Exercice 1 Considérons l'anneau $\mathbf{Z}[\sqrt{13}]$. À tout élément $x = a + b\sqrt{13}$ de $\mathbf{Z}[\sqrt{13}]$ on associe son conjugué $\overline{x} = a - b\sqrt{13}$.

1. Montrer que pour tous $x, y \in \mathbf{Z}[\sqrt{13}]$ on a

$$\overline{x+y} = \overline{x} + \overline{y}$$
 et $\overline{xy} = \overline{xy}$.

- 2. En considérant l'application $N: x \to x\overline{x}$, caractériser le groupe U des éléments inversibles de $\mathbb{Z}[\sqrt{13}]$. Vérifier que ± 1 , $\pm 18 \pm 5\sqrt{13}$ sont dans U.
- 3. Montrer que les éléments 2, $3 + \sqrt{13}$, $-3 + \sqrt{13}$ sont irréductibles dans $\mathbb{Z}[\sqrt{13}]$.
- 4. Montrer que l'anneau $\mathbf{Z}[\sqrt{13}]$ n'est pas factoriel.

Exercice 2 Quels sont les idéaux de l'anneau $\mathbb{Z}/3^37^2\mathbb{Z}$? Quelles sont les relations d'inclusions entre eux? Lesquels sont premiers?

Exercice 3 Soit $P = X^3 - 2X^2 + 2$.

- 1. Montrer que P est irréductible dans $\mathbf{Q}[X]$. En déduire que $\mathbf{Q}[\mathbf{X}]/(P)$ est un corps.
- 2. Soit $Q = X^4 3X^2 + 1$. Déterminer l'inverse de Q dans $\mathbf{Q}[\mathbf{X}]/(P)$.

Exercice 4 Soit A un anneau commutatif int \tilde{A} Ígre.

1. Soient f et g deux polynômes non constants à coefficients dans A. Dans l'anneau A[X,Y], on considère l'idéal I engendré par les polynômes f(X) et g(Y). Montrer que l'on a

$$I \neq A[X,Y].$$

2. Montrer que pour tout entier k tel que $1 \le k \le n$, l'idéal de $A[X_1, \ldots, X_n]$ engendré par X_1, \ldots, X_k est premier. Ces n idéaux sont-ils deux à deux distincts?

 $[\underline{\mathbf{Exercice}\ \mathbf{5}}]$ Soit A un anneau commutatif int $\widetilde{\mathbf{A}}$ Ígre. Soit I l'idéal de A[X,Y] engendré par X+Y.

- 1. Montrer que A[X,Y]/I est isomorphe à l'anneau A[X].
- 2. L'idéal I est-il premier? Est-il maximal?

Exercice 6

- 1. Montrer que $(\mathbf{Z}/6\mathbf{Z})[X]$ n'est pas factoriel.
- 2. Montrer que $\mathbf{Z}[\sqrt{-3}]$ n'est pas factoriel.
- 3. Donner un idéal non principal de $A = \mathbf{Z}[\sqrt{-3}]$.
- 4. Montrer que le sous-anneau A de $\mathbf{R}[X]$ engendré par X^2 et X^3 n'est pas factoriel.
- 5. Vérifier l'égalité $17 = (5 + 2\sqrt{2})(5 2\sqrt{2}) = (7 + 4\sqrt{2})(7 4\sqrt{2})$. Peut-on en déduire que $A = \mathbf{Z}[\sqrt{2}]$ n'est pas factoriel?
- 6. Soit A un anneau principal. Peut-on supposer que A ne possède pas d'éléments irréductibles ?

Exercice 7 Soit A un anneau commutatif. On dit que $x \in A$ est nilpotent si il existe n > 0 tel que $x^n = 0$

- 1. Montrer que l'ensemble N des éléments nilpotents de A est un idéal de A.
- 2. Montrer que le quotient A/N n'a pas d'élément nilpotent.
- 3. Trouver un exemple d'anneau A avec deux éléments x et y nilpotents tels que x+y n'est pas nilpotent.
- 4. Montrer que A n'a pas d'élément nilpotent si et seulement si tout élément inversible de A[X] est constant.

Exercice 8 Infinité des nombres premiers.

On définit le *n*-ième nombre de Fermat par $F_n = 2^{2^n} + 1$.

1. Montrer par récurrence que pour tout $n \ge 1$

$$F_n = \prod_{i=0}^{n-1} F_i + 2.$$

2. En déduire que les nombres de Fermat sont deux à deux premiers entre eux et qu'il y a une infinité de nombres premiers.

Exercice 9 Infinité des nombres premiers.

Pour a, b dans \mathbf{Z} avec $b \neq 0$, on définit l'ensemble $E_{a,b} = a + b\mathbf{Z} = \{a + bn \mid n \in \mathbf{Z}\}$. On munit \mathbf{Z} de la topologie dont les $E_{a,b}$ forment une base d'ouvert.

- 1. Montrer que chacun des $E_{a,b}$ est un ensemble ouvert et fermé pour cette topologie.
- 2. Montrer que tout ouvert de ${\bf Z}$ est soit vide, soit infini.
- 3. On note ${\mathcal P}$ l'ensemble des nombres premiers. Montrer que

$$\bigcup_{p\in\mathcal{P}} E_{0,p} = \mathbf{Z} \setminus \{-1,1\}.$$

4. En raisonnant par l'absurde, montrer que l'ensemble ${\mathcal P}$ est infini.

Exercice 10 On appelle triplet pythagoricien un triplet (a, b, c) d'entiers strictement positifs tels que $a^2 + b^2 = c^2$; autrement dit, a, b, c sont les longueurs des côtés d'un triangle rectangle, c étant la longueur de l'hypoténuse du triangle.

1) Soient m > n des entiers naturels premiers entre eux et k un entier naturel quelconque. Montrer que :

$$a = k(m^2 - n^2),$$
 $b = 2kmn,$ $c = k(m^2 + n^2)$

est un triplet pythagoricien.

Dans la suite de ce problème, on propose de montrer la réciproque. Soit donc (a, b, c) un triplet pythagoricien tel que a, b et c n'aient aucun diviseur premier commun.

- 2) Montrer que (a, b), (b, c), (c, a) sont des couples d'entiers premiers entre eux.
- 3) Montrer que a ou b est pair (on pourra raisonner modulo 4).

On suppose désormais b pair et on pose b = 2b'.

- 4) Montrer que $u = \frac{c+a}{2}$ et $v = \frac{c-a}{2}$ sont des entiers premiers entre eux.
- 5) Montrer que u et v sont des carrés d'entiers. Conclure.
- 6) Pour quelles valeurs de m et n obtient-on a = 10441 et c = 20809?