Théorie des nombres Feuille de TD no6, Corps finis

1. Calculs dans les corps finis

Exercice 1

- Quelle est la caractéristique de \mathbb{F}_8 , son nombre d'éléments, sa dimension comme espace vectoriel sur un corps premier?
- Déterminer un modèle "du" corps fini \mathbb{F}_8 sous la forme $(\mathbb{Z}/p\mathbb{Z}[X])/(P)$.
- Quel est le produit $\Pi_{x \in \mathbb{F}_8}(Y x)$? Déterminer le $pgcd(Y^8 Y, Y^2 + Y + 1)$ dans $\mathbb{F}_8[Y]$. Le polynôme $Y^2 + Y + 1$ est-il irréductible dans $\mathbb{F}_8[Y]$?
- Déterminer tous les polynômes P(Y) irréductibles de degré 2 dans $\mathbb{F}_8[Y]$ en cherchant les polynômes de la forme $Y^2 + aY + b$ qui n'ont pas de racines dans \mathbb{F}_8 .

Exercice 2

- Déterminer tous les polynômes de degré 2 irréductibles dans $\mathbb{F}_2[X]$. Montrer que $X^4 + X + 1$ et $X^4 + X^3 + X^2 + X + 1$ sont irréductibles dans $\mathbb{F}_2[X]$.
- Quel est l'ordre de [X] dans $(\mathbb{F}_2[X]/X^4 + X + 1)^{\times}$?
- Quel est l'ordre de [x] dans $(\mathbb{F}_2[x]/x^4 + x^3 + x^2 + x + 1)^{\times}$? 3
- Déterminer un isomrphisme entre $\mathbb{F}_2[X]/X^4 + X + 1$ et $\mathbb{F}_2[x]/x^4 + x^3 + x^2 + x + 1$.

Exercice 3

- 1
- L'équation $x^2 + 35y^2 = 3$ a-t-elle des solutions dans \mathbb{Z}^2 ? L'équation $x^2 + 3y^2 = 35$ a-t-elle des solutions dans \mathbb{Z}^2 ?

Exercice 4

- Résoudre $X^2 + X + 1 = 0 \pmod{13}$. 1
- Résoudre $X^9 = 1 \pmod{13}$. On pourra d'abord chercher l'inverse modulo 13 des solutions.

2. Nombres Presque Premiers

Exercice 5

- On dira qu'un entier impair n est pseudopremier pour un entier a compris entre 1 et n-1 si a est premier à n et $a^{n-1} = 1[n]$.
 - (1) Trouver tous les entiers b pour lesquels 15 est un nombre pseudopremier.
 - (2) Pour quelles valeurs de b entre 1 et 91 le nombre 91 est-il pseudopremier?
 - (3) Montrer que si p et 2p-1 sont premiers, alors n=p(2p-1) est pseudopremier pour la moitié des nombres b possibles dans $\{1,\ldots,n\}$, plus précisemment pour ceux qui sont des carrés dans \mathbf{F}_{2p-1} .
- On pose n=561. Calculer $\varphi(n)$. Pour quelles valeurs de b entre 1 et 561 le nombre n est-il pseudopremier?

Exercice 6

Montrer que les nombres 1105 (5 × 13 × 17), 1729 (7 × 13 × 19) et 2465 (5 × 17 × 29) sont des nombres de Carmichael.

1

Soit n un entier tel que 6n + 1, 12n + 1 et 18n + 1 sont premiers. Montrer que m = (6n + 1)1)(12n+1)(18n+1) est un nombre de Carmichael.

Exercice 7

Soit b > 1 et p un nombre premier impair ne divisant pas b, b-1 ou b+1. Soit $n = (b^{2p}-1)/(b^2-1)$.

- Montrer que $(b^p-1)/(b-1)$ est un entier non inversible qui divise n. En déduire que n n'est pas premier.
- Montrer que n-1 est pair, puis que que 2p divise n-1.
- 3 Montrer que n est pseudopremier pour b.
- En déduire que pour tout entier b, il y a une infinité de nombres pseudopremiers pour b.

Exercice 8

Un entier n est appelé nombre de Carmichael si, pour tout entier a entre 1 et n-1 premier avec n, on a $a^{n-1} = 1[n]$.

- Trouver tous les nombres de Carmichael de la forme 3pq avec p et q premiers. 1
- $\mathbf{2}$ Trouver tous les nombres de Carmichael de la forme 5pq avec p et q premiers.
- 3 Montrer que pour tout nombre premier r, il existe un nombre fini de nombres de Carmichael de la forme rpq avec p et q premiers.

3. Résidus quadratiques

Exercice 9

- Montrer que (2m/n) = (m/n) si n = +/-1 [8] et (2m/n) = -(m/n) sinon.
- Vérifier que si m et n sont tous les deux impairs, alors (m/n) = (n/m) sauf si m et n sont tous les deux congrus à 3 [4], auquel cas (m/n) = -(n/m).

Exercice 10

- 1
- Calculer les symboles de Legendre $\left(\frac{16}{229}\right)$, $\left(\frac{19}{229}\right)$, $\left(\frac{2}{229}\right)$, $\left(\frac{38}{229}\right)$. Calculer le symbole de Legendre $\left(\frac{365}{1847}\right)$ à l'aide de la réciprocité quadratique. $\mathbf{2}$

Exercice 11

Soit p un nombre premier impair.

- 1 Montrer que le produit de deux non-carrés modulo p est un carré.
- Montrer que $x \in \mathbb{Z}$ est un carré modulo p si et seulement si x^5 l'est.

Exercice 12

- À quelle condition -2 est-il un carré modulo un nombre premier p? On explicitera le résultat sous forme de congruence modulo 8.
- Même question en remplaçant -2 par 6 (et en changeant de modulo).

Exercice 13

Calculer les symboles de Jacobi $\left(\frac{7}{15}\right), \left(\frac{7}{45}\right), \left(\frac{11}{45}\right), \left(\frac{30}{77}\right), \left(\frac{55}{273}\right)$.

Exercice 14

- Calculer $(\frac{11}{35})$. 11 est-il un résidu quadratique modulo 35?
- Calculer $(\frac{13}{35})$. 12 est-il un résidu quadratique modulo 35? Calculer $(\frac{18}{35})$. 12 est-il un résidu quadratique modulo 35? 2

4. Calcul de racines carrées

Exercice 15

Montrer que si p est un nombre premier congru à 3 modulo 4, et si x est un entier premier à p qui est un carré, alors $x^{\frac{p+1}{4}}$ est une racine carrée de x. Quelle est l'autre?

Trouver, si elles existent, les racines carrées de 3 dans \mathbb{F}_{113} .

Soit p un nombre premier congru à 1 modulo 4. On écrit p-1 sous la forme $2^a m$ où m est un entier impair et a un entier supérieur à 2. Si z est un non-carré modulo $p, z^{\frac{p-1}{2}} = y^{2^{a-1}m} = -1$. En déduire une racine de -1 dans \mathbb{F}_{113} .

Exercice 16

Algorithme de Shanks-Tonelli Soit p un nombre premier congru à 1 modulo 4. Soit x un entier qui est un carré modulo p. On cherche une racine de x.

On écrit p-1 sous la forme $2^a m$ où m est un entier impair et a un entier supérieur à 2. On considère $y_1 := x^{\frac{m+1}{2}}$. Alors, $y_1^2 = x^m x = t_1 x$ où on a posé $t_1 = x^m$. Si $t_1 = 1[p], y_1$ est une racine de x modulo p.

Sinon, on considère z un non-carré modulo p. Montrer que z^m est d'ordre 2^a et que $t_1 = x^m$

est aussi d'ordre une puissance 2^{k_1} de 2 mais avec $k_1 < a$. 3 On pose $y_2 := (z^m)^{2^{a-k_1-1}}y_1$. Montrer que $y_2^2 = t_2x$ où $t_2 = t_1(z^m)^{2^{a-k_1}}$. Si $t_2 = 1[p]$, y_2 est une racine de x modulo p. Sinon, vérifier que t_2 , produit de deux éléments d'ordre 2^{k_1} , est d'ordre une puissance 2^{k_2} de 2 avec $k_2 < k_1$ (combien \mathbb{F}_p^{\star} a-t-il d'éléments d'ordre 2 ?)

En continuant ainsi, on trouvera en moins de a étapes, une racine y_i de x.

Trouver, si elles existent, les racines carrées de 2 dans \mathbb{F}_{113} .

5. Démonstration de la réciprocité quadratique

Exercice 17

Soit p un nombre premier impair et soit a un nombre entier qui n'est pas multiple de p.

Soit ν le nombre d'entiers $i \in \{1, \dots, \frac{1}{2}(p-1)\}$ tels que le reste de la division euclidienne de ai par p soit strictement supérieur à $\frac{1}{2}(p-\bar{1})$. Démontrer que $(\frac{a}{p})=(-1)^{\nu}$.

Montrer que pour un premier p impair

$$\left(\frac{2}{p}\right) = (-1)^{\frac{p^2 - 1}{8}} = \begin{cases} +1 \text{ si } p \equiv 1 \text{ or } -1 \pmod{8} \\ -1 \text{ si } p \equiv 3 \text{ ou } -3 \pmod{8} \end{cases}$$

3 Montrer que pour un premier $p \neq 3$ impair,

$$\left(\frac{3}{p}\right) = (-1)^{\left\lfloor \frac{p+1}{6} \right\rfloor} = \begin{cases} +1 \text{ si } p \equiv 1 \text{ ou } -1 \pmod{12} \\ -1 \text{ si } p \equiv 5 \text{ ou } -5 \pmod{12} \end{cases}$$

Montrer que pour un premier $p \neq 5$ impair

$$\left(\frac{5}{p}\right) = (-1)^{\left\lfloor \frac{p+2}{5} \right\rfloor} = \begin{cases} +1 \text{ si } p \equiv 1 \text{ ou } -1 \pmod{5} \\ -1 \text{ si } p \equiv 2 \text{ ou } -2 \pmod{5} \end{cases}$$

5 Montrer que pour un premier $p \neq 7$ impair

6. Application de la réciprocité quadratique

Exercice 18

Soit p un nombre premier congru à 1 modulo 3.

- Montrer que le groupe $(\mathbb{F}_p)^{\times}$ des inversibles du corps \mathbb{F}_p admet un élément d'ordre 3.
- Montrer que le polynôme $X^2 + X + 1$ admet une racine α dans \mathbb{F}_p . Vérifier si d' est un inverse de 2 modulo p, $X^2 + X + 1 = (X + d')^2 + 3(d')^2$. En déduire que 3 -3 est un carré dans \mathbb{F}_n .
- Retrouver ce résultat à l'aide de la réciprocité quadratique.

Exercice 19

Soient a, b, c trois entiers n'étant pas des carrés dans \mathbf{Z} tels que abc est un carré dans \mathbf{Z} . Montrer que le polynôme $(X^2-a)(X^2-b)(X^2-c)$ n'a pas de racine dans **Q** mais qu'il en a dans \mathbf{F}_p , pour tout nombre p premier.

Exercice 20

On rappelle que $\mathbf{Z}[i\sqrt{2}]$ est factoriel. Le but de l'exercice est de déterminer les nombres premiers p tels que l'équation $x^2 + 2y^2 = p$ ait une solution dans \mathbb{Z}^2 .

- Montrer que l'existence d'une solution équivaut au fait que p n'est pas irréductible dans $\mathbb{Z}[i\sqrt{2}]$.
- Utiliser l'isomorphisme de $\mathbf{Z}[i\sqrt{2}]/(p)$ avec un anneau quotient d'anneau de polynômes, pour montrer que l'existence d'une solution équivaut au fait que -2 est un carré dans \mathbb{F}_p et conclure.

Exercice 21

On rappelle que tout nombre premier congru à 1 modulo 4 est somme de deux carrés. On considère l'équation $x^2 + y^2 = pz^2$ où p est un nombre premier impair.

- Vérifier qu'elle possède une solution dans \mathbb{Q}^3 si et seulement si elle en possède une dans \mathbb{Z}^3 .
- Montrer que si elle admet une solution dans $\mathbb{Z}^3 \{(0,0,0\}, -1 \text{ est un carr\'e dans } \mathbb{F}_p \text{ et donc}\}$ 2 p est congru à 1 modulo 4.
- La réciproque est-elle vraie? 3
- Lorsqu'elle en possède, décrire toutes les solutions dans \mathbf{Q}^3 de l'équation.

Exercice 22

Soit d un entier relatif sans facteur carré. Soit p un nombre premier de la forme $p = x^2 - dy^2$.

- Montrer que d est un carré modulo p. 1
- On suppose d = 6. En déduire que p vaut 1, -1, 5, ou -5 modulo 24.