b11 — Aoy +bigva + ... + bty = 0
ba1vr + (baz — O)vg + ... + bopvy, = 0
bn-l'l)l + bﬂgﬂg + ...+ (bnn -— 9)'0” = 0.
Since there exists a solution v4, ... ,v, € C, not all zero, it follows that the
determinant
611—9 512 (R bln
bay boo — 80 ... bay,
bﬂl bﬂ2 P bnn — 9

is zero. Expanding this, we see that @ satisfies a monic polynomial equation
with integer coefficidnts. 0O

Theorem 2.9, The algebroic integers form a subring of the field of algebraic
numbers.

Proof: Let #,¢ € B. We have to show that ¢+ 8 and 8¢ € B. By Lemma
2.8 all powers of # lie in a finitely generated additive subgroup L' of C, and
all powers of ¢ lie in a finitely generated additive subgroup I'y. But now
a,}l powers of ¢ 4+ ¢ and of #¢ are integer linear combinations of elements
#'¢? which lie in T'yI'y € C. But if I'p has generators vy,...,v, and I'y
has generators wi,... , Wy, then I'sI’y is the additive group generated by
all vaw; for 1 <4 < n, 1 < j < m. Hence all powers of f + ¢ and of ¢ lie
in & finitely generated additive subgroup of C, so by Lemma 2.8 # + ¢ and
B¢ are algebraic integers. Hence B is a subring of A. {1

A simple extension of this technique allows us to prove the following
useful theorem.

Theorem 2.10. Let @ be a complex number satisfying o monic polynomial

equation whose coefficients are algebraic integers. Then 0 is an algebraic
integer.

Proof: Suppose that
0" + 4y 10" =0

where 1g,... ,9¥-1 € B. Then these generate a subring ¥ of B. The
argument of Lemma 2.8 shows that all powers of @ lie inside a finitely
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generated T-submodule M of C, spanned by 1,0,... ,0"=1, By Theorem
2.9, each ¥ and all its powers lie inside a finitely generated additive group
[; with generators y; {1 < § < ny). It follows that M lies inside the
additive group generated by all elements

k
’Ylj1 L ITTRER ,'Yn—l,jn_lg

(1< <n,0<i<n—1,0<k<n— 1), which is a finite set. So M is
finitely generated as an additive group, and the theorem follows. [l

Theorems 2.9 and 2.10 allow us to construct many new algebraic inte-
gers out of known ones. For instance, v/2 and /3 are clearly algebraic inte-
gers. Then Theorem 2.9 says that numbers such as V2 4+ /3, 79 — 41\/5,
(v2)5(1 + v/3)? are also algebraic integers. And Theorem 2.10 says that
zeros of polynomials such as

2% — (14 + V3)° + (V2)t° - 193

are algebraic integers. It would not be easy, particularly in the last instance,
to compute explicit polynomials over Z of which these algebraic integers are
zerog; although it can in principle be done by using symmetric polynomials.
In fact Theorems 2.9 and 2.10 can be proved this way.

For any number field K we write

9 =KnNB,

and call O the ring of integers of K. The symbol ‘O’ is a Gothic capital
O (for ‘order’, the old terminology). In cases where it is not immediately
clear which number field is involved, we write more explicitly Og. Since
K and B are subrings of C it follows that O is a subring of ¥. Further
ZCQCKandZCBsoZCD.

The following lemma is easy to prove:

Lemma 2.11. If o € K then for some non-zere ¢ € 2, we have ca € O.

Corollary 2.12. If K is a number field then K = Q(8) for an algebraic
integer O.

Proof: We have K = Q(¢) for an algebraic number ¢ by Theorem 2.2.
By Lemma 2.11, 6 = ¢¢ is an algebraic integer for some 0 # ¢ € Z. Clearly

Q(¢) = Q(8). O

Warning. For @ € C let us write Z[0] for the set of elements p(f), for
polynomials p € Z[t]. If K = Q(f) where € is an algebraic integer then
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certainly © contains Z[6] since £ is a ring containing 8. However, O need
not equal Z[d]. For example, Q{v/5) is a number field and +/5 an algebraic
integer. But

1++6
-2

is a zero of t — ¢ — 1, hence an algebraic integer; and it lies in Q(\/g) 80
belongs to O. It does not belong to Z[v/5].

There is a useful criterion, in terms of the minimum polynomial, for a
number to be an algebraic integer:

Lemma 2.13. An algebraic number « is an algebraic integer if and only if
its minimum polynomial over Q has coefficients in Z.

Proof: Let p be the minimum potynomial of a over Q, and recall that this
is monic and irreducible in Q[¢]. If p € Z[f] then « is an algebraic integer.
Conversely, if o is an algebraic integer then g{a) = 0 for some monic
g € Z[{], and plg. By Gauss’s Lemma 1.7 it follows that p € Z[t], because
some rational multiple Ap lies in Zt] and divides ¢, and the monicity of ¢
and p implies A =1, O

To avoid confusion as to the usage of the word ‘integer’ we adopt the
following convention: a rationael integer is an element of Z, and a plain
integer is an algebraic integer. (The aim is to reserve the shorter term
for the concept most often encountered.) Any remaining possibility of
confusion is eliminated by:

Lemma Z.14. An algebraic integer is o rational number if and only if it is
o rationol integer. Bquivalently, BN Q = Z.

Proof: Clearly Z CBNQ. Let &« € BN Q; since o € Q its minimum
polynomial over @ is t — «. By Lemma 2.13 the coefficients of this are in
Z, hence —a € Z, hence o € Z. O

2.4 Intcgral Bases

Let K be a number field of degree n (over Q). A basis (or Q-basis for
emphasis) of K is a basis for K as a vector space over Q. By Corollary
2.11 we have K = Q(f) where & is an algebraic integer, and it follows that
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the minimum polynomial p of ¢ has degree n and that {1,6,...,6" '} is
a basis for K.

The ring £ of integers of K is an abelian group under a,ddltlon A
Z-basis for (O, + ) is called an integral basis for K (or for O). Thus
{an,. .. @, } is an integral basis if and only if all o; € O and every element
of £ is uniquely expressible in the form

ajoy + ... agQy

for rational integers @i,...,@s. It is obvious from liemma 2.11 that any
integral basis for K is a Q-basis. Hence in particular s = n. But we have
to verify that integral bases exist. In fact they do, but they are not always
what naively we might expect them to be.

For instance we can assert that K = Q[f] (= Q(#)) for an algebraic
integer € (Corollary 2.12), so that {1,4,... ,8" 1} is a Q-basis for K which
consists of integers, but it does not follow that {1,6,... ,6™ '} is an integral
basis. Some of the elements in Q@] with rational coefﬁcwnts may also be
integers. As a,n example, consider K = Q(+/5). We have seen that the
element 1 b satisfies the equation

2 —t+1=0

and so is an integer in Q(\/g), but it is not an element of Z[\/gl

Qur first problem, therefore, is to show that integral bases exist. That
they do is equivalent to the statement that (9, + ) is a free abelian group
of rank n. To prove this we first establish:

Lemma 2.15. If {ay, ... ,an} is o basis of K consisting of integers, then
the discriminant Aloa, ... ,am] is o rational integer, not equal to zero.

Proof: We know that A = Afay,... ,ay] is rational by Theorem 2.7, and
it is an integer since the oy are. Hence by Lemma 2.14 it is a rational
integer. By Theorem 2.7, A # 0. O

Theorem 2.16, Every number field K possesses an integral basis, and the
additive group of O is free abelian of rank n equal to the degree of K.

Proof: We have K = Q(6) for 6 an integer. Hence there exist bases for K
consisting of integers: for example {1,6,...,6" '}. We have already seen
that such Q-bases need not be integral bases, However, the discriminant of
a Q-basis consisting of integers is always a rational integer {Lemma 2.15),
8o what we do is to select a basis {w1,... ,wn} of integers for which

|ALwr, .. 5wl
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is least. We claim that this is in fact an integral basis. If not, there is an
integer w of K such that

W=a1w +...+ apwy,

for a; € Q, not all in Z. Choose the numbering so that a; ¢ Z. Then
ay =a+r where ¢ € Z and 0 < r < 1. Define

Y1 =w — awy, Wi = wy (i=2...,n)

Then {¢1,... ,%,} is a basis consisting of integers. The determinant rele-
vant to the change of basis from the w’s to the ¥’ is

a1 —a Qg [0%:3 (2179
0 1 0 ... 0
0 0 1 0 =r,
0 0 0 RV |

and so

A[’lpl, s a¢n] = TZA[wl, e ,wn].

Since 0 < r < 1 this contradicts the choice of {w1,...,w,} making
|Alwi, ... yton]| minimal.

It follows that {w1,... ,wn} is an integral basis, and so (£, -+ } is free
abelian of rank n. D

This raises the question of finding integral bases in cases such as Q(+/5)
where the Q-basis {1,/5} is not an integral basis. We shall consider a more
general case in the next chapter, but this particular example is worth a brief
discussion here.

An element of Q(+/5) is of the form p + gv/5 for p,g € Q, and has
minimum polynomial

(t—p—qVB)(t —p+qVh) =t* — 2pt + (p* — 5¢?).

Then p + q+/5 is an integer if and only if the coefficients 2p, p* — 5¢° are
rational 1ntegers Thus p = —P where P is a rational integer. For P even,
we have p? a rational 1nteger s0 8g? is a rational integer also, implying g
is a rational integer. For P odd, a straightforward calculation (performed
in the next chapter in greater generality) shows g = %Q where () is also an
odd rational integer.

From this it follows that O = Z[} + 14/5] and an integral basis is

1+ LB}
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We can prove this by another route using the discriminant. The two
monomorphisms Q(v/5) — C are given by

o(p+qv5) = p+aqvh,
aolp+qvh) = p—qvh.

Hence the discriminant A[l, % + %\/5] is given by

2
&1 -é—-‘r%\/g —5
1 1 —

1 1-1y5

We define a rational integer to be squarefree if it is not divisible by the
square of a prime. For example, 5 is squarefree, as are 6, 7, but not 8 or 9,
Given a Q-basis of K consisting of integers, we compute the discriminant
and then we have: -

Theorem 2.17. Suppose oy, ..., @, € O form o Q-basis for K. If
Alay,. .. ,an) is squarefree then {ay,... ,an} is an integral basis.

Proof: Let {f1,...,8.} be an integral basts. Then there exist rational
integers ¢;; such that oy = Xei30;, and

A[Ch, cee s 0] = (det C“;j)zA[ﬂ]_, . : Bl

Since the left-hand side is squarefree, we must have det ¢;; = =1, so that
(ci;) is unimodular, Hence by Lemma 1.15 {a,... a0} is a Z-basis for
9, that is, an integral basis for K. O

For example, the Q-basis {1,-;— + %\/5} for Q(+/5) consists of integers
and has discriminant 5 (calculated above). Since 5 is squarefree, this is an
integral basis. The reader should note that there exist integral bases whose
discriminants are not squarefree (as we shall see later on}, so the converse
of Theorem 2.17 is false.

For two integral bases {a1,... ,&n}, {B1,... ,On} of an algebraic num-
ber field K, we have

Alay,... ,an] = E1D2AB, ..., 8] = AlB1,- .., Bal,

because the matrix corresponding to the change of basis is unimodular.
Hence the diseriminant of an integral basis is independent of which integral
basis we choose. This common value is called the discriminant of K (or
of O). It is always a non-zero rational integer. Obviously, isomorphic
mumber fields have the same discriminant. The important role played by
the discriminant will become apparent as the drama’ unfolds.
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2.5 Norms and Traces

These important concepts often allow us to transform a problem about
algebraic integers into one about rational integers. As usual, let K = Q(6)
be a number field of degree n and let oy,... ,0, be the monomorphisms
K — C. Now the field polynomial is a power of the minimum polynomial
by Theorem 2.6(a), so by Lemma 2.13 and Gauss’s Lemma 1.7 it follows
that o € K is an integer if and only if the field polynomial has rational
integer coeflicients. For any a € K we define the norm

x(a) = Hoi(a)
i=1
and irace
Trla)= ia‘i(a).
i=1

Where the field K is clear from the context, we will abbreviate the norm
and trace of & to N{«) and T{c) respectively.
Since the field polynomial is

fa(t) =[]t - 0s(a))

=1

it follows from the remark above that if « is an integer then the norm and
trace of a are rationae! integers. Since the o; are monomorphisms it is clear
that

N(af) = N{a)N(3) (24)
and if o # 0 then N{a) # 0. If p, ¢ are rational numbers then
T(pa + ¢8) = pT(a) + ¢T(8). (2.5)

For instance, if K = Q(+/7) then the integers of K are given by © =
Z[/7] (as we shall see in Theorem 3.2). The maps o; are given by

aip+gvT) = p+eVT,
oa(@+avT) = p—gVT.
Hence

N(p+av7) = p*-7¢,
Tp+gv7) = 2p.
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Since norms are not too hard to compute (they can always be found
from symmetric polynomial considerations, often with short-cuts) whereas
discriminants involve complicated work with determinants, the following
result is sometimes useful:

Proposition 2.18. Let K = Q(#) be a number field where 0 has minimum
polynomial p of degree n. The Q-basis {1,0, ..., 6"~1Y has discriminant

AlL,... 07 = ()" N2N(Dp(9))
where Dp 4s the formal derivative of p.
Proof: From the proof of Theorem 2.7 we obtain
A=ALS...,0" = J[ @-9)

1<i<i<n
where @4,... , 0, are the conjugates of §. Now
n
p(t) = J¢ - &)
=1

so that

Dp(t) = 3_[[¢t - )
j=1i=1

i=1
3

and therefore
n

Dp(0;) = [[ (65 — 6)-
i=1
i#i

Multiplying all these equations for j =1,... ,n we obtain

n n
[T o265 = T @ -6
j=1 %=1
i
The left-hand side is N(Dp(8)). On the right, each factor (§; — ;) for ¢ < j
appears twice, once as (8; —8;) and once as (8; —0;). The product of these
two factors is —(#; —8,)?. On multiplying up, we get A multiplied by (—1)*
where g is the number of pairs (4, §) with 1 <17 < § < n, which is given by
8= 1in(n—1).

The result follows. O
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We close this chapter by noting the following simple identity linking the
discriminant and trace:

Proposition 2.19. If {en,... ,an} 45 any Q-basis of K, then
Aloy, ... o] = det(T{agay)).

Proof: T(wiay) =3, ov(ogay) = Y, ov(as)or(ay). Hence
Aloa,... om] = {det{oi(e;)))?

(det(a; (o)) (det{oi(e;)))

= de( 0 (a)onle)

det(TTz(;e:Oﬂj))- a

Il

2.6 Rings of Integers

We now discuss how to find the ring of integers of a given number field.
With the methods available to us, this involves moderately heavy calcu-
lation; but by taking advantage of short cuts the technique can be made
reasonably efficient. In particular we show in Example 2.3 below that not
every number field has an integral basis of the form {1,9,...,6" 1},

The method is based on the following result:

Theorem 2.20. Let G be an additive subgroup of O of rank equal to the de-
gree of K, with Z-basis {c,... ,an}. Then |5:J/G|2 divides Aoy, ... o).

Proof: By Theorem 1.16 there exists a Z-basis for O of the form {3;,... ,8,}
such that & has a Z-basis {u161,... , B} for suitable y; € Z. Now

Alaz, e o] = Alpafi, ..oy i)

since by Lemma 1.15 a basis-change has a unimodular matrix; and the
right-hand side is equal to

(g1 i) AlBr, ooy Ba) = (1. ) A

where A is the discriminant of K and so lies in Z. But

1+ pin| = [D/G.




