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ndefinite Forms

3.1 Reduction, Cycles

- We now consider the indefinite forms, that is, the forms of positive

discriminant A = [} > 0. Our treatment will closely follow that of

- Mathews, our goal again being the determination of canonical forms

for the equivalence classes. In the case of negative discriminants, the

. “reduced” forms are essentially unique in a given equivalence class.

For positive discriminants, however, it is not only the case that many

~reduced forms can lie in the same class, an clegant structure is possessed

a, b, c}of

0<b< VD (3.1)
VD ~b<2|al< VD +b

- We make several easy deductions.

b, ¢ is reduced, then VD —b < 2| ¢ |<
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Proof. Since b? - dac == D, we have

with # < z < y, and it follows that » <w <.
Proposition 3.2. The number of reduced forms of a given discriminant
is fimite.

Proof. The number of values for b has been lmited, so the finite

number of reduced forms follows from the finite number of factorings

of b2 — D into dac.
Proposition 3.3. Any indefinite form is equivalent to a reduced form

of the same discriminant.

Proof. We give a reduction algorithm. If {a, b, ¢} is not reduced, we

choose § (which in this case 15 necessarily unique) such that

VD -2 ¢l —~b+2e8 < VD,
and we have

(a, b, ¢} ~ (¢, ~b+2cd, a— b8 4 b%)

If | a— b8+ c8® i<l c|, the process is repeated. As in the reduction of

definite forms, the

we get

Vv'D. If this is true, then VD — B < 2| Al Turther, since

\VD =~ B |VD+Bl=11ANC],

reduction process must be finite, terminating when

a form (A, B, € such that | A <] ' Jand VD =21 Al B < |

23

we must, then have | VD - B {> 2| C'|. We continue the ineguality:

if b+ b =0 (mod 2a'). It is casy Lo see that there is a unique reduced
form adjacent to the right and to the left of any given reduced form,
Once again, there is a strong computational similarity between the
reduction algorithmn and the standard algorithm for the greatesl, com-
mon divisor. As will be seen later in this chapler, more than a mere
stmilarity exists. Reduction of definite forms is identical with the con-
tinued fraction expansion of a related quadratic irrational, and the con-
tinued fraction algorithm applied to a rational number is precisely the

Tuclidean aigorithm.

Propositi The s
position 3.4. The sel of reduced forms of a given discriminant

can be partitioned into cyeles of adjacent forms.

Pr Te I .
roof. We begin with any reduced form and proceed to the right

thir 3 ssive jac
ough successively adjacent reduced forms. Since the set of reduced

forms is fnite, the wely adj
s is finite, the list of successively adjacent forms must return to

“the origi ) ;
) original form. If there are no more reduced forms, the process

is finished; WS :
nished; otherwise, we choose a form not yet used and repeal the

process.

(’Jill(‘(' a(l CeT S 9 ] . [ ! 5 -
Ll al
J I[t, fOl Ins are eo u]vd!ent.} it Ild(.l t]l 2 makifix tl allf f()l ina

(0 _1)
bt )
Lo

f;iOn
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and equivalence is transitive, all forms in a given cycle are equivalent

to each other.
Proposition 3.4 is the casy half of the following major theorem. The
difficult hall of the proof will be presented in Section 3.3 so as not to

disturb the contimiity of the discussion.

Theorem 3.5. Two reduced forms are equivalent if and only if they

are in the same cycle.
We call the form (a, --b, ¢) the opposite of the form {a, b, ¢). An
ambiguous form is equivalent to its own opposite, since if b = ka, the

choice § = k pives
(a, b, ¢) ~ (¢, =b, a} ~(a, b~ a8, ¢~ b6+ ab?) = (a, b, ¢).

We further define forms (a, b, ¢) and (¢, b, a) to be associaled. We

note that opposite forms are improperly equivalent {obtainable one

another by a matrix transformation of determinant ~-1) under

(6 1)

and its negative, and associated forms ar

(1 o)

from

e improperly equivalent under

and its negative.

Proposition 3.6. The number of forms in any cycle, called the period

of the eycle, 1s always cven.

Proof. The first and last coeflicients of any reduced form are of oppo-

site sign. We may therefore form pairs of adjacent forms (e, b, ¢) ~

P . . . .
(¢, ¥, ¢') in which the coefficient ¢ is negative and @ and ¢ are positive
Because the adjac 15 ¢ ]
ccause the cency is clear acenc Lhese pairs, 1
N y is clearly an adjacency of these pairs, it takes

an integral number of pairs to form any cycle.

Py Gt r - '
Proposition 3.7. If the form f', associate to [, is in a different cycle
from that of f, then this is true for all forms in both cycles, which we

call associated cycles.

Proof. Cycling forward (to the right) from f, the form adjacent to
J=1{(a, b, ¢)is (¢, ¥/, a). Cyeling backward (to the left) from f' yields
(o, V', ) ~ (¢, b, @). That is, cycing forward from [ we encounter
the associates of the forms encountered when cyching backward from

I

5 . .
rop osit, . ech ¢ 3 )

Proposition 3.8. A cyele which contains any ambiquous form contuins
exactly two and is its own associate. Conversely, o eycle which is ils

own associate confains exactly two ambiguous forms.

Proof. If a form f and its associate [’ are in the same cycle, then
we can cycle forward from f and backward from f' through pairs of
associated forms. Since the cycles have finite length, we must eventually
arrive at adjacent associated forms (¢, b, a) ~ (a, b, «'). Since these
are adjacent, we have b+ b = 0 (mod 20); that is, a|b, so that (a, b, ')
1s ambiguous. Similarly, cycling backward from f and forward from
' will produce a different ambiguous form. A seclf-associate cycle thus
contains {wo ambiguous forms. It cannot contain more since the cyele
15 complete when the second ambiguous form is found. And it is easy
to see that a cycle which contains an ambiguous form must be self-

associate since Ty ) i ¢ j
iate since the form (a, ak, ¢) is the form adjacent to its own

associate (¢, ak, a).




CHAPTER 3. INDEFINITE FORMS

We call the reduced form (1, b, ¢} the principal form for a given

i ich it lies the principal cyele.
diseriminant, and the cycle in which it lies the principat ¢y

27
Greneral xamples and Observations

For negative discriminants, reduced forms are, in general, asymmet-
ric since the third coeflicient is at least as large as the first. Tor
positive discriminants, this is not true. Indeed, reduced forms oc-
cur in groups: for any given lead coefficient ¢ the existence of one
“reduced form (e, b, ¢) implies the existence of the reduced forms
e, b, ¢}, {~a, b, —¢), (¢, b, a), and (~c¢, b, —c). PFurther, since

solutions to & = D (mod a) oceur in pairs, we also have reduced

forms {a, b+ 2a0, a — bo - ¢), (~a, —b+ 2a0, —a + bo - ¢)

b

(@~ bo + e, —b+ 2a0, a), and (~a -+ bo ¢, ~b-+ 2a0, —a), where o
“ig the sign of a. These generally lead to further forns, and so on. The
- following examples of cycles will illustrate the previous discussion.

For £2 == 1173 = 3 - 17 - 23 there are four cycles:

(13, 9, —21) ~ (—21, 33, 1)

CB) (=1, 33, 21) ~ (21, 9, 18)~ (13, 17, 17) ~ (17, 17, ~13) ~
(--13, 9, 21) ~ (21, 33, 1)

C) (3, 33, ~7) ~ (-7, 23, 23) ~ (23, 23, ~7) ~ (-7, 33, 3)
D) (-3, 33, T) ~ (7, 23, ~93) ~ (<23, 23, 1) ~ (T, 33, —3)

| .For D = 1313 = 13 - 101 therc are also four cycles:
A (1, 35, —22) ~ (22, 9, 14) ~ (14, 19, —17) ~ (—17, 15, 16) ~

o (16, 17, —16) ~ (16, 15, 17) ~ (17, 19, —14) ~ (~14, 9, 92) ~

(22, 35, ~1) ~ (—~1, 35, 22) ~ (22, 9, —14) ~ {14, 19, 17) ~
S (17,15, —16) ~ (16, 17, 16) ~ (16, 15, —17) ~ (=17, 19, 14) ~
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(14, 9, -22) ~ (=22, 35, 1)

B) (13, 13, - 92) ~ (=22, 31, 4) ~ (4, 33, ~14) ~ {14, 93, 14) ~
(14, 33, —1) ~ (—4, 31, 22) ~ (22, 13, ~13) ~ (=43, 13, 22) ~
(22, 31, —4) ~ (—4, 33, 14) ~ (14, 23, —14) ~ (14, 33, 4) ~
(4, 31, —22) ~ (22, 13, 13)

) (7, 23, —~28) ~ (=28, 33, 2) ~ (2, 35, 1) ~ (=11, 31, 8) ~
(8, 33, —T) ~ (-7, 23, 28) ~ (28, 33, ~2) ~ (-2, 35, 11} ~
(11, 31, ~8) ~ (-8, 33, 7)

DY (7, 33, ~8) ~ (=8, 31, 11) ~ (I, 35, =)~ (-2, 33, 28) ~
(98, 23, ~7) ~ (-7, 33, 8) ~ (8, 31, ~11) ~ (1], 35, 2) ~
(2, 33, —28) ~ (28, 23, 1)

A. O. L. Atkin has provided a labelling of the different kinds of

cycles. Although the reasons for the existence or non
ar until later, this labelling

existence of such

cycles for a given discriminant will not appe
is now presented as an observation about examples.
Type 11: The complete ambiguous cycle 1s
(1, @, 1)~ (-1, a, 1).
Type 21: The complete ambiguous cycle is
(a, abn, b) ~ (b, abn, o).
‘Type 12: The ambiguous cycle contains
(a, ab, ) ~ -~ (z, y, —a&)~ (—a, ab, —c)r -
Type 22: The ambiguous cycle contains
(@, ab, ¢}~ (f, de, d} ~ -
but does not contain Lhe form (—a, ab, —¢).

Type 20: The ambiguous cycle contains

(=, u, ""ll‘) rwe (W, 7, mu)) A~

29

¥’
1'ype 23: The cyc ich i i i i
ype 23: The cycle, which is not ambiguous, contains twice an even
aumber of forms.
Type 13: The cycle, which i i i
13: The cycle, which is not ambiguous, contains twice an odd
number of forms.
For reasons to be explai it ' i i
ns to be explained in the next section, the negative Pell
vy b 2 2 :
equa e - S 1scrimi
quation z* - Ay 4 is solvable exactly for discriminants /A which
have cycles of Types | i : X iscrimi
v ypes 11, 12, and/or 13. For odd discriminants, the first

oceurrences of the different types are given below.

11}y Type 11, I = 5, the cycle being
(ln ] ¥ *l) ~ (wla 1-) l)a

21) Type 21, D =: 21, the cycle being

(1,3,-3) ~ (—3,3,1);

12) Type 12, D = 17, the cycle being
(1,8, =2) ~ (2,1,2) ~ (2,3, ~1) ~ (~1,3,2) ~
(2,1,-2) ~ (2,3, 1);

22) Type 22, D = 33, the cycle being
(1,5, -2) ~ (~2,3,3) ~ (3,3, -2) ~ (-2,5,1);

200 Type 20, D = 205, the cycle being
(7,3,~7) ~ {(—1,11,3) ~ (3,13, =3) ~ (—3,11,7);

23) Type 23, 17 = 321, the cycle being
(5,9, -12) ~ (~12,15,2) ~ (2,17, ~4) ~ (—4,15,6) ~
(6,9, —10) ~ (~10,11,5);

13) Type 13, D = 145, the cycle being
(3,7,—8) ~ (—8,9,2) ~ (2,11,—3) ~ (~3,7,8) ~
(8,9,-2) ~ (~2,11,3).
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Examples
A
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12

20
24

28
32
40

44
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Cycles

(1321”1)(”"1121 1)

(1121 ‘?)(‘)‘)?ﬂ 1)
(-1,2,2(2,2,~1)

(1,4, -~ 1)(-1,4,1)

(1,4, -2)(-2,4, 1)
(~1,4,2)(2,4,—1)

(1,4, -3)(~3,2,2)(2,2,-3)(~3,4,1)
(~1,4,3)(3,2,~2){(~2,2,3)(3,4, 1)
(1,4, —4)(~4,4,1)
(~1,4,4)(4,4,~1)

1,6, -1)(-1,6,1
Em,~--3%§—-—43,2,3%(3,4,--&)(‘_2,4,3)(3,2, ~8)(—3,4,2)
(1,6, -2)(~2,6,1)

(-1,6,2)(2,6,~1)

(1,6,~3)(—3,6,1)

(--1,6,3)(3,6, 1)

(1,6, ~4)(~4,2,3)(3,4,~3)(~3,2,4)(4,6, 1)
(--1,6,4)(4,2,-3)(~3,4,3)(3,2, ~4)(~4,6,1)
(1)11"'1)(""1:1!1)

1,3,-1)(~1,3,1) .
%1,3,--2%%-2, 12)(2,3,~1)(-1,3,2)(2, 1, ~2)(~2,3, 1)
(1$3a“3)('"313! 1)

(~1,3,3)(3,3,-1)

(1,5,’1)('"—1,5,1)

(1,5, ~2)(~2,3,3)(3,3, ~2)(~2,5, 1)

(1,5 2)(2,3,-3)(~3,3,2)(2,5,~1)

(1,5, ~3)(=3,1,3)(3,5, ~1)(~1,5,3)(3, 1, -3)(=3,5,1)
(1s5n "'“4)("_4’ 3 2)(2! 5; f‘z)(""g: 3, 4)(4» B, "1)
(-1,5,4)(4,3, ~2)(~2,5,2)(2, 3, —)(~4,5,1)

(1,5, ~5)(~5,5,1)

(~1,5,5)(5,5,~1)

(1,7, ~1)(~1,7,1)

3.2  Automorphs, Pell’s Mguation

The equation x? - dy? == 1, with d a fixed integer and 2 and 3 assumed
to be integer variables, has been called Pell’s equation, although this
is, in fact, a misattribution due to Fuler. We shall, in general, refer
to the equations % — Ay? = k4 as Pell’s equations, and the equation
with only the minus sign as the negative Pell equation; we note that
tf A ds a discriminant of binary quadratic forms, then the existence
of a solution to the Pell equations implies the existence of a solution
to % — Ay? = #1, where the 4: signs correspond. We recall that an
automorph of a binary quadratic form is a nontrivial transformation

(1.1} of determinant -1 under which the form is cquivalent to itself.

Theorem 3.9. [f A is any discriminant of binary quadratic forms,

then there exists a solution (x,y) to the Pell equation
2 - Ay = 4 (3.2)

There is a one-to-one correspondence between automorphs of (definite

or indefinite) forms (a, b, ¢) of discriminant A and solutions of the

Pell equation (3.2).

Proof. We have defined the principal root of a form for positive delinite

forms; for indefinite forms the definition is identical:

~b+ VA

(o] T s

2a
Now, if an automorph exists for a reduced form under a transforination

(1.1}, then
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This can be rewritten as a quadratic equation in w:

But we already have aw? |- w4 = 0, and the form (&, b, ¢) is assumed

§ - a = kb, and 3 = —ke for

to be primitive, so we must have «y = ka,

k an integer. This gives
(6 — ) -+ 4B == Ak”.
We reduce this to get

(e 8 — Ak? =4,

Given any automorph of a reduced form, then, we have a solution of

the Pell equation x? — Ay? = 4. Given any solution of that eguation,

conversely, we have integers
= (x—by)/2
—cy,

= ay,

= (a-+by)/2

P T O ™
o

and an automorph of the form (a, b, ¢} The correspondence between

automorphs and solutions is clear; ouly the existence of solutions is yet

in question.

If A is a negative discriminant, then the equation is solvable only

for A = -3 or —4, and, of course, only for -+1 on the

This case was covered in Chapter 2.

right-hand side.

33

'I‘L 18 f)nly necessary, then, to consider positive discriminants A. If we
begin with the principal form of discriminant A and move through the
principal cycle, we obtain transformation matrices which produce from
a reduced form the equivalent adjacent reduced form. At some point
we finish the cycle and return to the principal form. The product of
all the transformation matrices is thus a transformation matrix which

takes the principal form to itsclf. Since it cannot, except in trivial

‘instances, be the identity matrix, it is the matrix of an automorph
- of the principal form. From this we get a solution to (3.2), and the

theorem is provec is pi
. rem is proved. An example is given at the end of this chapter

For the remainder : )
he remainder of this chapter, only positive discriminants A =

11 are considered. Among all the solutions (X, ¥) to (3.2), there exists
? e gy > EX1513

- one for which X and Y are positive and (X -+ Y\fﬁ)/? 158 of least

- -magnitude. We call this the fundamental solution of (3.2), noting that

. rt L
it X" and Y are positive and (X', ¥") is another solution of (3.2), then
A <X and YV < Y must also be true.

o Theorem 3.10. All pairs (X,,,Y,) generated by

(X +YVDy X, + YWD
on o 9 <y T 2 1 (33)

i are solutions of equation (3.2). All solutions of equation (3.2) in posi-

Hive rational integers are given by (3.3).

P . s . : :
roof. That X, and ¥,, are rational integers follows by induction and

 observations about the parity of X, ¥, and D). We then observe that

(’Y - Y\/}j)” = X, - }/u\/}j
211 - 2

(3.4)

" and thus
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Xp - DY (X7 DV

4 A%
X e the sec sart, assume that
This proves the first part. To prove the second part,

T e exists such that
another solution (1, 1) exists, Then there exists an n > 1 such th

55 1 59 R Tyl
(X +YVD) THUVD (X+yvoyrt

‘zn-}-l

We multiply by the {positive) value (X, — Y,/ D)2 and get

9T 4 UND < X +YVD,
o v sain, by parit
with 27" = T'X, + UY, and 2" = TV, + UX,. Again, by parity

arguments, T and U' are integral. Now, since 17 v .
(' + UNDY (T~ U'NDY = 4, we find 0 <17 — UND < 2, wlncb

allows us to see that 77 and U’ are both positive.

contradict the fact that (X -+ V\/ﬁ)/Z was the fundamental solution.

4 (Ji\/]j > 2 and o

This, however, would

35

3.3 Continued Fractions and Indefinite
orms

We define a continued fraction expansion of z {cf) to be a function

L
&r o f ((507 sy (2 N) I g -+ ,,,,,M_ ( 3. 5)

ay - 4 1
an

At present 2 may be any sort of number, although soon only rational

numbers and real quadratic irrationals will be considered. We define

the values a; to be the partial quoticnts of the of. The above of will be

abbreviated as
[ag,- .., an],

whose n-th convergent is

o and

]),,1 = ]

P@ = g

Pn = d, - J)n—l “+ JDy:,f—'Z: f(Ji" n m> l’
Cx',)*l = )

o = 1

€y - Qﬂ--—l + (911«2: f()',r' n >m 1)
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R, = lag,...,0
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) = Puf@n forn 2 0. (3.6)

0. We assume that it holds for

Proof. The theorem holds for n =
n < m and calculate
[f"-o,---aﬂm-{ﬁ!} = fagy.. - tm t 1/ame)

(@m ,,1,,/‘1’““) Poq b Py

where the penultimate equa

There are three other formulas of interest,

({'Lm lﬁl/a'mll) Q'm—-—l } Qm -2

Gm%l ((Im mul }f Pm 2) | g-;:; L

dm%l ((LQO 1 I Qm )) } Qm 1

2
a’m{ lP?n :"_] m-fl

Gm}- 1Qm + Qmwl

PmH
Qm{l

lity is by induction.

all of which can be proved

by direct calculation and Jor recursion:

PnQn« I‘n lQn - (

pn Pu—l

Qn ‘ Qn-«l

-Pn Qn~2 -1

We now restrict ourselv

and integral. These are calle

0t 1 n20, (3.7)

G n>o, (3.8)
QuQu-1’

)rzu'ZQn = an("'l)nmla n 2 1. (39) .

es Lo the case when each ag, 1 2 1,18 positive

led simple continued fractions (scf’s). In this

37
case any finite scf represents a rational number z. Before proving the

converse, we define the

Continued Fraction Algorithm: Deline a;, X;, and Z; by

T = ag -+ %o, chosen so that 0 < 7y < 1, (3.10)
Ni= 1//, oy b Ay 1> b, 0<Z; < 1.

The algorithm continues as long as Z; £ 0. The (not necessarily inte-
gral) values X; arve the i-th complete quotients in the cf expansion, that
18,

v [ag, ..., X

Theorem 3.12. Any rational number z has a representation as a finile

simple continued fraction.

Proof. We shall not prove this. T'he proof is straightforward; indeed it

- 18 a rephrasing of the usual algorithm for computing the greatest comn-

- mon divisor of the numerator and denorminator of the rational number

.
IExample: Let @ = 267/111. Then computing in order ao , %y , X,

» @1 5 51, ..., and then Py and @); altcrwards, we have

) 2 P, Q,‘ Z, X{ | ,P,' -111 - 62, - 267 E
~1 L L1l

0 2 2 1 45/111 45

P2 05 20 21/45 111/45 2]

2 02 12 5 3/21  45/21 3

3 7 89 37 0 21/3 (}
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We now have one more major list of facts.

"Pheorern 3.13. Let @ == [ag,- - ,an] be a finite scf. Then

a} Ron < Rougs and Rapy > Hons1 for all n > 0.

b) Ry < Haign for all n,i 2 0.

c) Ry <% and Rop.., > @ for all convergents exeept the last.

d) Qn > Q- for alln > 1

{i) ng(Pﬂa Qn) == 1 fOT' all n.

3.9}, and remembering that the a; and (2; are all

Proof. a) Looking at (
and side of (3.9) is positive or ne rative

positive, we see that the right-h
according as n is even or odd.

b) In (3.8),1t 1s clear that Ron < Rgnp for all o I Ry, > Boig were to

> Rgipy would hold since by part a Ran is

if By, > Haip were to hold for some

hold for some n < i, then Ry

an increasing sequence. Similarly,

n > i, then Rap > fansn would hold since the Hapyq ave decreasing.

These are both contradictions.

¢) This is obvious. has some value, which is larger than the even

convergents and smaller than the odd ones, except for ihe equality

which holds for the last.

d) This is evident from the defining equations of Theorem 3.12 and the

new assumption that the a; are positive.
e) In (3.7), the ged of P, and @y must divide either -1 or +1 and

hence must be L.
We now pass from finite scf’s to infinite ones.

Theorem 3.14. If ap is an integer and @y, ... Gn,. -+ 15 GNY SCYUENCC

39
of posilive integers, then

n o= 1
g oo, )

erists, and is greater -
_ 2 is greater than any even convergent and smaller than any
odd convergent.
Proof. Th srgents i i
The even convergents are increasing and the odd convergents

are decreasing, so if the limit exists the rest must be true. But by (3.8)

Cand Theoremn 3.13d we have

Ifrom this pol rodic si
| s pomnt on, only periodic shuple continued fractions are
C() 1. 3‘ 3 .1 ,« . b
nsidered, that is, scf’s for which ¢; = a;y; for all ¢ > I and some

fixed J. We write this as

[(lg, RIS £ PROLLY PRI *aI-{-Jnl]a

N . L N * 3 L] - v
_ _w;th the * indicating the period. We can now, at last, prove one of the

©main t : rebur i i
‘main theorems and return to the discussion of quadratic forms

" Theorem 3.15.

S a) Ifw is an irrational root of a quadratic equation with integer co-

efficients, then the scf for w is periodic.

b [ ) - N . .
- ) If an scf is periodic, then its value is an irrefional rool of a

quadralic equation with integer coefficients.

_P_l'.oof. a} Let w be the root of

aw? b+ e =0,
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where without loss of generality we have o > 0. Writing D = b — 4ac,

eﬂmtzlm(ml%+yﬁﬁ/@A)wM1A:>UJ}<}3<'Jﬁ,

rer (. From there if is clear

we can 5e
and B? — D = 4AC for a positive inte

that all of the Z; are of this form. But this limits the values of B3 to

a finite list, and consequently there are only finitely many values 7;

which occur. Clearly, then, the cf s periodic since the choice of Ziy
from #; is unique.
b} Let w = [ty - - o @I 1, %Ly - - - JEAL S

(3.10), Xy is the value of the purely periodic part. It P'JQ and P"[@Q"

Then, in the notation of

are the last two convergents of [ar, . - Ly 1), then

1\,1 = [*(t], R LT P X[]

80 th_at
P'X;+ Pi

X, = .
7 QX+ Q
(‘The left-hand X 18 the value of the periodic scf; the right-hand X

are from applying the defining recursions of the P and @ convergents.)

Thus, Xy is a quadratic irrational, satisfying an equation with integer =

coeflicients. Now, we can also wrile
» 8]
= PrsXp+ Pra
_— e il ""m,
QraXi+ Qrz
and hence z is a quadratic ire

be seen to have integer coefficients.

We now return to our main topic. Given a discrimin

quadratic forms [ > 0}, we define w = \/ﬁﬁ, if D is even, and w =
(—1 + VDY/2, if D is odd. These are the principal roots of forms:
(1, 0, —D/4) and (1, 1, (1 - D)/4), respectively, which forms we write:

ational, satisfying an equation which can

ant of binm’y..

41

wit] 7 ' i
ith 0 < 4y <1 and ay an integer. Under the transformation

(1 (f.g)
0o 1/’

becomes N P ) .
[ becomes (1, b+ 2ay, *), where b1 209 < VI < b-}-2ay-} 2. This form

is thus reduced, with principal root Zg. At this point, expansion of the
cf and cycling through the principal cycle of forms of discriminant [

are essentlally the same.

Let us now consider the equivalences
(13 ba (b D)/Ii) o~ (] =Gy, ])U: Cl) ~ (Cl? bl? C2) e

u I(,l I}IL < :lo D ] ‘} i 1
1< i i(,tl 1i l Bi{s a;b()-\'(f tl'd.l 510 ! ns I . [34 t] 1 S5
i) f 11113,1..10 ik 11_- i h M1l 1¢C seqguences

T (b 4D .. - =
_ (b 4 \/1))/(2@2) and X == (b + ﬂ))/(gci_{_l) are clear. We have

the following theorem.

Theorem 3.16. If M = Ty...T; transforms (1, b, (b DY/4) into

(e, biy cipa), then

9L N2
(2P 4 Q) ~ DQ? = deipy.

- Proof. The proof {ollows from writing

wal I)n + P-,lu.l

W o=

Xog1GQn + Q,::

- The rest follows simply by calculation.

- In the expansion of the cf it may happen that (1, b, (D—1)/4) and

e ] . L
o ( L, b, (b- D}/4) lie in the same cycle; if this is true, the cycle of
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forms is twice as long as the period of the of, with the cf cycle being

repeated in the period of forms. If this happens, we choose to call the
length of the cf period to be ihe same as the length as the cycle of
forms. (This is the case in our example at the end of this chapter. T he
of for (—5 1 v/41)/2 has a period of length 10 and not 5.) With this

convention, we obtain two theorems which together give us the precise

determination of the solutions to the Pell equations.

"Pheorem 3.17. If the continued fraction expansion of w == (1 +

VD) /2 (for odd D) or of w = VD2 (for even D) is of length n, and

if P = Poy ond Q = Qo are the penultimate convergents in the first
period of the cxpansion, then (X,Y) = (2P 4 Q,Q) s the fundamental
solution of (3.2).

Proof. Clearly (2P+@Q, Q) is a solution, but then (QP-I--QA%Q\/;D—)/Z =
((X + Y/ D)/2)" {or some n. Then the expansion of the <f for (2P -+
Q + QD) /2 contains n copies of the of for the fundamental solution
of {3.2). But no such repetition can occur, except for the double period

that occurs if, as mentioned above, the (-1, *, *x) form appears in

the principal cycle; however, that would, by Theorem 3.16, provide a 5

solution to a? — Dy* = —4.
The following theorem can now be proved by carefully cormbining

previous results.

Theorem 3.18, Let A = D be a positive discriminant of quadralic

forms. Solutions to the Pell equation

ot Dy = A (3.11)

exist if and only if the reduced forms (1,b,¢) and (—1,b,—¢) of discrim- .

imant D lie in the same cycle. If this is true, then
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) the length of the continued fraction expansion of w == (-11VD)/2
(for odd D} or of w == \/I:?/? (for even D) (which is the length of

he eyele of forms) is an even integer On,

b) if P == P 3
) if wer ond Q= Qh,.q are the penultimate convergents in

is the solutian:f (3.11) for which X and Y are positive inlegers
and (X + Y/ D)/2 is of least magnitude;

¢} all solutions to (8.11) are given by the odd powers of (X -+Y /D) /2;

d) all solutions Lo (8.2) are given by the cven powers of(X~+~V\/ﬁ)/?.-

the fundamental solution to (3.2) is

(wX 1 if_ﬂi) )

2

The solution to (3.11), if it exists, will be called the fundamental solu-

- tion to that equation.

We now prove Theorem 3.5.

I. he(){‘(’ Q‘.(’. 1 VA tu € Qs ane ‘[Lz‘l?(!l( nl i an g n[? 2 1 e
m wo re i ]
! HEU O d f # Cq - f f L an J f ’ fj

- are in the same eycle.

'. o 'Pl‘oof. Our proof, which follows closely that of Mathews, will take
© . several steps. We define a continued fraction to be regular if all the

- .p.a.rtin,l quotients after the first are positive.

" Propositi ;

: itl } ) ]

¥ P on 3.19. If an infinite cf contains only « finite number of
nonpositive Li ents, 1
tonpositive partial quotients, it can be converted in a finite number of

. .. steps to a regular cf.
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Proof. Let a, be the last nonpositive partial quotient (pa).

Since [z,0,¥,7] = [x ¥, 2], we have

[- HER] G‘rwh.o,“r-%u! y Gty -+ ] = [ Y RS PR S TR ]

We note that this shifts the last nonpositive pq to the left.

Case it. @, = —k 3 —L

It can be shown that

[oes ety =y @y - J=1.. Pyt = k-2, 0,0~ 1,.. J-

Since o, is the last nonpositive pa, @rp1 1 is nonnegative. I it is zero

or if k is 2, the reduction of the previous case has the effect of shifting

the last nonpositive pq to the left.

Case i1, a, = —1.

Since [..,@,~1Ly,. =l e 21,9 2.

and [..,e,—L 1,17, J=1l.,e—y—21Lz- 1,...],
the last nonpositive pq is again shifted to the left.

We can thus shift the nonpositive terms to the lcft, eventually elim-

inating them entirely. In each case the number of partial quotients

changes by zero or by two.

Proposition 3.20. Ify = (az+ B)/(yz + &) for some transformation
in the modular group T', then y can be written
b= Iitv LTI T o, 1’] »

with ay, ..., az, all positive.

Proof. Let 4t be chosen so that —(dt — B/8) is a positive proper

We can expand /6 into a cf with an odd number of partial

fraction.
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quotients /8 == [ht, a4, ..., as]. {We can make the length 2r + 1 since

[2] == [z — 1, 1].) If P/Q is the penultimate convergent, then by (3.7),

integer u. Then
ofy = [t aq, ..., a0, tul.

Consequently,

e [kt an, .., 0, w2,

We now prove Theorem 3.5. Let [ = (a, b, ¢) and f' = (¢, V', )
be two reduced equivalent forms. With no loss of generality for our

urposes, we can ¢ - ! positi nci
purposes, we can choose ¢ and & positive so that the principal roots w

- ¥ g
al ; ] i . v . : .
~and w’ are positive proper fractions. Since the forms are equivalent, a

g transformation of the usual sort exists so that

w o= ((m) N [})/('yu) -} 5).

- Then w' = [, a4, ..., a3, Fu,w]

s [:}:t’(’ll, vy 9y, ;J[:'lé -+ (}.1,*(12, ey *d]]

= if [¥dy, ..., *day,] is the ¢f for w. We may use Proposition 3.18 to make
- ail the partial quotients after the first positive and then note that the
'. irst partial quotient is zero since w’ is a positive proper fraction. It is
"+ - easy to show that a purely periodic cf is unique for a given quadratic

" irrational s 2 periodi : i i
o that the periodic part of the expansion of «' is merely a

cyclic permutation of that for w. Indeed, since the operations of Propo-

. Slt}on 3.18 change the number of partial quoticnts by zero or two each

fime f,} 9‘- ! i eV e
R e i y y
. + P 1]0([ f()i & 18 a .‘-‘phl'“. Of f.h&t fOl’ W }J a1l a4 numb 21 Of

- partial quotients. {This is important since the first coefficients of adja-

Lt Cent et ) e L . b
5 forms alternate in sign; without the evenness of the permutation
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A6
we could not distinguish cycles from their associates.) Thus, by cyeling
forward from [ we arrive at a reduced form whose principal root is

w'. But the principal root and the discriminant uniquely determine the

form, so this form is f'.
We prove one final theorem which will be used later.

-

Theorem 3.21. Let A be a posilive discriminant of binary quadralie

forms and p be any prime. In the notation of Theorem 3.9, we have

that
a) there exists an n such that p| Y,
b) the least positive residues modulo p of the integers (Xa, Yn) form

a periodic sequence.

Proof. We only prove this for odd primes p; the proof for p = 2 is

similar. If A is a discriminant of forms, then so is Ap?; therefore, a

solution exists to the equation x? — Ap’y? = 4. Part a follows from the

fact that this solution (2, py) to a? — Ay® = 4 must be one of the pairs

(Xny }/ﬂ)'
We have that

X, 1 VA

2

(1)
2

X, + y,A0-02 /A
9
Xl -+ Yl (é) \/A“

»

= 5

where the congruences are taken modulo p, and the symbol (—%) [E

the quadratic residue symbol if p does not divide A and 0 if it does.”

We may thus define X = X; and Y = (%) Y, to be least positive’

4'f

residues o{“these congruences {mod p). It is clear that the powers
(X i ¥, \{ A )["2)“ produce a sequence congruent modulo p to the powers
of (X -+ VV/A)/2)*, and this sequence 18 recurrent.

Frample.

Let D == 41. The of expansion of {1 4 /41)/2 is
S T & o 7 X;
] 1 0
0 2 2 1 (VA1 —5)/2
b3 L (VAL =3)/8 (VA1 5)/8
? ? 8 30 (VAL =85)/4 (VA1 4 3)/4
32 19 7 (VAL -3)/4 (VAL +35)/4
4 1 27 10 (VAL -5)/8 (VA1 +3)/8
55 151 57 (VA1 - 5)/2 (VAL 4 5)/2
6 1 18L 67 (VAL -3)/8 (VA4 5)/8
T2 5160 191 (VA1 -5)/1 (V14 3)/4
8 2 1213 419 (VA1 —3)/4 (VA1 +5)/4
9 1 1729 640 (VAL —-5)/8 (VA1 3)/8
10 5 90858 3649 (V41 -5)/2 (V41 +5)/2

The cycle is completed, and the cf is [2, *1, 2, 2, 1, *5]. The effect on

the 5 i i et i
_ forms is this, where the equivalences after the first are done with

transformations

71;:::(0 ‘"1)
1§ )

for which the § are —1,2,-2,1,--5,1,-2,2, ~1:
r iy N AN :

C(,1,-10) ~ (1,5, —4) ~ (—4,3,2) ~ (2,5, ~2) ~

(~2,3,4) ~ (4,5, =1) ~ (—1,5,4) ~ (4,3, ~2) ~
(—2,5,2) ~ (2,3, 4) ~ (—4,5,1).

The cumulative equivalence is achieved by the transformations com-

Ieal }j__ P
T = ( 1 1 )
° Qo P

“puted as follows:
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7 N 0 1
= w() )

S

48

ey e oo "-NP]' ‘MI).Z
10_1112 == ("“Cgl Q?
P OCEY F W7P2 P3
%hh&;ﬂ(MQ o
- Py Py
Toh 12151y = (Qa Qa)

Thus, for example, (1,1, -10) ~ (2,5, 2} under
9 8)
(1 5
We see that (1,5, —4) ~ (—1,5,4) under
T -—-40)
(10 Y

This provides us with the solution 642 -~ 41 - 10% = 4, which is the

fundamental solution for (3.11). Continuing to the end of the cycle, we

find that (1,5, --4) first becomes equivalent to itself under

449 w%m>
(wmom%M'

From this we get the solution 40982 — 41 - 6407 = 4, which is the .0

fundamental solution for (3.2).

Chapter 4

The Class Giroup

4.1  Representation and Genera

We come again to the subject of the representation of integers by forms.
Let us assume that, for a form f = (a, b, ¢) of discriminant A, integers
z and y exist 50 that [ represents r, that is, r = ax® 4 bay + cy®. This
18 a primilive representation if ged(z,y) = 1. If the representation is
primitive, then integers z and w exist so that xw ~ yz = 1. Then f

15 equivalent to a form f' = (r, s, {), where [’ is obtained from f by

)
z w/)’

using the transformation

o and equations (1.2). We note that the choice of f' is not unique, but

that different values of s differ by multiples of 2, and thus the different,

~ choices lead to cquivalent forms, That is, modulo 27, a unique s is

" determined from (2,y) such that

st Art = A, for some integer 1.



