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Since norms are not too hard to compute (they can always be found
from symmetric polynomial considerations, often Wit]f{ short-cuts) wher?aas
discriminants involve complicated work with determinants, the following
result is sometimes useful: -

Proposition 2.18. Let K = Q(0) be a number field where hqs min?mum
polynomial p of degree n. The Q-basis {1,0, ..., 0"=1} has discriminant

AL, .., 074 = (1™~ D/2N(Dp(6))
where Dp is the formal derivative of'p.
Proof: From the proof of Theorem 2.7 we obtain
A=ARLYG...,00 = ] -6,

1<i<j<n
where 81,... , &, are the conjugates of §. Now
™
p(t) =[] 6
i=1
go that
n T
Dp(t) =3 [[¢t— )
j=14=1
L]

and therefore

Dp(8;) = ﬁ(ﬁ’j —0;).

i=1
1555

Multiplying all these equations for = 1,... ,n we obtain

[IDe(6;) = I @i - 60).
= £

The left-hand side is N(Dp(8)). On the right, each factor (8; —6;) for i < j

appears twice, once as (f; —0;) and once as {#; —6;). The p]:.‘O(.luCt of f,h(lasg

two factors is —(f; —6;)%. On multiplying up, we get A multlpheld b‘y (—1)

where s is the number of pairs (7, j) with 1 < ¢ < j < n, which is given by
s=in(n—1).

The result follows. g
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We close this chapter by noting the following simple identity linking the
discriminant and trace:

Proposition 2.19. If {on,... 0} is any Q-basis of K, then

Alay,... ,0n] = det(T(euay)).

Proof: T{ogay) = Yon_ op(ouey) = > vt 0r(05)0 (o). Hence
Aley, v yom] = (dot(oi(ay)))?
= (det(os{ou)))(det{oi(a;)))

= det(D on(ai)on(ay))

r=1

= det(T(a;ay)). 0

2.6 Rings of Integers

We now discuss how to find the ring of integers of a given number field.
With the methods available to us, this involves moderately heavy calcu-
lation; but by taking advantage of short cuts the technique can be made
reasonably efficient. In particular we show in Example 2.3 below that not
every number ficld has an integral basis of the form {L,0,...,6m 11

The method is based on the following result:

Theorem 2.20. Let G be an additive subgroup of O of rank egual to the de-
gree of K, with Z-basis {on,... ,an}. Then |O/GI divides Alog, ..., ap).

Proof: By Theorem 1.16 there exists a Z-basis for $ of the form {81,000 8}
such that G has a Z-basis {1 61,... , finfn} for suitable u; € Z. Now

Alot, ... o] = Aluf, .. , finfiu]

since by Lemma 1.15 a basis-change has a unimodular matrix; and the
right-hand side is equal to

(o1 .. -ﬂn)za[ﬁla o Bl = (. -Nn)zA
where A is the discriminant of K and so lies in Z, But

1 - pn| = 19D/G].
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Therefore

|0/G1* divides Alog,... ). : 0

Iz the above situation we use the notation
AG’ = A[al, - ,Ctn].
We then have a pgeneralization of Theorem 2.17:

Proposition 2.21. Suppose that G # O. Then there exists an algebraic
integer of the form

1
E(Alal + ...+ )\nan) (2.6)

where 0 < X\ < p—1, M € Z, and p is a prime such that p* divides Ag.

Proof; If G # O then |/G| > 1. Therefore (by the structure theory for
finite abelian groups) there exists a prime p dividing |O/| and an element
u € 9/ such that g = pu € G. By Theorem 2.20, p? divides Ag. Further,

1 1
U= 59: 5(/\1041 ++>\naﬂ)

since {;} forms a Z-basis for G. O

Note that this really is a generalization of Theorem 2.17: if Ag is
squarefree then no such p exists, so that G = 9.

We may use Proposition 2.21 as the basis of a trial-and-error search for
algebraic integers in © but not in G, because there are only finitely many
possibilities (6). The idea is:

(a) Start with an initial guess G for O.
(b) Compute Ag.

(c) For each prime p whose square divides Ag, test all numbers of the
form {2.6) to see which are algebraic integers.

{d) If any new integers arise, enlarge G to a new G’ by adding in the
new number (and divide Ag by p* to get Agr).

(e) Repeat until no new algebraic integers are found.
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Example 2.22. Find the ring of integers of Q(¥5).

Let # € R, 8 = 5. The natural first guess is that © has Z-basis
{1,8,6%}. Let G be the abelian group generated by this set. Let w = ¢27%/3
be a cube root of unity, We compute

1 @ 62
AG = 1 wf w?§?
1 w28 wh?
11 1
= |1 w W
1 w? w

= 5 (Wt tw~w-—w-w)?
- 52-32-(w2—w)2

3%.5%. (—3)

—-3% .52,

By Proposition 2.21 we must consider two possibilities.
(a) Can & = (A1 4 A28+ A362) be an algebraic integer, for 0 < \; < 27
(b) Can o = $(A1 + X280+ A36?) be an algebraic integer, for 0 < ); < 47
Consider case (b), which is harder. First use the trace: we have
T(e) =3\ /5 € %
so that A; € 5Z. Then

(Aab + X36%)

o) =

o =

is also an algebraic integer,
Now compute the norm of «'. (It is easier to do this for o' than for o

because there are fewer terms, which is why we use the trace first.) We
have

N(a# + b6?)

(af + b9%)(awd + buw?0%)(aw?d + bwh?)
w - w?(af + b0){(af -+ wh?)(ah + w2bh?)
(a0)® + (06%)°

= ba® 4 250%,

il
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Tt follows that for o to be an algebraic integer, we must have N(a') € Z.
But N{a') = (A3 + 2503)/125 = (A + 5A3)/25. One way to finish the
calenlation is just to try all cases:

» | % | M+5x | Divisible by 257
0 1 5 No
0 2 40 No
0 3 135 No
0 4 320 No
1 0 1 No
1 1 6 No
1 2 41 No
1 3 136 No
1 4 321 No
2 0 8 No
2 1 13 No
2 2 48 No
2 3 143 No
2 4 328 No
3 0 27 No
3 1 32 No
3 2 67 No
3 3 162 No
3 4 347 No
4 0 64 No
4 1 69 No
4 2 104 No
4 3 199 No
4 4 384 No

Whichever argument we use, we have shown that if there are no better
ideas, brute force can suffice. But here it is not hard to find a better idea.
Suppose M -+ 5A% = 0 (mod 25). If A3 = 0 (mod 5), then we must also
have Az = 0 (mod 5). I not, we have 5 = (—Ag/A3)® (mod 25). Therefore
5 is a cubic residue (mod 25), that is, is congruent to a cube. The factor
5 shows that we must have 5 = (5k)® (mod 25), but then 5 = 0 (mod 25),
an impossibility.

Whichever argument we use, we have shown that no new o' occurs in
case (b). The analysis in case (a) is similar, and left as Exercise 6 in this
chapter.
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Note that it is necessary for N(a) and T'{a) to be rational integers, in
order for o to be an algebraic integer; but it may not be sufficient. If the
use of norms and traces produces a candidate for a new algebraic integer,
we still have to check that it is one—for example, by finding its minimum
polynomial. However, our main use of N(cr) and T(e) is to rule out possible
candidates, so this step is not always needed.

Example 2.23.
{a) Find the ring of integers of Q(+/175).

(b) Show that it has no Z-basis of the form {1,86, §%}.

Solution:
(a) Let t = 175 = /(52 - 7). Consider also u = ¢/5 - T2 = /245. We
have
ut = 3b
wr o= T
t2 = bu.

Let O be the ring of integers of K = Q(+/175).

We have v = 35/t € K. But v* — 245 = 0 so 4 € B. Therefore
ueBNK =20,

A good initial guess is that © = G, where G is the abelian group
generated by {1,¢,u}.

To see if this is correct, we compute Ag. The monomorphisms K — C
are o1, 03,03 where o1 (t) = t, 02(t) = wt, o3(t) = w?t. Since fu = 35 which
must be fixed by each o;, we have oy(u) = u, o2(u) = w?u, o3(u) = wu.
Therefore

1 ¢t u |
Ag=|1 wt wu

1 w? wu

which works out as —3%. 52 . 72,

There are now three primes to try: p = 3,5, or 7.

If p =05 or 7 then, as in Example 2.22, use of the trace lets us assume
that our putative integer is %(at + bu) for a, b, € Z. Now

N(at + bu) = 175a® +- 2455

and we must see whether this can be congruent to 0 (mod 5% or 7%} for a,
b not congruent to zero.
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Suppose 17543 + 245b° = 0 (mod 125), that is, 35a3 -+ 496° = 0 (mod
25). Write this as 10a® — b* = 0 (mod 25). If @ = 0 (mod 5) then also
b= 0 (mod 5). If not, 10 = (b/a)® (mod 25) is a cubic residue; but then
10 = (5k)® (mod 25), hence 10 = 0 (mod 25) which is absurd. The case
p = 7 is dealt with in the same way. '

‘When p = 3 the trace is no help, and we must compute the norm of

%(a+bt+cu)

for @,b,¢ € #. The calculation is more complicated, but not too bad since
we only have to consider a,b,¢=0,1,2. No new integers occur.
Therefore O = ¢ as we hoped.

(b) Now we have to show that there is no Z-basis of the form {1,8, 0%},
where § = a + bf + cu. Note that {1,0,6%} is a Z-basis if and only if
{1,6+1, (6+1)?} is a Z-basis; so we may without loss of generality assume
that o = 0. Now

(bt + cu)? = b*t? + 2bctu + cPu?
= 5b%u + T0bc + Tct.

Therefore {1, bt + cu, (bt + cu)?} is a Z-basis if and only if the matrix

1 6 0
0 b ¢
T0be T Bb?

is unimodular; that is,
5% —7¢% =+ 1.

Consider this modulo 7. Cubes are congruent to 0, 1, or —1 (mod T), so
we have 5(~1, 0, or 1} =+ 1 (mod 7), a contradiction.
Hence no such Z-basis exists.

Example 2.24, Find the ring of integers of Q(v/2,1).

(Here, our initial guess turns out not to be good enough, so this ex-
ample illustrates how to continue the analysis when this unfortunate event

oceurs.)
The obvious guess is {1,+/2,1,4v/2}. Let G be the group these generate.
We have Ag = —64, so O may contain elements of the form g {and then

possibly 1g or 1g) for g € G. The norm is

N(a + b2 + ci + div2) = (® — ¢ — 262 + 2d%)% + 4{ac — 2bd)%.
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We must find whether this is divisible by 16 for a,b,¢,d = 0 or 1, and not
all zero. By trial and error the only case where this occurs s & = d = 1,
a=C= 0. SO

a = 0+ 0)

may be an integer (where 8 = v/2). In fact

go that

and « is an integer.
‘We therefore revise our initial guess to

G'={1,8,1,0%,16(1 +4)}.
Since 2 L0(1 + i) = @ 4 @4 this has a Z-basis
{1,8,1, 4601 +4)}.
Now
Ag = —64/2% = —16.

A recalculation of the usual kind shows that nothing of the form g (where
we may now assume that the term in 26(1+¢) occurs with nonzero coeffi-
clent) has integer norm. So no new integers arise and O = &,

2.7 Exerciscs

1. Which of the following complex numbers are algebraic? Which are
algebraic integers?

(a) 355/113
(b) ezm'/zs

(C) em'/zs
d) /17 + 19

(
(e) (1++v17)/(2v/~19)
(f) \/(1+\/§) +\/(1—d§).
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10.

11,

12,
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Express Q(+/3, ¥/5) in the form Q{f}.
Find all monomorphisms Q(\/_ 1= C.
Find the discriminant of Q(+v/3,v/5).

Let K = Q(#/2). Find all monomorphisms ¢ : K —» C and the
minimum polynomials (over Q) and field polynomials (over K) of

(i) ¥2 (i) v2 (i) 2 (iv) v2+ 1. Compare with Theorem 2.6.

. Complete Example 2.22 above by discussing the case p = 3.
. Complete Example 2.23 above by discussing the case p = 3.

. Compute integral bases and discriminants of

(2) Q(V2,v3)
(b) Q(v2,4)
(e} Q(VE)

(d) Q(V2).

. Let K = Q(f) where 6 € Dg. Among the elements

1 ,

—((1.() +...+ a,;B“)

d
(0 # a;;a9,... ,6; € Z), where d is the discriminant, pick one with
minimal value of |o;| and call it z;. Do this fori =1,... ,n = [K : Q)
show that {zz,...,%n} is an integral basis.
If ca,... o are Qlinearly independent algebraic integers in Q(8),
and if

A[C\f1,... ,O!-n,} =d
where d is the discriminant of Q(#), show that {a,...,0n} is an

integral basis for Q(#).
I[K:Q]=n, ad€Q,show

NK(CE) = a",

Tgl{e) = now.

Give examples to show that for fixed o, N (a) and Tk (o) depend
on K. (This is to emphasize that the norm and trace must always be
defined in the context of a specific field K; there is no such thing as
the norm or trace of o without a specified field.)
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13. The norm and trace may be generalized by considering number ficlds

14,

K 'Q L. Suppose K = L(#) and [K : L] = n. Consider monomor-
phisms o : K — C such that o(z) = » for all € L. Show that there

are precisely n such monomorphisms &1,... ,, and describe them.
For a € K, define

NK/L(Q.’) = HG’,‘(Q’),

Trp(a) = Za?;(a).
i=1

(Compared with our earlier notation, we have Ny = N x/q: Tk =
Tx;q.) Prove that

Niesi(onon) = Ngyp{on )Nk 1 (az),

Tr/plon +ag) = Tgyrlon) + Tryroa).

Let K = Q(¥/3), L = Q(v3). Calculate Ny /(va), Txyr{a) for
=vV3and o = Y3+ 3. |

For K = Q(V/3), L = Q(v3), calculate Ng;7,(v3) and Ng,/q(+/3).
Deduce that N,z («) depends on K and L (provided that o € K).
Do the same for Ty,




