Licence 2 — Mathématiques 2010–2011

Algèbre et Arithmétique 3

Contrôle continu// Corrigé

Documents, notes de cours ou de TD, téléphones portables, calculatrices sont interdits. **Justifiez toutes** vos réponses. Il est bon de relire sa copie...

Durée: 2 heures

Le barème est donné à titre indicatif.

Exercice 1 (4 points)

1 Soit G un groupe, e son élément neutre et a un élément de G et m un entier naturel tel $a^m = e$. Que peut-on dire de l'ordre de l'élément a?

Solution: On peut affirmer que l'ordre de a est un diviseur de m.

- 2 Donner la définition d'un idéal dans un anneau commutatif.
- **3** Quels sont les idéaux de l'anneau $(\mathbf{Z}, +, \times)$?
- 4 Le sous-ensemble $28\mathbf{Z} \cap 18\mathbf{Z}$ de \mathbf{Z} est-il un idéal de \mathbf{Z} ? Si oui, le déterminer.

Solution : Il s'agit de l'idéal $pgcd(18, 28)\mathbf{Z} = 252\mathbf{Z}$

5 Donner l'exemple de deux groupes finis de même ordre non isomorphes. Justifier le fait que les deux groupes choisis ne sont pas isomorphes.

Solution : $\mathbb{Z}/4\mathbb{Z}$ et $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ sont deux groupes d'ordre 4, mais le second dont tous les éléments sont d'ordre 1 ou 2 n'est pas cyclique.

6 Le groupe \mathfrak{S}_4 des permutations de $\{1, 2, 3, 4\}$ est-il cyclique? (justifier)

Solution: Comme (1,2)(1,3)(1,2)=(2,3), (1,2) et (1,3) ne commutent pas. Par conséquent, le groupe \mathfrak{S}_4 n'est pas cyclique.

Exercice 2 (3 points)

1 L'entier -1601 est-il un représentant de la classe $[-7387]_{2893}$ de $\mathbb{Z}/2893\mathbb{Z}$?

Solution : (-7387) - (-1601) = -5786 = (-2)2893 donc, l'entier -1601 est un représentant de la classe $[-7387]_{2893}$ de $\mathbb{Z}/2893\mathbb{Z}$.

2 Calculer l'élément 11^{329} dans $\mathbb{Z}/13\mathbb{Z}$. Le résultat doit être représenté par un nombre compris entre 0 et 12.

Solution : Par le petit théorème de Fermat, $11^{12}=1[13]$. On effectue la division euclidienne de 329 par 12. $329-27\times 12=5$. Par conséquent, $11^{329}=11^5[13]$. $11^2=121=4[13]$, $11^4=4^2=3[13]$, d'où $11^{329}=11^5=33=7[13]$

3 La classe [51] est-elle inversible dans l'anneau $\mathbb{Z}/131\mathbb{Z}$. Si oui, calculer son inverse dans $\mathbb{Z}/131\mathbb{Z}$. Le résultat doit être représenté par un nombre compris entre 0 et 130.

Solution : Puisque pgcd(51, 131) = 1, la classe [51] est inversible dans $\mathbb{Z}/131\mathbb{Z}$. En utilisant l'algorithme d'Euclide on trouve que $1 = 131 \times (-7) + 51 \times 18$. Alors, dans $\mathbb{Z}/131\mathbb{Z}$ on a $51^{-1} = 18$.

Exercice 3 (2 points)

1 Ecrire une relation de Bezout entre $X^2 + X + 1$ et $X^3 + X + 1$ dans $\mathbf{R}[X]$.

Solution : $X^3 + X + 1 = (X^2 + X + 1)(X - 1) + (X + 2)$ et $X^2 + X + 1 = (X + 2)(X - 1) + 3$. Une relation de Bezout entre $X^2 + X + 1$ et $X^3 + X + 1$ dans $\mathbf{R}[X]$ est

$$3 = (X^2 + X + 1) - (X + 2)(X - 1) = (X^2 + X + 1) - (X - 1)[(X^3 + X + 1) - (X^2 + X + 1)(X - 1)]$$

soit

$$3 = (-X+1)(X^3 + X + 1) + (X^2 - 2X + 2)(X^2 + X + 1).$$

 ${\bf 2}$ La classe du polynôme X^2+X+1 est-elle inversible dans l'anneau quotient ${\bf R}[X]/(X^3+X+1)$? Si oui, donner son inverse.

Solution: Puisque $X^3 + X + 1$ et $X^2 + X + 1$ sont premiers entre eux, la classe du polynôme $X^2 + X + 1$ inversible dans l'anneau quotient $\mathbf{R}[X]/(X^3 + X + 1)$. Son inverse est la classe de $(X^2 - 2X + 2)/3$, comme le donne la relation de Bezout.

Exercise 4 (4 points)

- 1 Quels sont les éléments inversibles de l'anneau $(\mathbf{Z}/12\mathbf{Z})$?
- **2** À quel groupe le groupe $(\mathbf{Z}/12\mathbf{Z})^{\times}$ des inversibles de l'anneau $(\mathbf{Z}/12\mathbf{Z})$ est-il isomorphe?

Solution : Comme $\phi(12) = \phi(3)\phi(2^2) = 2 \times 2 = 4$ il y a quatre éléments inversibles dans l'anneau ($\mathbf{Z}/12\mathbf{Z}$). Il s'agit de 1, -1 = 11, 5, -5 = 7. Comme $5^5 = 25 = 1[12]$, tous les éléments sont d'ordre 1 ou 2. Le groupe ($\mathbf{Z}/12\mathbf{Z}$) $^{\times}$ est donc isomorphe à $\mathbf{Z}/2\mathbf{Z} \times \mathbf{Z}/2\mathbf{Z}$. On peut aussi remarquer que par le théorème chinois, ($\mathbf{Z}/12\mathbf{Z}$) $^{\times} = (\mathbf{Z}/4\mathbf{Z})^{\times} \times (\mathbf{Z}/3\mathbf{Z})^{\times} = \mathbf{Z}/2\mathbf{Z} \times \mathbf{Z}/2\mathbf{Z}$.

Exercice 5 (4 points)

Voici la table d'un groupe G. Quel est l'ordre de G? Le groupe G est-il nécessairement

commutatif? Compléter la table en énonçant précisément les propriétés utilisées.

*	a	b	c	d	e
a			d		c
b	e		a		d
c		a			
d				d	e
e			b		a

Solution: Comme il s'agit d'un groupe d'ordre 5, il est cyclique donc commutatif. La table se complète donc en

*	a	b	c	d	e
a		e	d		c
b	e		a		d
c	d	a			b
d				d	e
e	c	d	b	e	a

Comme $de=e,\,d$ est l'élément neutre. La table se complète donc en

*	a	b	c	d	e
a		e	d	a	c
b	e		a	b	d
c	d	a		c	b
d	a	b	c	d	e
e	c	d	b	e	a

Par la propriété de carré latin, on peut terminer le tableau

*	a	b	c	d	e
a	b	e	d	a	c
b	e	c	a	b	d
c	d	a	e	c	b
d	a	b	c	d	e
e	c	d	b	e	a

Exercice 6 (3 points)

1 Calculer les produits dans \mathfrak{S}_7 , (1,2)(1,3) et (1,2)(2,3)(1,2).

Solution : Dans \mathfrak{S}_7 , (1,2)(1,3)=(132) et par conjugaison (1,2)(2,3)(1,2)=(1,3).

2 L'ensemble des transpositions de \mathfrak{S}_7 est-il un sous-groupe de \mathfrak{S}_7 ?

Solution: L'ensemble des transpositions de \mathfrak{S}_7 ne contient pas l'identité: ce n'est donc pas un sous-groupe de \mathfrak{S}_7 . Le premier calcul montre qu'il n'est pas non plus stable par produit.