M2, Surfaces de Riemann, Feuille 5

Morphisme entre courbes elliptiques

Soient $(\Gamma_i)_{i=1,2}$ deux réseaux de \mathbb{C} et $\mathcal{E}_i = \mathbb{C}/\Gamma_i$ les courbes elliptiques correspondantes.

- 1) Soit $u: \mathcal{E}_1 \to \mathcal{E}_2$ une application holomorphe. Montrer que u se relève à \mathbb{C} en une application affine $\tilde{u} = \alpha z + \beta$, où $(\alpha, \beta) \in \mathbb{C}^2$ et $\alpha \Gamma_1 \subset \Gamma_2$.
- 2) En déduire que si u est injective et vérifie $u(O_1) = O_2$, alors u est un isomorphisme de groupe et il existe $\alpha \in \mathbb{C}^*$ tel que $\alpha \Gamma_1 = \Gamma_2$. On dira que ces réseaux sont équivalents.

Action du groupe modulaire

Dans cette partie, on détermine un domaine fondamental pour l'action de \mathbb{C}^* sur l'ensemble des réseaux : cela revient à paramétrer l'ensemble des classes de biholomorphismes des courbes elliptiques. Observons pour commencer que tout réseau Γ est équivalent à un réseau du type $\Gamma_{\tau} := \mathbb{Z} \oplus \tau \mathbb{Z}$, où $\Im(\tau) > 0$. En effet, si (ω_1, ω_2) est une base directe de Γ , le réseau $\frac{1}{\omega_1}\Gamma$ est égal à $\Gamma_{\frac{\omega_2}{\omega_1}}$, où $\Im(\frac{\omega_2}{\omega_1}) > 0$. Nous suffit donc travailler dans le demi-plan supérieur $\mathcal{H} := \{\Im(\tau) > 0\}$. On pose :

$$\forall g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{R}) , \quad \forall z \in \mathbb{C} \cup \{\infty\} , \quad g \cdot z = \frac{az+b}{cz+d}.$$

On appelle groupe modulaire le groupe quotient $SL_2(\mathbb{Z})/\{\pm Id\}$.

- 3) Vérifier que $\Im(g \cdot z) = \Im(z)/|cz + d|^2$. Le groupe $SL_2(\mathbb{R})/\{\pm Id\}$ agit donc sur \mathcal{H} .
- 4) Montrer que $\Gamma_{\tau'} = \alpha \Gamma_{\tau}$ si et seulement si il existe $g \in SL_2(\mathbb{Z})$ tel que

$$\tau' = g \cdot \tau$$
 et $\alpha = (c\tau + d)^{-1}$.

On a en particulier $\Gamma_{g\cdot\tau}=(c\tau+d)^{-1}\Gamma_{\tau}$. Nous montrons maintenant que $\mathcal{D}:=\{z\in\mathcal{H},\,|z|\geq 1\,,\,\Re(z)\leq \frac{1}{2}\}$ définit un domaine fondamental pour l'action du groupe modulaire sur \mathcal{H} . Introduisons G le sous-groupe de $SL_2(\mathbb{Z})/\{\pm Id\}$ engendré par :

$$S = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right) \quad , \quad T = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right).$$

- 5) Montrer que pour tout $\tau \in \mathcal{H}$, il existe $g \in G$ tel que $g \cdot \tau \in \mathcal{D}$. Indication : on pourra considérer un élément $g_0 \in G$ vérifiant $\Im(g_0 \cdot \tau) = \max_{g \in G} \Im(g \cdot \tau)$.
- 6) Soient $(\tau, \tau') \in \mathcal{D}$ distincts et équivalents sous l'action de $SL_2(\mathbb{Z})/\{\pm Id\}$. Alors ou bien $\Re(\tau) = \pm \frac{1}{2}$ et $\tau = \tau' \pm 1$, ou bien $|\tau| = 1$ et $\tau' = -1/\tau$.
- 7) Montrer que le stabilisateur $\mathsf{Stab}(\tau)$ de $\tau \in \mathcal{D}$ sous l'action de $SL_2(\mathbb{Z})/\{\pm Id\}$ est trivial, sauf si :
 - (i) $\tau = i$ et dans ce cas Stab (i) est d'ordre 2, engendré par S.
 - (ii) $\tau = \rho := e^{2i\pi/3}$ et $\mathsf{Stab}(\rho)$ est d'ordre 3, engendré par ST.
 - (iii) $\tau = \rho' := e^{i\pi/3}$ et $\mathsf{Stab}(\rho')$ est d'ordre 3, engendré par TS.
 - 8) Vérifier enfin que $G = SL_2(\mathbb{Z})/\{\pm Id\}$.

Formes modulaires

Nous avions introduit pour l'étude de la fonction \wp de Weierstrass les séries d'Eisenstein $G_{2k}(\tau) = \sum_{\gamma \in \Gamma_{\tau}^*} \gamma^{-2k}$. Ce sont des fonctions sur l'ensemble des réseaux $\{\Gamma_{\tau}, \tau \in \mathcal{H}\}$. On déduit de la question 4 la relation :

$$\forall g \in SL_2(\mathbb{Z}) , G_{2k}(\tau) = (c\tau + d)^{-2k} G_{2k}(g \cdot \tau).$$

Cela conduit aux définitions suivantes.

a) Soit $k \in \mathbb{N}$. Une fonction méromorphe f sur \mathcal{H} est dite faiblement modulaire de poids 2k si elle vérifie :

$$\forall g \in SL_2(\mathbb{Z}) , f(z) = (cz+d)^{-2k} f(g \cdot z).$$

Remarque : puisque $SL_2(\mathbb{Z})$ est engendré par S et T, cette propriété est vérifiée si et seulement si :

$$f(z) = f(z+1)$$
 et $f(z) = z^{-2k}f(-1/z)$.

La première relation montre qu'il existe F méromorphe sur \mathbb{D}^* telle que $f(z) = F(e^{2i\pi z})$. On note $F(q) = \sum_{n \in \mathbb{Z}} a_n q^n$ le développement de Laurent de F en l'origine. On dit que :

- b) f est méromorphe à l'infini si F possède un pôle d'ordre fini en l'origine,
- c) f est holomorphe à l'infini si F est holomorphe en l'origine. Enfin :
- d) une fonction modulaire est une fonction faiblement modulaire et méromorphe à l'infini,
- e) une forme modulaire est une fonction modulaire holomorphe, sur \mathcal{H} et à l'infini.

Vérifions que les séries d'Eisenstein $(G_{2k})_{k\geq 2}$ sont des formes modulaires.

- 1) Montrer que la série G_{2k} converge normalement sur \mathcal{D} . En déduire que G_{2k} est holomorphe sur \mathcal{H} .
 - 2) Montrer que G_{2k} possède une limite à l'infini, égale à $2\zeta(2k) := 2\sum_{n\geq 1} n^{-2k}$.