Théorie des nombres Feuille de TD N°2

Exercice 1

On considère l'anneau $A=\mathbf{Z}[i].$ Montrer que (1-i) est irréductible dans A. Vérifier que l'on a dans A

$$5 = (2+i)(2-i) = (1+2i)(1-2i),$$

et que ceci ne contredit pas la factorialité de A.

Exercice 2

Décomposer en produit d'irréductibles dans $\mathbf{Z}[j]$ les éléments 2-j, 5+j, 3, j, 7.

Exercice 3

Montrer que l'anneau $\mathbf{Z}[i\sqrt{2}]$ est euclidien (donc factoriel).

Exercice 4

1 Donner toutes les solutions dans \mathbf{Z}^2 des équations suivantes :

$$x^{2} + 2y^{2} = 6$$
, $x^{2} + y^{2} = 11$,
 $x^{2} - 6y^{2} = -1$.

2 On admet que l'anneau $\mathbf{Z}[i\sqrt{2}]$ est euclidien (donc factoriel). Factoriser 6 dans l'anneau $\mathbf{Z}[i\sqrt{2}]$ et retrouver les solutions dans \mathbf{Z}^2 de l'équation $x^2 + 2y^2 = 6$.

Exercice 5

Le but de cet exercice est de montrer que (3,5) et (3,-5) sont les seules solutions entières de l'équation

$$y^2 + 2 = x^3.$$

On admet que l'anneau $\mathbf{Z}[i\sqrt{2}]$ est euclidien (donc factoriel). En déduire que si $(x,y) \in \mathbf{Z}^2$ est une solution de l'équation, il existe des entiers a et b vérifiant

$$y + i\sqrt{2} = (a + ib\sqrt{2})^3.$$

Conclure.

Exercice 6

Soit $d \geq 3$ un entier, montrer que que dans l'anneau $\mathbf{Z}[i\sqrt{d}]$, 2 est irreductible et que l'idéal engendré par 2 n'est pas premier. L'anneau $\mathbf{Z}[i\sqrt{d}]$ est-il factoriel?

Dans $\mathbf{Z}[i\sqrt{5}]$, 11 est-il irréductible? L'idéal engendré par 11 est-il premier?

Exercice 7

Dans $A = \mathbf{Z}[i\sqrt{3}]$, on considère l'idéal I engendré par 2 et $1 + i\sqrt{3}$. Montrer que I est distinct de (2) et que $I^2 = (2).I$. En déduire que les idéaux de A ne se factorisent pas de manière unique en produit d'idéaux premiers. Montrer que I est l'unique idéal premier propre contenant (2). En déduire que (2) ne s'écrit pas comme produit d'idéaux premiers.

Exercice 8

Montrer que si $d \neq d'$ sont deux entiers positifs sans facteur carré, les corps $\mathbf{Q}[\sqrt{d}]$, $\mathbf{Q}[\sqrt{d'}]$, $\mathbf{Q}[i\sqrt{d}]$ et $\mathbf{Q}[i\sqrt{d'}]$ sont deux à deux non isomorphes.

Exercice 9

Soit $P = a_0 + a_1 X + \dots + a_n X^n \in \mathbf{Z}[X]$.

- 1 On suppose que P a une racine rationnelle non nulle x, avec $x = \frac{p}{q}$ et pgcd(p,q) = 1. Montrer que p divise a_0 et q divise a_n .
- **2** Le polynôme $7X^3 5X^2 9X + 4$ a-t-il des racines rationnelles? et $X^4 2X^2 3$?
- 3 Soit $n \in \mathbb{N}^*$. Montrer que \sqrt{n} est soit un entier, soit un irrationnel.

Exercice 10

Un polynôme de $\mathbf{Z}[X]$ est dit primitif si ses coefficients sont premiers entre eux dans leur ensemble.

- 1 Soit $P \in \mathbf{Z}[X]$ primitif. Montrer que si P est irréductible dans $\mathbf{Q}[X]$ alors il l'est dans $\mathbf{Z}[X]$.
- **2** Soit P de la forme $a_0 + a_1X + a_2X^2 + X^3 \in \mathbf{Z}[X]$. Montrer que si P est irréductible dans $\mathbf{Z}[X]$ alors il l'est dans $\mathbf{Q}[X]$.
- 3 Soit f et g deux polynômes primitifs de $\mathbf{Z}[X]$. Montrer que leur produit fg est primitif.
- 4 Soit h un polynôme primitif réductible dans $\mathbb{Q}[X]$. Montrer que h est réductible dans $\mathbb{Z}[X]$.

Plus généralement, on peut montrer que si A est un anneau factoriel et K son corps des fractions, les éléments irréductibles de A[X] sont les éléments irréductibles de A et les polynômes primitifs de A[X] qui sont irréductibles en tant que polynômes de K[X].

Exercice 11

Soient p un nombre premier et $P \in \mathbf{Z}[X]$. On note \bar{P} la réduction modulo p de P, c'est à dire l'élément de $\mathbf{Z}/p\mathbf{Z}[X]$ dont les coefficients sont les coefficients de P réduits modulo p.

- 1 Soit $P \in \mathbf{Z}[X]$ un polynôme unitaire. Montrer que si \bar{P} est irréductible dans $\mathbf{Z}/p\mathbf{Z}[X]$, alors P est irréductible dans $\mathbf{Z}[X]$.
- **2** Le polynôme $X^3 X 1$ est-il irréductible dans $\mathbb{Q}[X]$?
- 3 Montrer que $X^2 + 4$ est irréductible dans $\mathbf{Z}[X]$ mais réductible dans $\mathbf{Z}/2\mathbf{Z}[X]$.

Exercice 12

- 1 Enoncer le critère d'Eisenstein.
- **2** L'équation $X^5 + 6X^4 12$ a-t-elle des solutions dans **Z**, dans **Q**?