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pour le grade de

DOCTEUR DE L’UNIVERSITÉ DE RENNES 1
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examinateur
Jean-Philippe NICOLAS
Professeur-Université de Brest
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Introduction

Les équations de l’écoulement d’un fluide parfait incompressible remontent
aux travaux d’Euler (1707-1783). A supposer que le fluide est isolé et s’écoule
dans un espace Rd avec d > 1, ces équations s’écrivent

(0.0.1) ∂tu+ (u · ∇)u+∇p ≡ 0 , div u ≡ 0 .

Ici u ∈ Rd et p ∈ R représentent respectivement la vitesse et la pression du
fluide. On complète (0.0.1) en fixant les valeurs de u à l’instant initial

(0.0.2) u(0, x) ≡ u0(x) .

La théorie d’existence et d’unicité pour le problème de Cauchy (0.0.1)-(0.0.2)
associé à une condition initiale u0(x) régulière est maintenant bien établie
[3, 19, 21]. En revanche, de nombreuses questions restent ouvertes en ce
qui concerne les phénomènes susceptibles de se produire lorsque la régularité
de u0 se dégrade. L’objectif de ce document est précisément d’apporter un
éclairage sur ces aspects.

Une perte d’informations sur la régularité de u0 peut se modéliser par une
explosion de la norme L∞ de certaines dérivées de u0. Cela se produit en
particulier lorsque l’expression u0 se met à varier rapidement, disons sur
des longueurs de taille ε avec ε ∈ ]0, 1] qui tend vers 0, dans les directions
transverses à un feuilletage prescrit de Rd. On a alors affaire à une famille de
conditions initiales uε0 pouvant être représentée sous la forme d’une oscillation
monophase. On a typiquement

(0.0.3) uε0(x) = hε(x) = Hε
(
x,
ϕ(x)

ε

)
, ε ∈ ]0, 1]

pour une phase ϕ ∈ C2(Rd; R) et un profil Hε(x, θ) ∈ C2(Rd × T; Rd) qui
dépend de la variable lente x choisie dans l’espace physique Rd et de la
variable rapide θ décrivant le tore T := R/Z. On note H := H0 le profil
principal que l’on suppose non trivial au sens où ∂θH 6≡ 0. On dit alors de
l’oscillation uε0 qu’elle est de grande amplitude.
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En l’absence d’hypothèses supplémentaires, le problème de Cauchy oscillant
(0.0.1)-(0.0.3) est réputé mal posé [24]. Une part des difficultés [9] provient
de la façon dont les oscillations sont gérées par la contrainte de divergence
nulle. Dans ce qui suit, on s’intéresse au cas de données initiales hε dont la
matrice Jacobienne Dxh

ε est nilpotente. Plus précisément, on suppose qu’il
existe un entier r ∈ {2, · · · , d} tel que

(0.0.4) Dxh
ε(x)r = 0 , ∀ (ε, x) ∈ ]0, 1]× Rd .

Le Théorème 2.6 énoncé dans [6] garantit alors qu’il suffit de résoudre le
système dit des gaz sans pression [12, 14, 22], à savoir

(0.0.5) ∂tu
ε + (uε · ∇)uε ≡ 0

en vue de récupérer des solutions uε de (0.0.1). C’est ce point de vue qui
sera adopté. Avant toute chose, la question se pose de savoir s’il est possible
de construire des familles {hε}ε vérifiant simultanément les deux contraintes
(0.0.3) et (0.0.4). Il s’agit là d’un problème d’optique géométrique assez
atypique, posé dans un contexte non encore répertorié, et qui ne se ramène
pas à des situations connues.

Le système d’équations aux dérivées partielles (0.0.4) contient l’équation de
Monge-Ampère ”detDxh

ε(x) ≡ 0” ainsi que d’autres contraintes. Il présente
un caractère non linéaire évident. Sa complexité fait que, à l’exception de
quelques cas très spécifiques signalés dans [6], son étude générale sous couvert
de (0.0.3) n’a pas encore été complètement traitée.

Une fois les structures des fonctions hε identifiées, on souhaiterait déterminer
la façon dont elles se trouvent propagées via l’équation d’évolution (0.0.5).
Le régime envisagé étant sur-critique [8, 11, 15], de violentes instabilités sont
susceptibles de survenir.

En particulier, pour d = 3, lorsque le profil Hε(x, θ) incorpore des oscillations
dans des directions ∇ψ(x) qui sont transverses à ∇ϕ(x), il peut se produire
une superposition d’oscillations. En l’occurrence, la phase ψ se met à osciller
selon ϕ à la fréquence ε−1. Il s’ensuit que les dérivés de uε à un instant t > 0
sont de taille ε−2 alors qu’elles sont en ε−1 à l’instant initial t = 0.

Ainsi, le passage de t = 0 à tout instant t > 0 s’accompagne d’un changement
qualitatif brutal dans le comportement asymptotique de la famille {uε}ε.
Cette monté instantanée vers les hautes fréquences traduit une complexité
soudainement croissante des mouvements du fluide, renvoyant (pour ε→ 0) à
l’image de ce que seraient les turbulences. La justification de tels phénomènes
a déjà été entreprise dans [5], mais c’était en dehors du contexte de divergence
nulle considéré ici, qui complique beaucoup la discussion.
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Au delà de ces motivations physiques, l’objectif de cette thèse est surtout
de fournir une analyse BKW complète de (0.0.4) dans le cadre fourni par
(0.0.3). Ce faisant, on aura besoin de dégager les structures géométriques
(feuilletages) qui s’avèrent génériquement compatibles avec la propagation
d’oscillations de grande amplitude.

Les deux paragraphes qui suivent font un bref descriptif des résultats qui
sont obtenus dans ce mémoire de thèse.

0.1 Résumé de la première partie.

La partie 1 fait l’objet d’un article déjà publié [7]. La discussion porte au
départ sur un système qui généralise quelque peu (0.0.5). Etant donnée une
fonction V ∈ C∞(Rd; Rd), on y considère les équations

(0.1.1) ∂tu
ε + (V ◦ uε · ∇x) u

ε = 0, ε ∈ ]0, 1], d ∈ N, d > 2 .

On complète (0.1.1) à l’aide d’une famille de données initiales {uε0}ε ajustée
comme en (0.0.3). On fixe r > 0 et on travaille sur des domaines localisés en
espace, du type

ΩT
r :=

{
(t, x) ∈ [0, T ]× Rd; | x | +t V < r

}
, (V, T, r) ∈ (R∗

+)3 .

On pose W := V ◦H. On suppose que les ingrédients V, Hε et ϕ sont des
fonctions régulières, disons de classe C1. On impose de plus ∂θW 6≡ 0 et le
caractère non stationnaire de la phase

(0.1.2) ∇ϕ(x) 6≡ 0 , ∀x ∈ Ω0
r .

La contrainte (0.1.1) forme un système hyperbolique quasilinéaire qui admet
une vitesse de propagation finie contrôlée par

V := Sup
{
| V ◦Hε(x, θ) | ; (ε, x, θ) ∈ [0, 1]× Ω0

r × T
}
.

Le paramètre ε ∈ ]0, 1] étant fixé, des résultats standards [20] garantissent
l’existence de T ε > 0 tel que le problème de Cauchy (0.1.1)-(0.0.3) ait une
solution uε(t, x) de classe C1 sur ΩT ε

r . Par contre, on a généralement

(0.1.3) lim
ε→0

sup T ε = 0 .

Les obstructions viennent de la formation éventuelle de chocs. Notant

Xε(t, x) := x + t W ε
(
x,
ϕ(x)

ε

)
, W ε := V ◦Hε ,

le croisement des droites (dites caractéristiques)
{
Xε(t, x) , t ∈ R+

}
peut en

effet venir contredire la persistence de la régularité C1 de uε. La définition
1.2.1 qui suit met de coté les situations pour lesquelles cela ne se produit pas.
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Définition 0.1.1. La famille {hε}ε est dite compatible s’il existe un instant
T > 0 et une constante c > 0 tels que

(0.1.4) det DxXε(t, x) > c > 0 , ∀(t, x, ε) ∈ [0, T ]× Ω0
r×]0, 1] .

Il est possible de traduire le critère (0.1.4) sous la forme des conditions
nécessaires et suffisantes contenues dans (1.2.13), portant sur le couple (ϕ,W ).
C’est ce qui est fait au niveau de la Proposition 1.2.3. Toutefois, la contrainte
(1.2.13) se prète difficilement à une étude complète. C’est pourquoi, dans
une première approche, on a eu recours à des conditions plus restrictives (qui
restent cependant intrinsèques) sous la forme de la notion suivante.

Définition 0.1.2. Le couples (ϕ,W ) ∈ C2(Ω0
r; R) × C1(Ω0

r × T; Rd) est dit
bien préparé s’il satisfait le système de contraintes suivant

(0.1.5)

{
∂θW (x, θ) ⊂ ∇ϕ⊥
Π∂θW (x,θ)⊥ DxW (x, θ) Π∇ϕ(x)⊥ = 0

, ∀(x, θ) ∈ Ω0
r × T

où Πu désigne le projecteur orthogonal dans la direction u ∈ Rd.

Le chapitre 1.3 est consacré à la discussion du système non linéaire (0.1.5).
Cela requiert en premier lieu la succession des Lemmes 1.3.1, 1.3.2 et 1.3.3
en vue de mettre en valeur les conditions satisfaites par la phase ϕ. Celle-ci
doit être localement constante suivant un champ d’espaces vectoriels noté E.
Une fois la structure de ϕ dégagée, il devient possible d’identifier celle du
profil W via un travail de factorisation, voir la Proposition 1.3.1.

La partie 1.4 aborde le problème de l’évolution en temps. Par construction,
on sait que toute famille {hε}ε issue d’un couple (ϕ,W ) bien préparé donne
lieu à l’existence d’une suite {uε}ε composée de solutions de (0.1.1) sur un
domaine ΩT

r indépendant de ε ∈ ]0, 1]. On peut même établir la propagation
de (0.1.5) au travers de (0.1.1).

Théorème 1. On se donne un couple (ϕ,W ) bien préparé. Alors, le problème
de Cauchy formé par le système (à priori surdéterminé)

(0.1.6)


∂tH + V ◦H · ∇xH = 0,
∂tΦ + (V ◦H) · ∇xΦ = 0,
V ◦H∗ · ∇xΦ = 0,

associé à la donnée initiale

(0.1.7) H(0, x, θ) = H(x, θ), Φ(0, x) = ϕ(x)

admet une solution unique sur ΩT
r ×T pour un certain T > 0. L’onde simple

uε(t, x) := H
(
t, x,Φ(t, x)/ε

)
ainsi récupérée est solution de (0.1.1) sur ΩT

r .
De plus, pour tout t ∈ [0, T ], la trace

(
Φ(t, .),H(t, .)

)
vérifie (0.1.5).
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0.2 Résumé de la second partie.

La seconde partie est consacrée uniquement à (0.0.5) dans le seul cas de la
dimension trois (d = 3). Il s’agit cette fois-ci d’aboutir à une discussion
aussi complète que possible de ce que contient le système (0.0.3)-(0.0.4). La
prise en compte des situations non encore traitées dans la Partie 1 s’avère en
fait délicate. Elle fournit sa matière aux longs développements de la Partie
2 et requiert une analyse fine qui, comme on le verra, est en lien avec des
questions de géométrie.

Le problème en question admet à première vue une formulation simple. On
cherche toutes les familles {hε}ε impliquant des données initiales hε qui se
mettent sous la forme

(0.2.1) hε(x) = w
(
x,
ϕ(x)

ε

)
, ∂θw 6≡ 0 , ∀ (ε, x) ∈ ]0, 1]× Ω0

r

pour une phase ϕ non stationnaire, et vérifiant

(0.2.2)
(
Dxh

ε(x)
)r

= 0 , r ∈ {2, 3} , ∀ (x, ε) ∈ Ω0
r×]0, 1] .

On peut formaliser cette double propriété (0.2.1)-(0.2.2) au niveau du couple
(ϕ,w) suivant la définition suivante.

Définition 0.2.1. Soit ϕ ∈ C1(Ω0
r; R) et w ∈ C1(Ω0

r × T; R3) tels que

(0.2.3) ∂θw(x, θ) 6= 0, ∇ϕ(x) 6= 0.

Le couple (ϕ,w) est dit compatible sur le domaine Ω0
r si la famille {hε}ε qui

est construite à partir de (ϕ,w) via (0.2.1) vérifie (0.2.2).

Une étape préliminaire (Proposition 2.2.1) consiste à identifier via des calculs
formels les conditions à imposer sur ϕ et w. Lorsque

rg
(
Dxw(x, θ)

)
= dim

(
Im(Dxw)(x, θ)

)
= 1 , ∀ (x, θ) ∈ Ω0

r × T ,

on peut écrire w sous la forme

w(x, θ) = W
(
ψ(x, θ), θ

)
, ∀ (x, θ) ∈ Ω0

r × T

puis extraire le système d’équations (2.2.8)-(2.2.10)-(2.2.9) portant sur les
ingrédients que sont ϕ, ψ et W (voir le Lemme 2.2.1). Il devient alors assez
facile de conclure.

En revanche, sous l’hypothèse

rg
(
Dxw(x, θ)

)
= dim

(
Im(Dxw)(x, θ)

)
= 2 , ∀ (x, θ) ∈ Ω0

r × T ,
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le travail de factorisation de la fonction w s’avère plus compliqué. Il faut la
Proposition 2.2.2 pour établir qu’on peut obtenir

w(x, θ) = W
(
ϕ(x), ψ(x, θ), θ

)
, ∀ (x, θ) ∈ Ω0

r × T

tandis que la Proposition 2.2.3 met en valeur les contraintes (2.2.17), (2.2.18),
(2.2.19) et (2.2.20) qu’il convient de retenir en ce qui concerne ϕ, ψ et W. Ces
deux derniers énoncés 2.2.2 et 2.2.3 sont prouvés respectivement au niveau
des chapitres 2.2.2 et 2.2.3.

On remarque alors que l’annulation ou non de la quantité ∇ϕ · ∂ψW joue
un rôle intrinsèque, au sens où elle n’est pas modifiée par les changements
d’inconnues naturellement autorisés. On distingue donc deux situations, celle
correspondant à ∇ϕ · ∂ψW ≡ 0, et celle pour laquelle ∇ϕ · ∂ψW 6≡ 0.

Lorsque∇ϕ·∂ψW ≡ 0, on retrouve des structures similaires à celles observées
dans la Partie 1. Par exemple, il existe deux fonctions f et g donnant lieu à

∇ϕ ≡ t
(
f(ϕ), 1, g(ϕ)

)
∂2ϕ .

Pour autant, en vue d’aboutir à une description complète de ce cas, il convient
d’incorporer quelques aspects inédits (en comparaison de la Partie 1).

Le traitement de l’autre situation, lorsque ∇ϕ · ∂ψW 6≡ 0, réclame une tout
autre démarche qui occupe l’essentiel de ce qui suit. Le point de départ est
fourni par le système de contraintes du Lemme 2.4.1. Il s’agit maintenant de
trouver des fonctions ϕ, ψ et W non triviales dans le sens où

∇ϕ ∧∇ψ 6≡ 0 , ∂ϕW ∧ ∂ψW 6≡ 0 , ∂θw 6≡ 0

et ajustées de manière à ce qu’il existe une fonction k(x, θ) telle que

(0.2.4)



∇ϕ · ∂θw = 0 ,
∇ψ · ∂θw = 0 ,

∇ϕ ·
(
∂ϕW − k ∂ψW) = 0 ,

∇ψ ·
(
∂ϕW − k ∂ψW) = 0 ,

(k ∇ϕ+∇ψ) · ∂ϕW = 0 ,
(k ∇ϕ+∇ψ) · ∂ψW = 0 .

Un travail de reformulation mené au Paragraphe 2.4.1.1 (voir la Proposition
2.4.1) permet dans un premier temps de remplacer (0.2.4) par

(0.2.5)


∂1ϕ+ ∂vL(ψ, v) ∂3ϕ+

∂θψ

∂θv

[
∂2ϕ+ ∂ψL(ψ, v) ∂3ϕ

]
≡ 0 ,

∂1ψ + ∂vL(ψ, v) ∂3ψ +
∂θψ

∂θv

[
∂2ψ + ∂ψL(ψ, v) ∂3ψ

]
≡ 0 ,

∂1ψ + ∂vL(ψ, v) ∂3ψ −
∂θψ

∂θV
∂ϕV

[
∂1ϕ+ ∂vL(ψ, v) ∂3ϕ

]
≡ 0 .
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Quelques précisions sont nécessaires pour la lecture de (0.2.5). Il faut dire
que les expressions ∂θV et ∂ϕV sont évaluées au point

(
ϕ(x), ψ(x, θ), θ

)
, que

la fonction L induit de la non linéarité, et que le symbole v désigne

v(x, θ) := V
(
ϕ(x), ψ(x, θ), θ

)
.

Bien que déjà pas mal décanté, le système (0.2.5) n’est pas pour autant
directement exploitable. Il faut encore effectuer plusieurs changements de
variables (voir le Paragraphe 2.4.1.2) afin d’isoler la clé sur laquelle repose
l’ensemble de l’édifice.

Les systèmes (0.2.4) et (0.2.5) sont tout à fait spécifiques à la problématique
qui a été mise en place. Visiblement, ils n’ont jamais été étudiés. Du coup,
la méthode employée pour les résoudre est complètement originale. Elle ne
s’appuie pas du tout sur une approche classique en optique géométrique.

La stratégie, a priori peu naturelle mais a fortiori incontournable, consiste à
éclater la phase ϕ(x) en une fonction Φ(x1, x2, u, v) qui au lieu de dépendre
des trois variables x1, x2 et x3 met en jeu quatre variables notées x1, x2, u
et v. On passe de R3 à R4. L’expression Φ ainsi obtenue doit vérifier deux
équations de transport dans R4, en l’occurrence

X Φ ≡ 0 , X := ∂1 +R(x1, x2, u, v) ∂2 ,(0.2.6)

Y Φ ≡ 0 , Y := R(x1, x2, u, v) ∂u + ∂v .(0.2.7)

Intuitivement, la première contrainte (0.2.6) peut être assimilée à la condition
∂θϕ ≡ 0. Elle est destinée à faire en sorte que la non linéarité n’induise pas
une auto-oscillation de la phase ϕ : on veut que la fonction ϕ ne se mette pas
à dépendre de θ ce qui ne va pas de soi compte tenu de la force des effets non
linéaires en présence. Quant à la seconde restriction (0.2.7), elle provient de
(0.2.2) à l’issu du long travail de ré-interprétation qui a été effectué.

Le point crucial maintenant, c’est que toute fonction Φ compatible avec
(0.2.6) et (0.2.7) doit aussi vérifier Z Φ ≡ 0 pour tout champ de vecteurs
Z appartenant à l’algèbre de Poisson A engendrée par X et Y . Comme la
construction impose que le gradient de ϕ (et donc de Φ) soit non trivial, il
faut nécessairement que la dimension de A soit inférieure ou égale à 3. Ce
critère induit le système d’équations aux dérivées partielles (2.4.38) dans le
cas dimA = 2. Par contre, lorsque dimA = 3, on doit gérer :

(XR) Y XR− 2 (XR) XY R + (Y R) X2R ≡ 0 ,(0.2.8)

(Y R) XY R− 2 (Y R) Y XR + (XR) Y 2R ≡ 0 .(0.2.9)

Par ailleurs, la fonction R étant issue du procédé de réduction, elle doit être
soumise aux contraintes attenantes. Plus précisément, on doit avoir

R
(
x1, x2, u(x, v), v

)
= ∂vu(x, v)
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pour une certaine fonction u(x, v) ∈ C1(R; R) qui est astreinte à la double loi
de conservation scalaire

(0.2.10) ∂2u + ∂uL(u, v) ∂3u = 0 , ∂1u + ∂vL(u, v) ∂3u = 0 .

Le chapitre 2.4.3 montre que toute fonction R obtenue par un tel procédé
s’écrit sous la forme

(0.2.11) R = − ∂vα

∂uα
, α := K(u, v) + ∂vL(u, v) x1 + ∂uL(u, v) x2

où K et L sont deux fonctions quelconques prises dans C1(R2; R). Arrivé à
ce stade, l’enjeu consiste à pouvoir résoudre (0.2.8)-(0.2.9) en s’appuyant sur
la liberté dont on dispose quant au choix des fonctions K et L. Autrement
dit, il s’agit de tester les conditions d’intégrabilité (0.2.8) et (0.2.9) dans le
contexte offert par (0.2.11).

Ce programme est ce qui fournit la matière du chapitre 2.4.4. Les différentes
situations possibles sont triées selon la dimension de l’algèbre A (c’est à
dire 2 ou 3) puis, plus finement, selon l’annulation ou non des quantités
XR ou Y R. On obtient ainsi une une classification (presque exhaustive) de
tous les coefficients R autorisés. Vient ensuite un travail de reconstruction
permettant de remonter de la connaissance de R à l’identification de ϕ, ψ
et W. C’est ce qui est fait au niveau du chapitre 2.4.5. Quelques exemples
venant illustrer la façon dont la procédure peut se concrétiser sont apportés
à l’occasion du chapitre 2.4.6.

Le chapitre 2.5 est consacré au problème de l’évolution en temps. Il met en
oeuvre les objets ϕ, ψ et W extraits ci-dessus de la manière suivante.

Théorème 2. Il existe un instant T > 0 tel que le système suivant (qui a
priori est surdéterminé)

(0.2.12)


∂tΦ +

(
W(Φ,Ψ, θ) · ∇

)
Φ = 0 ,

∂tΨ +
(
W(Φ,Ψ, θ) · ∇

)
Ψ = 0 ,(

∂θW(Φ,Ψ, θ) + ∂θΨ∂ψW(Φ,Ψ, θ)
)
· ∇Φ = 0 ,

associé aux données initiales Φ(0, x) = ϕ(x) et Ψ(0, x, θ) = ψ(x, θ) admette
une unique solution sur ΩT

r × T. Pour tout ε ∈ ]0, 1], l’oscillation

uε(t, x) := W
(
Φ(t, x),Ψ

(
t, x,

Φ(t, x)

ε

)
,
Φ(t, x)

ε

)
, ε ∈ ]0, 1]

est solution de (0.0.1) et (0.0.5) sur ΩT
r × T. De plus, pour tout t ∈ [0, T ]

le couple
(
Φ(t, .),W̃(t, .)

)
où W̃(t, x, θ) = W

(
Φ(t, x),Ψ(t, x, θ), θ

)
est encore

compatible sur le domaine B(0, r − tV [×T.
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Le paragraphe 2.5.2 revient sur le phénomène de superposition des phases
qui a été évoqué précédemment, en vue de l’illustrer au travers d’un exemple
concret. Tout compte fait, son apparition apparait comme un sous-produit
assez anecdotique de l’analyse.

Il y a aussi une annexe qui se positionne comme suit. La Proposition 2.4.4
traite du problème soulevé par l’étude du système (0.2.8)-(0.2.9) complété
de (0.2.11), ceci dans le cas le plus complexe à savoir lorsque dimA = 3,
XR 6≡ 0 et Y R 6≡ 0. Pour simplifier la présentation, l’énoncé 2.4.4 fournit
directement des formules possibles pour K et L, puis se contente de vérifier
qu’elles conviennent. Montrer que la liste ainsi obtenue est exhaustive est
loin d’être facile. Ce seul point réclame les raisonnements subtils et les lourds
calculs placés en Appendice 2.6.
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Chapter 1

Compatibility conditions to
allow some large amplitude
WKB analysis for Burger’s
type systems.

Abstract. In this article, we discuss the problem of finding large amplitude
asymptotic expansions for monophase oscillating solutions of the following multi-
dimensional (d > 1) Burger’s type system

(♦) ∂tu + (V ◦u ·∇x)u = 0 , u ∈ Rd , (t, x) ∈ R×Rd , V ∈ C1(Rd; Rd) .

More precisely, we are concerned with families {uε}ε∈ ]0,1] made of solutions to (♦)
and having a development of the form uε(t, x) = H

(
t, x, Φ(t,x)

ε

)
+ O(ε) where the

function θ 7−→ H(t, x, θ) is periodic. In general, due to the formation of shocks,
such a construction is not possible on a domain Ω which does not depend on
ε ∈ ]0, 1]. In this article, we perform a detailed analysis of the restrictions to im-
pose on the profile H and on the phase Φ in order to remedy this. Among these
compatibility conditions, we can isolate some new interesting system of nonlinear
partial differential equations : see (1.1.11). We explain how to solve it and we de-
scribe how the underlying structure is propagated through the evolution equation.

14
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1.1 Introduction.

Note x = (x1, · · · , xd) ∈ Rd and

|x| :=
( d∑
j=1

x 2
j

) 1
2 , ∂j :=

∂

∂xj
, ∂θ :=

∂

∂θ
.

Let (T,V, r) ∈ (R∗
+)3. Work on the domain

ΩT :=
{

(t, x) ∈ [0, T ]× Rd ; |x|+ V t ≤ r
}
, d ∈ N \ {0, 1} .

Select a function V ∈ C1(Rd; Rd) and consider the Burger’s type system

(1.1.1) ∂tu + (V ◦ u · ∇x)u = 0 , u ∈ Rd , (t, x) ∈ ΩT .

Associate (1.1.1) with a family of initial datas

(1.1.2) uε(0, x) = hε(x) = H
(
x,
ϕ(x)
ε

)
+ O(ε) , ε ∈ ]0, 1]

defined on the ball B(0, r] := {x ∈ Rd ; |x| ≤ r}, built with

H(x, θ) ∈ C1(B(0, r]× T; Rd) , ϕ(x) ∈ C1(B(0, r]; R) , T := R/Z

and consisting of large amplitude high frequency monophase oscillating waves,
which means to require a non trivial (main) profile

(1.1.3) ∃ (x, θ) ∈ B(0, r]× T ; ∂θW (x, θ) 6= 0 , W := V ◦H

and a non stationary phase

(1.1.4) ∇xϕ(x) 6= 0 , ∀x ∈ B(0, r] .

To describe more precisely the expressions involved in (1.1.2) , select a function

H : [0, 1]×B(0, r]× T −→ Rd

(ε, x, θ) 7−→ Hε(x, θ)

which is smooth with respect to the parameter ε ∈ [0, 1]

H ∈ C∞
(
[0, 1]; C1(B(0, r]× T; Rd)

)
and whose Taylor expansion near ε = 0 is noted

(1.1.5) Hε(x, θ) := H(x, θ) +
m∑
j=1

εj Hj(x, θ) + O(εm+1) , m ∈ N∗ .

Define :

(1.1.6) hε(x) := Hε
(
x,
ϕ(x)
ε

)
, W ε(x, θ) := V ◦Hε(x, θ) .
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Associate (1.1.1) with the family of initial datas {hε}ε∈]0,1]. The evolution equation
(1.1.1) is a quasilinear (diagonal) system of hyperbolic equations. The speed of
propagation is finite. More precisely, it can be uniformly controlled by

R 3 V :=
{

sup |V ◦Hε(x, θ)| ; (ε, x, θ) ∈ [0, 1]×B(0, r]× T
}
.

Standard results [20] guarantee the existence of T ε > 0 such that the Cauchy
problem (1.1.1)-(1.1.2) has a local C1 solution uε(t, x) on the truncated cone ΩT ε .
In the context of (1.1.1) , the limitations on T ε are due to the formation of shocks.
The size of T ε can be estimated very precisely [1, 5, 22] in terms of hε. In general,
this yields

(1.1.7) lim sup
ε−→ 0

T ε = 0 .

In this article, we exhibit solutions uε on a fixed domain ΩT (with T > 0) having
the asymptotic description

(1.1.8) uε(t, x) = H
(
t, x,

Φ(t, x)
ε

)
+ O(ε) , ε ∈ ]0, 1] .

The main novelty in comparison with usual works [18] in WKB analysis is the size
of the involved oscillations. Indeed, in a quasilinear context such as (1.1.1), the
standard regime is given by weakly nonlinear geometric optics [16] which means to
consider expansions of the following form

(1.1.9) uε(t, x) = u(t, x) + ε H1
(
t, x,

Φ(t, x)
ε

)
+ O(ε) , ε ∈ ]0, 1] .

Of course, to deal with (1.1.8) in place of (1.1.9) requires to manage much stronger
nonlinear phenomena. In particular, the interplay between the phase Φ and the
profile H is reinforced.

In fact, the construction can be faced only if the expressions ϕ := Φ| t=0 and
H := H| t=0 satisfy very special restrictions. The corresponding constraints in the
case of the dimension d = 2 are brought out in the recent contribution [5]. The
aim of the present paper is precisely to generalize the discussion when d > 2 and
to study more deeply the structure to impose on ϕ and H.

• In the Section 2, we exhibit (Proposition 1.2.2) necessary and sufficient com-
patibility conditions on ϕ(x) and W (x, θ) := V ◦ H(x, θ) in order to guarantee
that

(1.1.10) lim inf
ε−→ 0

T ε = T̃ > 0 .

From these compatibility conditions, we can isolate some interesting system of
nonlinear partial differential equations which we introduce below.
Let u = t(u1, · · · ,ud) ∈ Rd. Note u⊥ or tu⊥ the hyperplane of Rd composed with
the directions orthogonal to the vector u, that is
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u⊥ ≡ tu⊥ :=
{
v = t(v1, · · · ,vd) ∈ Rd ; tv · u =

∑d
j=1 vj uj = 0

}
.

Consider the orthogonal projector ΠF from Rd onto the vector space F , that is
the operator ΠF defined by the conditions

u = ΠF u + (I −ΠF )u , ΠF u ∈ F , (I −ΠF )u ∈ F⊥ .

Select W ∈ C1(B(0, r]×T; Rd). The symbol DxW (x, θ) is for the Jacobian matrix

DxW (x, θ) =
(
∂jWi(x, θ)

)
1≤i,j≤d , W (x, θ) = t(W1, · · · ,Wd) .

Définition 1.1.1. The couple

(ϕ,W ) ∈ C2(B(0, r]; R)× C2(B(0, r]× T; Rd)

is said to be well prepared if it satisfies the following system

(1.1.11)
{
∂θW (x, θ) ⊂ ∇ϕ(x)⊥

Π∂θW (x,θ)⊥ DxW (x, θ) Π∇ϕ(x)⊥ = 0 , ∀ (x, θ) ∈ B(0, r]× T .

As explained before, the study of (1.1.11) is the main motivation of the present
article. Indeed, the structure of (1.1.11) is new and interesting. It is not a usual
quasilinear system because it is made of fully nonlinear constraints on the deriva-
tives ∂jWi, ∂θWi and ∂jϕ. It extends to the case d ≥ 3 preliminary conditions
which have been emphasized (only when d = 2) in the recent contribution [5].

• In the Section 3, we work under natural assumptions on ϕ and W . In this
framework, we succeed in classifying all the solutions of (1.1.11). The fact that such
a complete discussion is available is very surprising. At all events, this confirms
the coherence of (1.1.11).

The first observation is that any phase ϕ involved in (1.1.11) inherits some affine
structure. Its level surfaces must be spanned by pieces of vector spaces (see Lem-
mas 1.3.2 and 1.3.3). This geometrical particularity seems to always play an im-
portant part when dealing with phase involved in a supercritical WKB calculus, as
here. Once ϕ is determined, it becomes possible to identify all the profiles W (x, θ)
which are subjected to (1.1.11). This is done in Proposition 1.3.1. Quite a lot
freedom is available in the construction of W (x, θ).

The function W (x, θ) can be put in the form

W (x, θ) = W‖
(
ϕ(x), ψ(x, θ)

)
+ W⊥

(
ϕ(x)

)
where W‖ ∈ C1(R2; Rd) and W⊥ ∈ C1(R; Rd) are conveniently well-polarized vector
fields whereas ψ ∈ C1(B(0, r]× T; R) is any scalar function. Define

〈W 〉(x) ≡ W̄ (x) :=
∫

T
W (x, θ) dθ , W ∗(x, θ) := W (x, θ)− W̄ (x) .

The construction of large amplitude oscillating solutions to system (1.1.1) - or to
variants of system (1.1.1) - is a delicate problem which has recently called some
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attention. The article [14] and the related contributions are mainly concerned with
time oscillations. In the continuity of the works [1, 10, 5], we are faced here with
the case of spatial oscillations.

According to Section 2, any family {hε}ε ∈ C1
(
B(0, r]; Rd

)]0,1] issued from a well
prepared couple (ϕ,W ) leads to a family {uε}ε which is composed with C1 solutions
uε of (1.1.1) on ΩT̃ . Now, the question is to determine the asymptotic behaviour of
{uε}ε when ε goes to 0. In particular, we want to understand how the constraint
(1.1.11) is propagated through the evolution equation (1.1.1).

• Explanations are given in the Section 4. They can be obtained just by looking
at the simple wave solutions of (1.1.1).

Théorème 3. Suppose that the couple

(ϕ,W ) ∈ C2(B(0, r]; R)× C1(B(0, r]× T; Rd) , W := V ◦H

is well prepared. Then, the Cauchy problem consisting in the (apparently overde-
termined) system

(1.1.12)


∂tH + V ◦H · ∇xH = 0 ,
∂tΦ + 〈V ◦H〉 · ∇xΦ = 0 ,
(V ◦H)∗ · ∇xΦ = 0 ,

associated with the initial datas

(1.1.13) H(0, x, θ) = H(x, θ) , Φ(0, x) = ϕ(x)

has a unique solution on ΩT × T for some T > 0. For all ε ∈ ]0, 1], the simple
wave uε(t, x) := H

(
t, x, Φ(t,x)

ε

)
is a solution of (1.1.1) on ΩT . Moreover, for all

t ∈ [0, T ], the trace
(
Φ(t, ·),H(t, ·)

)
is still subjected to (1.1.11).

At the time t = 0, it is also possible to take into account (small) perturbations of
H

(
x, ϕ(x)

ε

)
. For instance, we can select

hε(x) = Hε
(
x, ϕ(x)

ε

)
, ε ∈ ]0, 1]

where Hε(x, θ) is like in (1.1.5). Again, the discussion of the Section 2 indicates
that corresponding C1 solutions uε(t, x) of (1.1.1) are still available on ΩT . When
ε goes to 0, the expression uε(t, x) remains close (in a convenient sense) to the
simple wave H

(
t, x, Φ(t,x)

ε

)
. This result can be proved by adapting and extending

the method presented in [5]. The related analysis will not be developed here.

1.2 Analysis of the compatibility conditions

Introduce the curves t 7−→
(
X(t;x, λ),Λ(t;x, λ)

)
associated with the integration

of (1.1.1) along the characteristics. They are defined by the ordinary differential
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equations

(1.2.1)


d
dtX = V (Λ) , X(0;x, λ) = x ,

d
dtΛ = 0 , Λ(0;x, λ) = λ .

The corresponding solutions are

(1.2.2) X(t;x, λ) = x + t V (λ) , Λ(t;x, λ) = λ .

Define

(1.2.3) Xε(t, x) := X
(
t;x, hε(x)

)
= x + t W ε

(
x,
ϕ(x)
ε

)
, W ε := V ◦Hε .

Any smooth C1 solution of (1.1.1)-(1.1.2) must be subjected to the relation

(1.2.4) uε
(
t,Xε(t, x)

)
= uε

(
t, x+ t V ◦ hε(x)

)
= hε(x) .

Fix ε ∈ ]0, 1]. For t small enough, say for t ∈ [0, T̃ ε] with T̃ ε > 0, the implicit
theorem guarantees that the application

Xε
t : B(0, r] −→ Xε

(
t, B(0, r]

)
x 7−→ Xε(t, x)

is a C1 diffeomorphism. Then, due to the definition of the maximal speed of
propagation V, any point (t, x) contained in ΩT̃ ε is sure to be realized as (t, x) =(
t,Xε(t, y)

)
for some unique y ∈ B(0, r]. We can define

(1.2.5) uε(t, x) := hε ◦ (Xε
t )
−1(x) , (t, x) ∈ ΩT̃ ε

which yields a C1 solution on ΩT̃ ε of the Cauchy problem (1.1.1)-(1.1.2). The
relation (1.2.5) implies that

(1.2.6) Dxuε(t, x) := Dxh
ε ◦ (Xε

t )
−1(x) Co

[
DxXε(t, x)

]
/ detDxXε(t, x)

where Co [M ] stands for the co-matrix of M . We have
(1.2.7)

DxXε(t, x) = ε−1 t ∂θW
ε
(
x, ϕ(x)

ε

)
⊗ t∇ϕ(x)

+ I + t DxW
ε
(
x, ϕ(x)

ε

)
, W ε := V ◦Hε

where we adopt the following convention

u⊗ v = (ui vj)1≤i,j≤d , u = t(u1, · · · , ud) , v = t(v1, · · · , vd) .

Classical results - see for instance [20] - assert that a C1 solution uε(t, x) on ΩT

can be extended in time as long as the matrix Dxuε(t, x) is bounded. In view of
the formula (1.2.6), to recover a C1 solution uε(t, x) on ΩT , it is necessary and
sufficient to have
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detDxXε(t, x) > 0 , ∀ (t, x) ∈ ΩT .

Therefore, the life span of a C1 solution on a domain of propagation is bounded
below by

T ε := sup
{
T > 0 ; detDxXε(t, x) > 0 , ∀ (t, x) ∈ [0, T ]×B(0, r[

}
.

In general, due to the presence in (1.2.7) of the (singular) term with ε−1 in factor,
only (1.1.7) can be asserted. Now, the opposite situation is still possible providing
that the family {hε}ε is conveniently adjusted. This situation is distinguished
below.

Définition 1.2.1. - see (1.1.6) and (1.2.3) for the definitions of hε and Xε - The
family {hε}ε is said to be compatible if there exists T > 0 and c > 0 such that

(1.2.8) detDxXε(t, x) ≥ c > 0 , ∀ (t, x, ε) ∈ [0, T ]×B(0, r]×]0, 1] .

The preceding discussion can be summarized by the following statement.

Proposition 1.2.1. - see (1.1.6) for the definition of hε - Suppose that the family
{hε}ε is compatible. Then, for all ε ∈ ]0, 1], the expression uε(t, x) defined through
(1.2.5) is a C1 solution on ΩT of the Cauchy problem (1.1.1)-(1.1.2).

Our aim now is to transcribe (1.2.8) in terms of constraints to impose on ϕ(x) and
W (x, θ). To this end, introduce

(1.2.9) V :=
{

(x, θ) ∈ B(0, r]× T ; ∂θW (x, θ) 6= 0
}
, W := V ◦H .

We assume (1.1.3) , that is V 6= ∅.

Proposition 1.2.2. - see (1.1.6) for the definitions of hε and W ε - The family
{hε}ε can be compatible only if :

(1.2.10) t∇ϕ(x) · ∂θW (x, θ) = 0 , ∀ (x, θ) ∈ B(0, r]× T

where we recall that

W (x, θ) = W 0(x, θ) = V ◦H(x, θ) .

Proof. The reasoning is based on the identity (1.2.7) which can be formulated as

ε DxXε(t, x) = M0
(
t, x, ϕ(x)

ε

)
+ εM1

(
t, x, ϕ(x)

ε

)
+ ε2 t Rε

(
t, x, ϕ(x)

ε

)
where

M0(t, x, θ) := t ∂θW (x, θ)⊗ t∇ϕ(x) ,
M1(t, x, θ) := I + t DxW (x, θ) + t ∂θ

[
DuV

(
H0(x, θ)

)
H1(x, θ)

]
⊗ t∇ϕ(x) ,
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whereas the matrix Rε(t, x, θ) is a continuous function of the variables (ε, t, x, θ) ∈
[0, 1] × R × B(0, r] × T. Assume that the restriction (1.2.8) is satisfied for some
T > 0 and some c > 0. We start by showing

(1.2.11) t∇ϕ(x) · ∂θW (x, θ) ≥ 0 , ∀ (x, θ) ∈ V .

To this end, we argue by contradiction. We suppose that we can find a point
(x̄, θ̄) ∈ V such that

(1.2.12) t∇ϕ(x̄) · ∂θW (x̄, θ̄) < 0 .

This information allows to express the matrices M0(t, x̄, θ̄) and M1(t, x̄, θ̄) in a
basis of Rd having the form (e1, e2, · · · , ed

)
where e1 := ∂θW (x̄, θ̄) and where

(e2, · · · , ed) is a basis of ∇ϕ(x̄)⊥.

In this special basis, the matrices M0 and M1 look like

M0 =


t t∇ϕ · ∂θW 0 . . . 0

0 0 · · · 0
...

...
...

0 0 · · · 0

 , M1 =


m1

11 . . . m1
1d

m1
21 . . . m1

2d
...

...
m1
d1 . . . m1

dd

 .

It follows that

detDxXε(t, x̄) = ε−d det
[
M0

(
t, x̄,

ϕ(x̄)
ε

)
+ εM1

(
t, x̄,

ϕ(x̄)
ε

)
+O(ε2)

]
= ε−1 t t∇ϕ(x̄) · ∂θW

(
x̄, ϕ(x̄)

ε

)
detM [

(
t, x̄, ϕ(x̄)

ε

)
+O(1)

with

M [ = M [(t, x̄, θ̄) =

 m1
22 . . . m1

2d
...

...
m1
d2 . . . m1

dd

 .

When t = 0, we have M1(0, x̄, θ̄) = I so that M [ = IRd−1 and detM [ = 1. By
continuity, for t small enough (say t ∈ [0, T̃ ] with T̃ > 0), it remains

detM [
(
t, x̄, ϕ(x̄)

ε

)
≥ 1

2 , ∀ (t, ε) ∈ [0, T̃ ]×]0, 1] .

Choose t ∈ ]0, T̃ ] and a sequence {εn}n ∈ ]0, 1]N tending to 0 and such that

∀n ∈ N , ∃ kn ∈ Z ; ϕ(x̄) = εn (θ̄ + 2 kn π) .

Then, by construction, we have

∃C ∈ R ; detDxXεn(t, x̄) ≤ t
2 εn

t∇ϕ(x̄) · ∂θW (x̄, θ̄) + C , ∀n ∈ N .

For n large enough, the right hand side becomes negative. This is not compatible
with (1.2.8). This means that the case (1.2.12) must be excluded. Now, because
the function θ 7−→W (x, θ) is periodic, we have∫ 1

0

t∇ϕ(x) · ∂θW (x, θ) dθ = t∇ϕ(x) ·W (x, 1)− t∇ϕ(x) ·W (x, 0) = 0 .
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Combining this with (1.2.11), we see that the restriction (1.2.10) is necessary.
2

Below, up to the end of the proof of Proposition 1.2.3, we select (x, θ) ∈ V such
that t∇ϕ(x) · ∂θW (x, θ) = 0. Introduce the notations

ẽ1 := ∂θW (x, θ) , ẽd := t∇ϕ(x) , tẽ1 · ẽd = 0 .

We can complete ẽ1 and ẽd into some orthonormal basis (ẽ1, ẽ2, · · · , ẽd−1, ẽd) of
Rd. In this special basis, the matrix I + t DxW (x, θ) looks like :

I + t DxW (x, θ) =


m̃1

11 . . . m̃1
1(d−1) m̃1

1d

m̃1
21 . . . m̃1

2(d−1) m̃1
2d

...
...

m̃1
d1 . . . m̃1

d(d−1) m̃1
dd

 .

We can extract the (d− 1)× (d− 1) matrix :

L(t, x, θ) =

 m̃1
21 . . . m̃1

2(d−1)
...

...
m̃1
d1 . . . m̃1

d(d−1)

 .

Observe that L is the realisation (in some specific basis) of the linear application :

L : ∇ϕ(x)⊥ −→ ∂θW (x, θ)⊥

u 7−→ Π∂θW (x,θ)⊥
(
I + t DxW (x, θ)

)
u .

Proposition 1.2.3. The family {hε}ε can be compatible only if there is T > 0
such that for all t ∈ [0, T ], we have :

(1.2.13) (−1)d det L(t, x, θ) ≥ 0 .

Proof. Assume again that the restriction (1.2.8) is satisfied for some T > 0 and
some c > 0. We already know that (1.2.10) is verified. In the basis (ẽ1, · · · , ẽd) of
Rd, the matrices M0 and M1 take the form

M0 =


0 · · · 0 t |∇ϕ|2
0 · · · 0 0
...

...
...

0 · · · 0 0

 , M1 =


m1

11 . . . m1
1d

m1
21 . . . m1

2d
...

...
m1
d1 . . . m1

dd

 .

It follows that

detDxXε(t, x) = ε−1 (−1)d t |∇ϕ(x)|2 detM ]
(
t, x, ϕ(x)

ε

)
+1 + t gε

(
t, x, ϕ(x)

ε

)
with



CHAPTER 1. COMPATIBILITY CONDITIONS 23

M ](t, x, θ) =

 m1
21 . . . m1

2(d−1)
...

...
m1
d1 . . . m1

d(d−1)

 ≡ Π∂θW (x,θ)⊥ M1 Π∇ϕ(x)⊥

whereas the scalar application gε(t, x, θ) is a continuous function of all the variables
(ε, t, x, θ) ∈ [0, 1]× R×B(0, r]× T. Observe that[

u⊗ t∇ϕ(x)
]
v = 0 , ∀ (u,v) ∈ Rd ×∇ϕ(x)⊥ .

Therefore, the expression of M ] can be simplified according to

M ](t, x, θ) = L(t, x, θ) ≡ Π∂θW (x,θ)⊥
(
I + t DxW (x, θ)

)
Π∇ϕ(x)⊥ .

Follow the argument of the preceding proof, using a well adjusted sequence {εn}n,
in order to extract the necessary condition

(−1)d detM ](t, x, θ) ≥ 0 , ∀ (t, x, θ) ∈ [0, T ]×B(0, r]× T

which is exactly (1.2.13). 2

Remark 2.1. In the basis (ẽ1, · · · , ẽd), we can get the decomposition

L(t, x, θ) = L0 + t L̃(x, θ) , L0 :=


0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 1
0 0 0 · · · 0 0


with L̃(x, θ) ≡ Π∂θW (x,θ)⊥ DxW (x, θ) Π∇ϕ(x)⊥ . This special structure implies the
existence of coefficients αj(x, θ) such that

(−1)d detL(t, x, θ) =
d−1∑
j=1

αj(x, θ) tj .

Noting

J(x, θ) :=
{

min J if J :=
{
j ; αj(x, θ) 6= 0

}
6= ∅ ,

d− 1 if J = ∅ ,

the condition (1.2.13) is equivalent to the restriction

(1.2.14) αJ(x,θ)(x, θ) ≥ 0 , ∀ (x, θ) ∈ B(0, r]× T .

On the one hand, especially when d � 1, the conditions (1.2.14) can be techni-
cally difficult to deal with. On the other hand, nothing guarantees that they are
intrinsic. Instead of looking at (1.2.14), we will consider

(1.2.15) Π∂θW (x,θ)⊥ DxW (x, θ) Π∇ϕ(x)⊥ = 0 , ∀ (x, θ) ∈ V .

This relation is clearly intrinsic and, if it is satisfied, we are sure that
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det L(t, x, θ) = det L0 = 0 .
4

We can summarize the preceding discussion by :

Proposition 1.2.4. Suppose that the relations (1.2.10) and (1.2.15) are verified.
Then, the family {hε}ε is compatible.

Proof. Under conditions (1.2.10) and (1.2.15), it remains

detDxXε(t, x) = 1 + t gε
(
t, x, ϕ(x)

ε

)
, gε ∈ C0

(
[0, 1]×R×B(0, r]×T; R

)
.

In particular, we get :

detDxXε(t, x) ≥ 1 − C(T ) t , ∀ (t, x, ε) ∈ [0, T ]×B(0, r]× ]0, 1]

where the function T 7−→ C(T ) is increasing. Now, it suffices to choose T > 0
small enough to recover (1.2.8).

2

Remark 2.2. Suppose that V : Rd −→ Rd is a C1 diffeomorphism. Then, it is
equivalent to solve (1.1.1) or

(1.2.16) ∂tw + (w · ∇x)w = 0 , w := V ◦ u

completed with the initial data

(1.2.17) w(0, x) = W
(
x,
ϕ(x)
ε

)
, ε ∈ ]0, 1] .

The system (1.1.11) can also be interpreted as a compatibility condition in order
to solve the Cauchy problem (1.2.16)-(1.2.17) in the class of C1 solutions, locally in
time, on some domain ΩT with T > 0 independent of ε ∈ ]0, 1]. This interpretation
explains why the relevant constraint is concerned with V ◦ H instead of dealing
separately with V and H. 4

From now on, we consider functions ϕ and W satisfying (1.2.10) and (1.2.15). In
other words, we will concentrate on well prepared couples (ϕ,W ).

1.3 Existence of compatible families

The goal of this subsection is to show through a constructive proof that the system
(1.1.11) actually admits non trivial solutions. We want also to understand the
structure of its generic solutions.

Of course, to face (1.1.11), preliminary assumptions are needed. We select some
phase ϕ ∈ C2

(
B(0, r]; R

)
with no critical point inB(0, r]. Without loss of generality

(relabelling the coordinates and diminishing r if necessary) we can adjust ϕ so that

(1.3.1) ∂dϕ(x) 6= 0 , ∀x ∈ B(0, r] , r > 0 .
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We take W = V ◦ H ∈ C2
(
B(0, r] × T,Rd

)
. Introduce the linear subspace of Rd

spanned by the vectors ∂θW (x, θ) with θ ∈ T, that is

(1.3.2)
E(x) :=

{∑N
j=1 µj ∂θW (x, θj) ; (µ1, · · · , µN ) ∈ RN ,

(θ1, · · · , θN ) ∈ TN , N ∈ N
}
.

Choose N = 1, µ1 = 1 and θ1 = θ in this definition to see that

∂θW (x, θ) ∈ E(x) ⊂ Rd , ∀ (x, θ) ∈ B(0, r]× T .

Because E(x) is of finite dimension, we can find Jx numbers θx1 , · · · , θxJx such that

E(x) =
{∑Jx

j=1 µj ∂θW (x, θxj ) ; (µ1, · · · , µJx) ∈ RJx
}
, Jx := dimE(x) .

Then, in view of the first line of (1.1.11), we must have

E(x) ⊂ ∇ϕ(x)⊥ , ∀ (x, θ) ∈ B(0, r]× T .

On the one hand, the case Jx = dimE(x) = 0 is not interesting because this
situation corresponds to the absence of oscillations. On the other hand, we have
necessarily

Jx ≤ dim∇ϕ(x)⊥ = d− 1 , ∀x ∈ B(0, r] .

Due to the continuity of ∂θW , the application x 7−→ dimE(x) is lower semi-
continuous. In particular, the set{

x ∈ B(0, r[ ; Jx > d− 3
2

}
=

{
x ∈ B(0, r[ ; Jx = d− 1

}
is open. Now, suppose that J0 = d − 1. By restricting r > 0 if necessary, we
can always suppose that Jx = d − 1 for all x ∈ B(0, r[. More generally, in what
follows, we will retain the generic case where the application x 7−→ Jx = dimE(x)
is constant (not necessarily equal to d− 1) on B(0, r] :

(1.3.3) ∃J ∈ {1, · · · , d− 1} ; dimE(x) = J , ∀x ∈ B(0, r] .

Denote by the symbol GJd the Grassmanian manifold of linear subspaces of Rd with
dimension J .

Lemme 1.3.1. Assume that W ∈ C2
(
B(0, r[×T,Rd

)
and (1.3.3). Then E ∈

C1
(
B(0, r[,GJd

)
.

Proof. Let x0 ∈ B(0, r]. By hypothesis, we can find θx0
1 , · · · , θx0

J in T such
that

(
∂θW (x0, θ

x0
1 ), · · · , ∂θW (x0, θ

x0
J )

)
is a basis of E(x0). Hence, we can extract

a J × J determinant

δ(x0) := det
(
∂θWij (x0, θ

x0
k )

)
1≤j,k≤J , ij ∈ [[1, d]]

such that δ(x0) 6= 0. Since ∂θW is continuous, the function x 7−→ δ(x) is con-
tinuous. Therefore, we can isolate some small open neighborhood Ω of x0 such
that
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δ(x) 6= 0 , ∀x ∈ Ω , x0 ∈ Ω .

For x ∈ Ω, the family
(
∂θW (x, θx0

1 ), · · · , ∂θW (x, θx0
J )

)
is still linearly independent

and it is built with J vectors of E(x). Since by hypothesis E(x) is of dimension
J , this is in fact a basis of E(x). Obviously, the application

x 7−→
(
∂θW (x, θx0

1 ), · · · , ∂θW (x, θx0
J )

)
is of class C1 in Ω. This remark gives the expected local regularity of E. Finally,
since x0 ∈ B(0, r] can be chosen arbitrarily, the Lemma 1.3.1 is proved.

2

Recall that

(1.3.4) ∂θW (x, θ) ∈ E(x) ⊂ ∇ϕ(x)⊥ , ∀ (x, θ) ∈ B(0, r]× T .

The second line of (1.1.11) implies that

ΠE(x)⊥ DxW (x, θ) Π∇ϕ(x)⊥ = 0 , ∀ (x, θ) ∈ B(0, r]× T .

Observe that, in this formulation, the two projectors (on the left and on the right)
do not depend any more on the variable θ ∈ T. This allows to extract the mean
value to get

(1.3.5) ΠE(x)⊥ DxW
∗(x, θ) Π∇ϕ(x)⊥ = 0 , ∀ (x, θ) ∈ B(0, r]× T .

Lemme 1.3.2. Let ϕ ∈ C2
(
B(0, r],R

)
and W ∈ C1

(
B(0, r] × T,Rd) satisfying

respectively the conditions (1.3.1) and (1.3.3). Suppose that the relations (1.3.4)
and (1.3.5) are satisfied. Then, the application x 7−→ E(x) is constant on the level
surfaces of ϕ. More precisely

(1.3.6) ∃E ∈ C1(R,GJd ) ; E(x) = E ◦ ϕ(x) , ∀x ∈ B(0, r] .

Proof. Let us denote δij the usual Dirichlet symbol, and δ(k) the vector of Rd

whose components are (δik)1≤i≤d. The d− 1 vectors

vk(x) = − δ(k) + ∂kϕ(x) / ∂dϕ(x) δ(d) , 1 ≤ k ≤ d− 1

form a C1 basis of ∇ϕ(x)⊥. By permutting the components of Rd and by dimin-
ishing r if necessary, we can always arrange the datas so that

E(x) ⊕ 〈 v1(x), · · · , vd−J−1(x) 〉 = ∇ϕ(x)⊥ , ∀x ∈ B(0, r] .

Therefore, for all j ∈ [[1, J ]], the vector vd−j(x) ∈ ∇ϕ(x)⊥ can be decomposed
according to

vd−j(x) = ej(x) −
∑d−J−1

k=1 αkj (x) vk(x) , ej(x) ∈ E(x)

where, due to the assumptions related to the regularity of ϕ and E, we have

ej = (e1j , · · · , edj ) ∈ C1
(
B(0, r]; Rd) , αkj ∈ C1

(
B(0, r]; R) .
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The vectors ej with j ∈ [[1, J ]] are necessarily independent. They form a basis of
E(x). Besides, we have the general formula

W (x, θ) = W̄ (x) +
∫ θ

0
∂θW (x, θ̃) dθ̃ −

∫
T

(∫ θ

0
∂θW (x, θ̃) dθ̃

)
dθ

that, in view of (1.3.4), implies

W (x, θ) = W̄ (x) +
∑J

j=1 w
∗
j (x, θ) ej(x) , w∗j ∈ C1

(
B(0, r]× T; R) .

Now, the relation (1.3.5) reads∑J
j=1 w

∗
j (x, θ) ΠE(x)⊥ Dxej(x) Π∇ϕ(x)⊥ = 0 , ∀ (x, θ) ∈ B(0, r]× T .

Recall that the dimension of E(x) is J . This implies that

∃ (θx1 , · · · , θxJ) ∈ TJ ; det
[
w∗i (x, θ

x
j )

]
1≤i,j≤J 6= 0 .

Combining the preceding informations, we see that (1.3.5) is equivalent to

(1.3.7) ΠE(x)⊥ Dxej(x) Π∇ϕ(x)⊥ = 0 , ∀ (j, x) ∈ [[1, J ]]×B(0, r] .

The vector space E(x)⊥ is of dimension d − J . It is generated by the vector
ed(x) := ∇ϕ(x) and the d− J − 1 vectors

ej(x) = − δ(j−J) +
J∑
k=1

αj−Jk (x) δ(d−k) , j ∈ [[J + 1, d− 1]] .

Therefore (1.3.7) is exactly the same as

(1.3.8) tel(x)Dxej(x) Π∇ϕ(x)⊥ = 0 , ∀ (l, j, x) ∈ [[J + 1, d]]× [[1, J ]]×B(0, r] .

For j ∈ [[1, J ]], compute

Dxej(x) =
d−J−1∑
k=1

∇xα
k
j (x) vk(x)

+

[
d−J−1∑
k=1

αkj (x) ∇x

(
∂kϕ(x)/∂dϕ(x)

)
+∇x

(
∂d−jϕ(x)/∂dϕ(x)

)]
δ(d) .

Applying on the left tel(x) with l ∈ [[J + 1, d− 1]], yields
tel(x) Dxej(x) = ∇xα

l−J
j (x) , 1 ≤ j ≤ J < l ≤ d− 1 .

We can extract from (1.3.8) that

(1.3.9) ∇xα
l−J
j (x) Π∇ϕ(x)⊥ = 0 , ∀ (l, j, x) ∈ [[J + 1, d− 1]]× [[1, J ]]×B(0, r] .

Independent statement. Let ϕ ∈ C1
(
B(0, r],R

)
satisfying (1.3.1). Let α ∈

C1
(
B(0, r],R

)
a function which is subjected to the relation (1.3.9). Then, restrict-

ing r > 0 if necessary, we can always find some function Z ∈ C1(R,R) such that

(1.3.10) α(x) = Z ◦ ϕ(x) , ∀x ∈ B(0, r] .
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Proof of the independent statement. The geometric reason of (1.3.10) is
the following. The relation (1.3.9) means that the vectors ∇xα(x) and ∇ϕ(x) are
parallel or that the tangent spaces at x to the level surfaces associated with the
scalar functions α and ϕ coincide. Since the level surfaces associated with α and
ϕ are spanned by these tangent spaces, we can deduce that α and ϕ have common
level surfaces. Moreover, the relation (1.3.1) allows to characterize (locally near 0)
these level surfaces through the different values of ϕ. This is why we have (1.3.10).

Now, we can also proceed as follows. Due to (1.3.1), the functions x1, x2, · · · ,
xd−1 and ϕ(x) form locally (near 0) a system of coordinates. Therefore, we can
find Z ∈ C1(Rd,R) such that

α(x) = Z
(
x̂, ϕ(x)

)
, x̂ := (x1, x2, · · · , xd−1) , ∀x ∈ B(0, r] .

Decompose ∇ϕ(x) according to

∇ϕ(x) =
(
∇x̂ϕ(x), ∂dϕ(x)

)
, ∇x̂ϕ(x) =

(
∂1ϕ(x), · · · , ∂d−1ϕ(x)

)
∈ Rd−1 .

Given ĥ ∈ Rd−1, define

hd(x, ĥ) := − ∂dϕ(x)−1 ∇x̂ϕ(x) · ĥ .

Observe that(
ĥ, hd(x, ĥ)

)
∈ ∇ϕ(x)⊥ , ∀ ĥ ∈ Rd−1 .

Testing (1.3.9) with such choices gives rise to

∇x̂Z
(
x1, x2, · · · , xd−1, ϕ(x)

)
· ĥ = 0 , ∀ ĥ ∈ Rd−1 .

This information clearly implies that the function Z does not depend on its d− 1
first variables. We have (1.3.10).

2

Applying the independent statement to the functions αl−Jj , we see that we can
exhibit functions

Zkj ∈ C1(R,R) , (k, j) ∈ [[1, d− J − 1]]× [[1, J ]]

such that, for all (k, j) ∈ [[1, d− J − 1]]× [[1, J ]], we have

(1.3.11) ekj (x) = −αkj (x) = Zkj ◦ ϕ(x) , ∀x ∈ B(0, r] .

This construction of the Zkj is not classical and it is one of the main difficulties
in the proof of Lemma 1.3.2. Finally, the remaining conditions to consider are
obtained by taking j ∈ [[1, J ]] and l = d. Namely

∇ϕ(x) Dxej(x) Π∇ϕ(x)⊥ = 0 , ∀ (j, x) ∈ [[1, J ]]×B(0, r] .

Use (1.3.1) and (1.3.11) to simplify this into

∇xe
d
j (x) Π∇ϕ(x)⊥ = 0 , ∀ (j, x) ∈ [[1, J ]]×B(0, r]

where we recall that
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edj (x) = −
d−J−1∑
k=1

Zkj ◦ ϕ(x) ∂kϕ(x) / ∂dϕ(x) + ∂d−jϕ(x) / ∂dϕ(x) .

Again, this means the existence of Zdj ∈ C1(R,R) such that

edj (x) = Zdj ◦ ϕ(x) , ∀ (j, x) ∈ [[1, J ]]×B(0, r] .

Briefly, we have obtained, for all j ∈ [[1, J ]], that

ej(x) = Zj ◦ ϕ(x) , Zj = t(Z1
j , · · · , Z

d−J−1
j , 0, · · · , 0,−1, 0, · · · , 0, Zdj ) .

The vector space E is spanned by the ej with j ∈ [[1, J ]]. Therefore, it depends
only on ϕ, in a C1 way. This gives rise to (1.3.6). In particular, E is constant on
the level surfaces of ϕ.

2

Combining (1.3.4) and (1.3.6), we can produce the necessary condition

(1.3.12) ∇ϕ(x) ∈ E ◦ ϕ(x)⊥ = E(x)⊥ , ∀x ∈ B(0, r] .

The condition (1.3.12) is a geometrical constraint on ϕ underlying the resolution
of (1.1.11). We explain below how to solve it.

Lemme 1.3.3. Select :

- a curve E ∈ C2(R,GJd ) of J-dimensional vector spaces of Rd,

- a C2 submanifold S ⊂ Rd of dimension d− J , containing 0 ∈ Rd,

- a C2 scalar function χ : S −→ R.

Note T0S the tangent space of S at the point 0 ∈ Rd. We suppose that

(1.3.13) T0S + E
(
χ(0)

)
= Rd .

Then, we can find r > 0 such that the nonlinear equation (1.3.12) completed with
ϕ| S∩B(0,r] ≡ χ has a unique C2 solution on B(0, r]. We will say that the phase ϕ
is generated by (E,S, χ).

Proof. Select δ > 0 and J functions

Zj ∈ C2
(
]χ(0)− δ, χ(0) + δ[; R

)
, j ∈ [[1, J ]]

adjusted such that, for all t ∈ ]χ(0) − δ, χ(0) + δ[,
(
Z1(t), · · · , ZJ(t)

)
is a basis of

E(t). Note

Ωδ
S := χ−1

(
]χ(0)− δ, χ(0) + δ[

)
⊂ S , z = t(z1, . . . , zJ) ∈ RJ .

Consider the C2 application

Ξ : Ωδ
S × RJ −→ Rd

(y, z) 7−→ Ξ(y, z) := y +
∑J

j=1 z
j Zj ◦ χ(y) .
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Because of (1.3.13), the linear operator

DxΞ(0, 0) : T0S × RJ −→ Rd

(h, k) 7−→ h +
∑J

j=1 k
j Zj ◦ χ(y)

is invertible. The inverse mapping Theorem can be applied at the point (0, 0) ∈
S × RJ . It guarantees the existence of r > 0 such that Ξ is a C2 diffeomorphism
from a neighbourhood of (0, 0) ∈ S × RJ onto B(0, r]. Introduce the projection

Γ : S × RJ −→ S
(y, z) 7−→ Γ(y, z) := y .

Now, we can define

ϕ := χ ◦ Γ ◦ Ξ−1 ∈ C2
(
B(0, r]; R

)
.

Since (Γ ◦ Ξ−1)| S∩B(0,r] = Id, we have ϕ| S∩B(0,r] ≡ χ| S∩B(0,r]. Moreover, the
function ϕ is constant on the set

Fy :=
(
y + 〈Z1 ◦ χ(y), · · · , ZJ ◦ χ(y)〉

)
∩ B(0, r] , y ∈ S ∩B(0, r] .

More precisely, Fy is a piece of affine manifold with direction E ◦ χ(y) , on which
ϕ takes the value χ(y). In particular

∇ϕ(x) ∈ (TxFy)⊥ = E ◦ χ(y)⊥ = E ◦ ϕ(x)⊥ , ∀x ∈ Fy .

Since the Fy with y ∈ S ∩B(0, r] form a foliation of B(0, r], we have obtained the
expected relation (1.3.12).

2

Proposition 1.3.1. Let ϕ be generated by (E,S, χ). The couple (ϕ,W ) is well pre-
pared if and only if there exist two functions W‖ ∈ C1(R2,Rd) and W⊥ ∈ C1(R,Rd)
satisfying

(1.3.14) W‖(t, s) ∈ E(t) , W⊥(t) ∈ E(t)⊥ , ∀ (t, s) ∈ R2

and a scalar function ψ ∈ C1
(
B(0, r]× T; R

)
such that

(1.3.15) W (x, θ) = W‖
(
ϕ(x), ψ(x, θ)

)
+W⊥

(
ϕ(x)

)
, ∀ (x, θ) ∈ B(0, r]× T .

Proof. Note
(
Z1(t), · · · , ZJ(t)

)
some orthonormal basis of E(t) with a C1 reg-

ularity with respect to t ∈ R. Complete it with some C1 orthonormal basis(
eJ+1(t), · · · , ed(t)

)
of E(t)⊥, again of class C1. In view of (1.3.4), the defini-

tion of E(x) and Lemma 1.3.2, the profile W (x, θ) can be decomposed according
to

W (x, θ) =
J∑
k=1

wj(x, θ) Zj ◦ ϕ(x) +
d∑

k=J+1

wj(x) ej ◦ ϕ(x)

with
wj ∈ C1

(
B(0, r]× T; R

)
, ∀ j ∈ [[1, J ]] ,
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wj ∈ C1
(
B(0, r]; R

)
, ∀ j ∈ [[J + 1, d]] .

Compute the derivative of W (x, θ) with respect to the variable x and compose on
the right with Π∇ϕ(x)⊥ . It remains

DxW (x, θ) Π∇ϕ(x)⊥ =
∑J

k=1 ∇xwj(x, θ) ·Π∇ϕ(x)⊥ × Zj ◦ ϕ(x)
+

∑d
k=J+1 ∇xwj(x) ·Π∇ϕ(x)⊥ × ej ◦ ϕ(x) .

Select a point (x, θ) ∈ V which means that ∂θW (x, θ) 6= 0. Without loss of general-
ity, we can suppose that ∂θWJ(x, θ) 6= 0. Otherwise, just permute the components
of Rd to obtain this condition. By construction, the hyperplane ∂θW (x, θ)⊥ is
generated by the d− J vectors ej ◦ ϕ(x) with j ∈ [[J + 1, d]] and the J − 1 vectors

∂θwJ(x, θ) Zj ◦ ϕ(x) − ∂θwj(x, θ) ZJ ◦ ϕ(x) , j ∈ [[1, J − 1]] .

The requirement (1.2.15) is equivalent to the conditions

(1.3.16) ∇xwj(x) ·Π∇ϕ(x)⊥ = 0 , ∀ j ∈ [[J + 1, d]] ,

(1.3.17)
(
∂θwJ ∇xwj − ∂θwj ∇xwJ

)
(x, θ) = 0 , ∀ j ∈ [[1, J − 1]] .

On the one hand, from (1.3.16), we deduce that

∃ w̃j ∈ C1(R,R) ; wj(x) = w̃j ◦ ϕ(x) , ∀ j ∈ [[J + 1, d]] .

On the other hand, it follows from the relations (1.3.17) that the mappings Υt

parameterized by t ∈ R and defined on the level sets

Gt :=
{
x ∈ B(0, r] ; ϕ(x) = t

}
by the formulas

Υt : Gt × T −→ RJ

(x, θ) 7−→ t(w1, · · · , wJ)
have rank one. Thus, to each Υt corresponds a foliation of Gt×T by submanifolds
of dimension d−1. This foliation depends on the parameter t. It can be described
by using a function ψ ∈ C1

(
B(0, r]× T,R

)
so that

wj(x, θ) = w̃j
(
ϕ(x), ψ(x, θ)

)
, ∀ j ∈ [[1, J ]] .

Define

W⊥(t) :=
d∑

j=J+1

w̃j(t) ej(t) , W‖(t, s) :=
J∑
j=1

w̃j(t, s) Zj(t) .

By construction, we have both (1.3.14) and (1.3.15).

Conversely, suppose that W (x, θ) has the form (1.3.15) with W‖(x, θ) and W⊥(x, θ)
as in (1.3.14). Then

∂θW (x, θ) = ∂θψ(x, θ)× ∂sW‖
(
ϕ(x), ψ(x, θ)

)
∈ E

(
ϕ(x)

)
≡ E(x)
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which is (1.3.4) and gives rise to the first part of (1.1.11). Moreover

DxW (x, θ) Π∇ϕ(x)⊥ = ∇xψ(x, θ) ·Π∇ϕ(x)⊥ × ∂sW‖
(
ϕ(x), ψ(x, θ)

)
.

Since ∂θW and ∂sW‖ are colinear, we get the second equation of (1.1.11).
2

1.4 Simple wave solutions

The aim of this last part is to explain how the initial oscillating data hε(x) is trans-
formed through the evolution equation (1.1.1). Below, we consider this question
in a simplified context, by looking only on simple wave solutions.

Définition 1.4.1. Let ε ∈ ]0, 1]. We say that uε ∈ C1(ΩT ; R) is a simple wave if
it can be put in the following form

uε(t, x) = H
(
t, x,

Φ(t, x)
ε

)
, H ∈ C1(ΩT × T; Rd) , Φ ∈ C1(ΩT ; R) .

The Theorem 3 explains how to associate with a well prepared couple (ϕ,W ) a
simple wave uε(t, x) which is a solution on ΩT of the Burger’s type system (1.1.1).
It remains to show this statement 3.

Proof of Theorem 3. Compose the first equation of (1.1.12) with DuV ◦H in
order to extract

(1.4.1)


∂tW + (W · ∇x)W = 0 ,
∂tΦ + (W̄ · ∇x)Φ = 0 ,
W∗ · ∇xΦ = 0 ,

W := V ◦H .

This must be associated with the initial data

(1.4.2) W(0, x, θ) = W (x, θ) , Φ(0, x) = ϕ(x) .

First, we discuss about (1.4.1)-(1.4.2). From Proposition 1.3.1 we can write

W (x, θ) = W‖
(
ϕ(x), ψ(x, θ)

)
+ W⊥

(
ϕ(x)

)
.

Solve locally in time, say on ΩT for some T > 0, the scalar conservation law

(1.4.3) ∂tΦ + W⊥(Φ) · ∇xΦ = 0 , Φ(0, x) = ϕ(x) .

Recall that E(x) = E ◦ ϕ(x) is spanned by the J vectors ej(x) = Zj ◦ ϕ(x) where
the Zj are defined at the end of the proof of Lemma 1.3.2. Now, fix any j ∈ [[1, J ]]
and compute[

∂t +W⊥(Φ) · ∇x

]
(Zj ◦ Φ · ∇xΦ) = − (∇xΦ ·W ′

⊥ ◦ Φ)× (Zj ◦ Φ · ∇xΦ) .

Combining (1.1.13) and (1.3.12), we can extract



CHAPTER 1. COMPATIBILITY CONDITIONS 33

(Zj ◦ Φ · ∇xΦ)(0, x) = 0 , ∀ (j, x) ∈ [[1, J ]]×B(0, r] .

In view of the preceding equation, this polarization identity is propagated in time
which means that

Zj ◦ Φ(t, x) · ∇xΦ(t, x) = 0 , ∀ (t, x) ∈ [0, T ]×B(0, r]

or equivalently that

(1.4.4) ∇xΦ(t, x) ⊂ E ◦ Φ(t, x)⊥ , ∀ (t, x) ∈ [0, T ]×B(0, r] .

Now, introduce the function

W̃ (t, s) := W‖(t, s) + W⊥(t) , (t, s) ∈ R2

and the scalar conservation law

(1.4.5) ∂tΨ + W̃
(
Φ(t, x),Ψ

)
· ∇xΨ = 0 .

Complete (1.4.5) with the initial data

(1.4.6) Ψ(0, x, θ) = ψ(x, θ) , ψ ∈ C1
(
B(0, r]× T; R

)
.

In (1.4.5), the variable θ ∈ T plays the part of a parameter. For T > 0 small
enough, the Cauchy problem (1.4.5)-(1.4.6) has a local solution on ΩT . Finally,
define the profile W through

W(t, x, θ) := W̃
(
Φ(t, x),Ψ(t, x, θ)

)
, W(0, x, θ) = W (x, θ) .

By construction, we have

W∗(t, x, θ) = W‖
(
Φ(t, x),Ψ(t, x, θ)

)∗
.

The informations (1.3.14) and (1.4.4) imply that

W∗(t, x, θ) · ∇xΦ(t, x) = 0 , ∀ (t, x) ∈ ΩT .

Taking into account (1.3.14) and (1.4.3), we have also

∂tΦ + W · ∇xΦ = ∂tΦ + W⊥ ◦ Φ · ∇xΦ = 0 .

Then, with (1.4.5), we can deduce that

(1.4.7) ∂tW+W·∇xW = ∂sW̃ (∂tΨ+W·∇xΨ) = 0 , W(0, x, θ) = W (x, θ) .

To sum up, we have constructed functions Φ and W satisfying (1.4.1).

Now, we concentrate on (1.1.12). First, solve separately (on some domain ΩT with
T > 0) the Cauchy problem

(1.4.8) ∂tH + V ◦H · ∇xH = 0 , H(0, x, θ) = H(x, θ) .

Observe that the expression W̃ := V ◦H is by construction subjected to

(1.4.9) ∂tW̃ + W̃ · ∇xW̃ = 0 , W̃(0, x, θ) = W (x, θ) .
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The Cauchy problems (1.4.7) and (1.4.9) are made of the same quasilinear con-
straints and the same initial data. Since the corresponding C1 solutions must
coincide, we have necessarily W̃ = V ◦H ≡ W on ΩT .

Briefly, the first equation of (1.1.12) is verified because this is precisely (1.4.8)
whereas the two other conditions of (1.1.12) are satisfied because they correspond
exactly to the two last conditions in (1.4.1). This explains why the apparently
overdetermined system (1.1.12)-(1.1.13) has a unique solution on ΩT ×T for some
T > 0.

Finally, define the simple wave uε(t, x) := H
(
t, x, Φ(t,x)

ε

)
. Compute

∂tuε + V (uε) · ∇xuε =
(
∂tH + V ◦H · ∇xH

)(
t, x, ϕ(x)

ε

)
+ 1

ε

[
(∂tΦ + V ◦H · ∇xΦ) ∂θH

](
t, x, ϕ(x)

ε

)
.

The fact that uε(t, x) is a solution of (1.1.1) becomes a direct consequence of the
equations inside (1.1.12). Moreover, the definition of W indicates clearly that the
structure (1.3.15) is conserved for t ∈ [0, T ]. Therefore (see the end of the proof of
Proposition 1.3.1), for all t ∈ [0, T ], the trace

(
Φ(t, ·),W(t, ·)

)
is still well prepared.

This last remark concludes the proof of Theorem 3.
2





Chapter 2

Large amplitude
Oscillating solutions
For incompressible Euler
Equations in space dimension 3.

Abstract. In this article, we construct large amplitude oscillating waves (uε)ε∈]0,1]

which are local solutions on some open domain of the time-space R+×R3 of both the
three dimensional Burger equations (without source term) and the incompressible
Euler equations (without pressure). The functions uε(t, x) are mainly characterized
by the fact that the corresponding Jacobian matrices Dxu

ε(t, x) are nilpotent of
rank one or two. Our purpose here is to describe the interesting geometrical
features of the expressions uε(t, x) obtained by this way.

36
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2.1 Detailed introduction.

2.1.1 Presentation of the framework.

Let (T, V, r) ∈ (R∗
+)3 with T V ≤ r. We work on a domain of determination having

the form of a truncated cone like

ΩT
r :=

{
(t, x) ∈ [0, T ]× R3 ; |x|+ t V ≤ r

}
, |x| :=

√
x2

1 + x2
2 + x2

3 .

We are looking at expressions uε(t, x), with ε ∈ ]0, 1], which are special solutions
of three dimensional Burger equations without source term, namely

(2.1.1) ∂tu
ε + (uε · ∇)uε = 0 , (t, x) ∈ ΩT

r ⊂ R× R3 .

We complete (2.1.1) with a family of oscillating initial data

(2.1.2) uε(0, x) = hε(x) =

0BB@
hε1(x)
hε2(x)
hε3(x)

1CCA = w
(
x,
ϕ(x)
ε

)
, (x, ε) ∈ Ω0

r×]0, 1] .

The function hε(x) is defined on the closed ball Ω0
r (having center zero and radius

r) by using a bounded profile w(x, θ) ∈ C1
b (Ω

0
r × T; R3) satisfying

(2.1.3) ∃ (x, θ) ∈ Ω0
r × T ; ∂θw(x, θ) 6= 0 , T := R/Z .

We use also a phase ϕ ∈ C1(Ω0
r ; R) which is assumed to be not stationary

(2.1.4) ∇ϕ(x) := t
(
∂1ϕ(x), ∂2ϕ(x), ∂3ϕ(x)

)
6= 0 , ∀ x ∈ Ω0

r .

The equation (2.1.1) is the prototype of a quasilinear hyperbolic system. Thus, the
solution uε(t, x) of (2.1.1) which is issued from the bounded initial data hε(x) inher-
its a finite speed of propagation V . In view of (2.1.2), noting w = t(w1, w2, w3) ∈
R3, we can take

V := sup
{( ∑3

i=1wi(x, θ)
2
)1/2 ; (x, θ) ∈ Ω0

r × T
}
<∞ .

Example 1. Choose T = V = r = 1. Select any non constant function we3 ∈
C∞(T; R) which is bounded by 1 and define

ϕe(x) := x1 , we(x, θ) := t
(
0, 0, we3(θ)

)
, ueε(x) := t

(
0, 0, we3

(
ϕe(x)/ε

))
.

Observe that

(2.1.5) ∂tu
eε + (ueε · ∇)ueε ≡ 0 , div ueε ≡ 0 ,

(
Dxu

eε(x)
)2 ≡ 0 .
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The expression ueε(x) is a very basic example of a contact discontinuity solution of
(2.1.1). More elaborated patterns are proposed in [5, 6, 7, 13, 14]. Extensions can
be obtained either by considering nonlinear phases ϕ or by adding some dependence
in other variables than ϕ. In this article, we explain what can be done in these two
directions. More precisely, we construct and classify all functions ϕ(x) and w(x, θ)
(if need be, the profile w can also depend in a smooth way on ε ∈ [0, 1]) allowing
to solve the oscillating Cauchy problem (2.1.1)-(2.1.2) in the class of C1−functions
on a domain of determination ΩT

r with (T, r) ∈ R∗
+ ×R∗

+ independent of ε ∈ ]0, 1].
Note Dxh

ε the Jacobian matrix of hε, that is

Dxh
ε(x) =

 ∂1h
ε
1(x) ∂2h

ε
1(x) ∂3h

ε
1(x)

∂1h
ε
2(x) ∂2h

ε
2(x) ∂3h

ε
2(x)

∂1h
ε
3(x) ∂2h

ε
3(x) ∂3h

ε
3(x)

 ∈M3(R3) .

Our starting point is the Theorem 2.6 of [6]. To find on ΩT
r a C1−solution of the

Cauchy problem (2.1.1)-(2.1.2), it suffices to look at what happens at the initial
time t = 0. A necessary and sufficient condition is to impose

(2.1.6)
(
Dxh

ε(x)
)3 = 0 , ∀ (x, ε) ∈ Ω0

r× ]0, 1] .

Then (see [6]), the solution of (2.1.1)-(2.1.2) satisfies div uε = 0 in ΩT
r . It means

that the solutions of (2.1.1) under study are also (local) solutions of the incom-
pressible Euler equations (with constant pressure) :

(2.1.7) ∂tu
ε + (uε · ∇)uε +∇pε = 0 , div uε = 0 , pε = c .

In what follows, we work with the conditions (2.1.1), (2.1.2) and (2.1.6). We seek
simple wave solutions meaning that we want to solve directly (2.1.1)-(2.1.6) through
a construction relying on the special form (2.1.2). Taking into account (2.1.7), this
can be viewed as a preliminary step towards a more general (large amplitude) WKB
calculus concerning incompressible or compressible Euler equations. The long-term
perspective is indeed to incorporate at the level of (2.1.1) the influence of extra
terms (like pressure, viscosity, · · · ) and the presence of complete expansions for
the profile such as

(2.1.8) wε(x, θ) = w(x, θ) +
∑∞

j=1 ε
κ j wj(x, θ) , κ ∈ ]0, 1] ∩Q .

Let us recall here what has yet been obtained concerning (2.1.7) when the initial
data are adjusted as in (2.1.2) and (2.1.8). The case κ = 1 with a profile w(x, θ) =
w(x) independent of the fast variable θ ∈ T is well-known. It is a variant of
standard results in weakly nonlinear geometric optics [17, 23]. The case κ ∈
]0, 1] ∩ Q with still w(x, θ) = w(x) is fully discussed in [9]. The case κ = 1
associated with (2.1.3) corresponds to a more singular situation. It is much more
delicate. It is what here holds our attention.

In the case κ = 1 together with (2.1.3), the WKB analysis of incompressible Euler
equations is supposed to be not well-posed [24]. This is due to a strong coupling
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between the profile w(x, θ) and the phase ϕ(x). In such a regime, many unstable
phenomena (see for instance [14, 21]) can occur. Therefore, any progress in this
direction requires to work in a very specific context, like here (2.1.1)-(2.1.2)-(2.1.6),
with adapted tools.

The study of (2.1.2)-(2.1.6) is not so easy to achieve. In [5, 6, 10], some very
special examples are proposed implying functions hε(x) which are adjusted such
that the matrixDxh

ε(x) is of rank 1. These preliminary advancements are partially
completed in [7] by exploring (without restriction on the space dimension d ∈ N∗

+)
some necessary condition on ϕ(x) and w(x, θ) giving rise to matrices Dxh

ε(x)
which are nilpotent, as in (2.1.6).

2.1.2 The main results.

In this paper, we restrict our attention to the case d = 3 but, this time, we seek
necessary and sufficient conditions on (ϕ,w) to have (2.1.2)-(2.1.6). This approach
leads to the notion of compatible couple given below.

Définition 2.1.1. Let ϕ ∈ C1(Ω0
r ; R) and w ∈ C1(Ω0

r ×T; R3) two functions satis-
fying the preliminary assumptions

(2.1.9) ∂θw(x, θ) 6≡ 0 , ∇ϕ(x) 6≡ 0 .

The couple (ϕ,w) is said to be compatible on Ω0
r × T if the family {hε}ε which is

associated to (ϕ,w) through (2.1.2) satisfies (2.1.6).

It is possible to derive an exhaustive description of all compatible couples. In the
statement below, for the sake of brevity, we express this remarkable fact in a rather
imprecise form.

Théorème 4. There is a whole class of compatible couples (ϕ,w).

The interesting aspects will appear in the text when precising the structure of the
functions ϕ and w such involved, and especially when describing the geometrical
features of ϕ and how to get them.

Retain here that we can perform a complete WKB analysis of the constraints
(2.1.2), (2.1.6) and (2.1.9). Then, applying Theorem 2.6 of [6], we are sure to
recover by this way the existence of large amplitude high-frequency waves uε(t, x)
which are special solutions of (2.1.7) on ΩT

r . Now, the structure of the expressions
uε(t, x) can be precised as follows.

Théorème 5. Let (ϕ,w) be a couple which is compatible on Ω0
r × T. There are

functions W(ϕ,ψ, θ) ∈ C1(R2 × T; R) and ψ(x, θ) ∈ C1(Ω0
r × T; R) such that the

profile w(x, θ) can be factorized through

(2.1.10) w(x, θ) = W
(
ϕ(x), ψ(x, θ), θ

)
, ∇ϕ ∧∇ψ 6≡ 0 .
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There is also some T > 0 such that the Cauchy problem

(2.1.11)
{
∂tΦ +

(
W(Φ,Ψ, θ) · ∇

)
Φ = 0 , Φ(0, x) = ϕ(x) ,

∂tΨ +
(
W(Φ,Ψ, θ) · ∇

)
Ψ = 0 , Ψ(0, x, θ) = ψ(x, θ) ,

has a solution (Φ,Ψ)(t, x, θ) on the domain ΩT
r × T. We have ∂θΦ ≡ 0 and, for

all ε ∈ ]0, 1], the oscillation

(2.1.12) uε(t, x) = W
(
Φ(t, x),Ψ(t, x,Φ(t, x)/ε),Φ(t, x)/ε

)
, ε ∈ ]0, 1]

is a solution of (2.1.1) on the domain ΩT
r with initial data uε(0, ·) as in (2.1.2).

Moreover, for all t ∈ [0, T ] the couple
(
Φ(t, ·),W̃(t, ·)

)
where

W̃(t, x, θ) := W
(
Φ(t, x),Ψ(t, x, θ), θ

)
is still compatible on B(0, r − tV [×T. More precisely, for all t ∈ [0, T ], we must
have

∇Φ · ∂θW + ∂θΨ ∇Φ · ∂ΨW ≡ 0 ,(2.1.13)
(∇Φ · ∂ΨW) (∇Ψ · ∂θW + ∂θΨ ∇Ψ · ∂ΨW) ≡ 0 ,(2.1.14)

(∇Φ · ∂ϕW)2 + (∇Φ · ∂ΨW) (∇Ψ · ∂ϕW) ≡ 0 ,(2.1.15)
∇Φ · ∂ϕW +∇Ψ · ∂ΨW ≡ 0 .(2.1.16)

In comparison with preceding works [5, 6, 7, 10, 14], this second result 5 includes
various situations which have not yet been studied. It allows to exhibit many new
phenomena with respect to both the propagation and the interaction of oscillations.

2.1.3 Plan of the article.

We present here the plan of the present article. We take this opportunity to make
some clarifications and to indicate ideas of proof.

• In Chapter 2.2, we discuss the notion of compatible couple. More precisely, the
Proposition 2.2.1 of Section 2.2.1 says that any compatible couple (ϕ,w) must
verify a list S, namely (2.2.1)-(2.2.2)-(2.2.3)-(2.2.4), of conditions which are inde-
pendent of the parameter ε ∈ ]0, 1].

Then, in the Proposition 2.2.2 which is proved in Section 2.2.2, we observe that
there exists a scalar function ψ ∈ C1(Ω0

r × T; R) leading to a factorization of the
involved profiles w(x, θ) in the form (2.1.10). It follows simplifications when dealing
with the system S. It remains (see the Proposition 2.2.3 proved in Section 2.2.3)
some necessary and sufficient conditions to impose on the three ingredients ϕ, ψ
and W. In fact, the matter is to work with the relations (2.1.13), (2.1.14), (2.1.15)
and (2.1.16) at the time t = 0.

• Chapter 2.3 consider the simplest case, when ∇ϕ · ∂ψW ≡ 0. Then, as it is
explained in Section 2.3.1, the level surfaces of the phase ϕ can be associated with
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some foliated structure of R3 by planes. This information is a crucial key which,
in Section 2.3.2, enables progress leading to a complete description of (ϕ,ψ,W),
and therefore (ϕ,w).

• Chapter 2.4 is devoted to the case∇ϕ·∂ψW 6≡ 0. Then, without loss of generality,
the profile w(x, θ) can be assumed to be of the form

w(x, θ) = t
(
v, ψ,L(ψ, v)

)
(x, θ) , v(x, θ) = V

(
ϕ(x), ψ(x, θ), θ

)
where L(ψ, v) and V(ϕ,ψ, θ) are auxiliary functions. On the other hand, the
expression ψ(x, θ) can always be factorized according to

ψ(x, θ) = u
(
x, v(x, θ)

)
, ∂vu(x, v) 6≡ 0 .

In Section 2.4.1, see the Proposition 2.4.1, the information ∇ϕ · ∂ψW 6≡ 0 is ex-
ploited in order to rephrase the conditions (2.1.13), (2.1.14), (2.1.15) and (2.1.16),
written at the time t = 0 on ϕ ≡ Φ(0, ·), ψ ≡ Ψ(0, ·) and W, in terms of the more
convenient conditions (2.4.13), (2.4.14) and (2.4.15) which concern only ϕ and ψ
(as well as L and V).

After eliminating the special case ∂3u ≡ 0, we concentrate on the remaining sit-
uation ∂3u 6≡ 0. At this stage, the question becomes the following (see also the
remark 2.4.3.1 for a functional analysis viewpoint).

The intermediate problem under study. The question is to find smooth non
constant functions Φ(x1, x2, u, v), locally defined in R4, satisfying the two transport
equations

(2.1.17) X Φ ≡ 0 , Y Φ ≡ 0 , X := ∂1 +R∂2 , Y := R∂u + ∂v

and involving a variable coefficient R(x1, x2, u, v) which can be identified through
the implicit relation

(2.1.18) ∂vu(x, v) = R
(
x1, x2, u(x, v), v

)
where the function u(x, v) must satisfy the two conservation laws

(2.1.19) ∂1u+ ∂vL(u, v) ∂3u = 0 , ∂2u+ ∂uL(u, v) ∂3u = 0 .

At the level of (2.1.19), the variable v plays the part of a parameter. When
solving (2.1.19), there are degrees of freedom related to the choices of u(0, 0, x3)
and L(u, v). Once the function u (and therefore R) is known, the difficulty is to
find solutions Φ of (2.1.17) satisfying ∇Φ 6≡ 0. Let us say a few words about the
origin of the conditions (2.1.17) and ∇Φ 6≡ 0. In fact, the expression Φ is issued
from ϕ after a blowing-up procedure. Indeed, one has

ϕ(x) = Φ
(
x1, x2, u(x, v), v

)
, R = ∂vu 6≡ 0 , v(x, θ) .
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In this context, the condition Y Φ ≡ 0 means simply that ϕ does not depend on
v. Since the letter v is aimed to be replaced by a function v(x, θ) of the variables
(x, θ) ∈ R3×T, this is equivalent to say that ∂θϕ ≡ 0. This is a natural requirement.
Despite the strength of the nonlinearity, we do not want that the phase ϕ starts
to oscillate with respect to itself. The other restrictions X Φ ≡ 0, (2.1.18) and
(2.1.19) are coming from (2.1.6) after the reduction procedure.

Recall that the phase ϕ is supposed to be not stationary, see (2.1.4). This is pos-
sible if and only if the Poisson algebra A generated by the two vector fields X
and Y is of dimension strictly less than four (dimA < 4). The corresponding inte-
grability criterion (of Frobenius type) can be traducted in terms of conditions on
R. Actually, the Proposition 2.4.2 in Section 2.4.2 exhibits the relevant nonlinear
PDE’s to impose on R. In the case dimA = 2, we find (2.4.38). When dimA = 2,
we have to deal with (2.4.39)-(2.4.40).

Note that the construction of phases ϕ (through Φ) is associated with the produc-
tion of special foliations of R4. The related subtle informations would be out of
reach when working with functions ϕ depending only on x ∈ R3. Now, the diffi-
culty is that the coefficient R must also be issued from (2.1.18) after solving the
two conservation laws given line (2.1.19). It follows that the expresssion R inherits
some special structure described at the level of Proposition 2.4.3 in Section 2.4.3.
Given smooth functions K and L, introduce

(2.1.20) α(x1, x2, u, v) := K(u, v) + ∂vL(u, v) x1 + ∂uL(u, v) x2 .

The function R must be in the form

(2.1.21) R(x1, x2, u, v) = − ∂vα(x1, x2, u, v)/∂uα(x1, x2, u, v) .

In Section 2.4.4, we test the integrability conditions (2.4.39) and (2.4.40) in the
framework of (2.1.20) and (2.1.21). Surprisingly, all requirements are met for many
choices of the functions K and L leading in Section 2.4.5 to a complete classification
of all compatible couples (ϕ,w).

To our knowledge, the preceding approach and the corresponding analysis is com-
pletely original and new. In the end, it furnishes a good description of the class of
functions ϕ(x) and w(x, θ) mentioned in the Theorem 4.

We conclude the chapter 2.4 by producing in the paragraph 2.4.6 illustrative ex-
amples of compatible couples (ϕ,w).

• In Section 2.5, we study the time evolution problem. We show Theorem 5.
This result is proved in the paragraph 2.5.1. It furnishes, in the context of the
equation (2.1.1), a complete description of what can happen in terms of smooth
large amplitude oscillations. The formula (2.1.12) generalizes previous examples
exhibited in [7, 10, 13, 24].

The families {uε}ε∈]0,1] exhibited in (2.1.12) belong to a regime which, in non
linear geometric optics, is called supercritical (because one order derivatives of uε
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explode when ε goes to 0). Expressions like uε are very unstable objects [10] unless
some small viscosity is added [4]. Their asymptotic behaviours (always as ε→ 0)
can involve interesting features.

For instance, in Section 2.5.2, we can exhibit a phenomenon of superposition of os-
cillations. It is obtained by selecting compatible couples (ϕ,wε) where, in contrast
to (2.1.2), the profiles wε depend on ε ∈ ]0, 1]. More precisely, the expression wε
is built with functions W and ψ through the formula

wε(x, θ) = W
(
ϕ(x), ψ(x)/ε, θ

)
, W(ϕ, ·, θ) ∈ C∞(T; R3) .

At the time t = 0, we are faced with a large amplitude multiphase oscillation

(2.1.22) uε(0, x) = W
(
ϕ(x), ψ(x)/ε, ϕ(x)/ε

)
, ∇ϕ ∧∇ψ 6≡ 0 .

On the other hand, at any time t ∈ ]0, T ], the function Ψ(t, ·) starts to really
depend on θ ∈ T giving rise to

(2.1.23) uε(t, x) = W
(
Φ(t, x),

Ψ
(
t, x,Φ(t, x)/ε

)
ε

,
Φ(t, x)
ε

)
.

Thus, the interaction of large amplitude waves oscillating in transversal directions
at the frequency ε−1 can produce oscillations with frequency ε−2. Such a turbulent
effect was already mentioned in [5] in the context of the system (2.1.1) when d = 2.
On the contrary, we were not able to prove the same effect in the case of (2.1.7)
when d = 2. It seems that, when adding the divergence free condition, it is a
specificity of the space dimension d = 3.

• The aim of Appendix 6 is to check that the list of situations enumerated at the
level of Proposition 2.4.4 is exhaustive. The corresponding work of verification is
quite long and technical. The difficulties are due to the fact that it is delicate to
interpret the integrability conditions to impose on R into convenient constraints
on the functions K and L appearing at the level of (2.1.20). This will be done step
by step, from paragraph 2.6.1 up to 2.6.5.

2.2 Compatible couples.

From now on, we write f ≡ 0 and f 6≡ 0 to mean respecively that f is identically
zero on its domain of definition or that it is a non-zero function.

2.2.1 The notion of compatible couples.

Given two vectors u = t(u1, u2, u3) ∈ R3 and v = t(v1, v2, v3) ∈ R3, we note

u · v := u1 v1 + u2 v2 + u3 v3 ,
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u⊗ v :=

 u1v1 u1v2 u1v3
u2v1 u2v2 u2v3
u3v1 u3v2 u3v3

 , u ∧ v :=

 u2v3 − u3v2
u3v1 − u1v3
u1v2 − u2v1

 .

We can interpret (2.1.6) in the form of conditions on (w,ϕ).

Proposition 2.2.1. Let ϕ ∈ C1(Ω0
r ; R) and w ∈ C1(Ω0

r × T; R3) satisfying the
preliminary assumptions (2.1.9). The couple (ϕ,w) is compatible on Ω0

r×T if and
ony if it is a solution on Ω0

r × T of the system S made of

∇ϕ · ∂θw ≡ 0 ,(2.2.1)
∇ϕ · (Dxw ∂θw) ≡ 0 ,(2.2.2)

(Dxw)3 ≡ 0 ,(2.2.3)
M (Dxw)2 +DxwM Dxw + (Dxw)2M ≡ 0 , M := ∂θw ⊗∇ϕ .(2.2.4)

Proof of Proposition 2.2.1. We find

Dxh
ε(x) = (Dxw)

(
x,
ϕ(x)
ε

)
+

1
ε
∂θw

(
x,
ϕ(x)
ε

)
⊗∇ϕ(x) .

The constraint (2.1.6) can also be formulated as
3∑
j=0

ε−j Ξj
(
x,
ϕ(x)
ε

)
≡ 0 , Ξj(x, θ) ∈ C0

(
Ω0
r × T,M3(R3)

)
where

Ξ0 = (Dxw)3 , Ξ1 = (Dxw)2M +DxwM Dxw +M (Dxw)2 ,
Ξ3 = M3 , Ξ2 = M2Dxw +DxwM

2 +M DxwM .

To guarantee (2.1.6) for all ε ∈ ]0, 1], it is necessary and sufficient to impose

(2.2.5) Ξj ≡ 0 , ∀ (x, θ) ∈ Ω0
r × T , ∀ j ∈ {0, 1, 2, 3} .

Our aim is to solve (2.2.5) for some r ∈ R∗
+. The constraints Ξ0 ≡ 0 and Ξ1 ≡ 0

are repetitions of respectively (2.2.3) and (2.2.4). Since

M3 = (∇ϕ · ∂θw)2 ∂θw ⊗∇ϕ = 0 , ∂θw ⊗∇ϕ 6≡ 0 ,

the examination of Ξ3 leads to (2.2.1). In view of (2.2.1), we have also M2 ≡ 0.
Thus, the condition Ξ2 ≡ 0 reduces to M DxwM ≡ 0, that is (2.2.2).

2

The system S, as presented above, is not yet exploitable. The purpose of this
chapter 2.2 is to put it in a suitable form. In view of (2.2.3), the rank of the matrix
Dxw is either one or two (the zero case being trivial). The next paragraphs 2.2.1.1
and 2.2.1.2 deal separately with these two situations.
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2.2.1.1 The case of rank one.

In this paragraph, we suppose that

(2.2.6) rg
(
Dxw(x, θ)

)
= dim

(
Im(Dxw)(x, θ)

)
= 1 , ∀ (x, θ) ∈ Ω0

r × T .

By the constant rank theorem [2] and due to the compacity of the torus T, by
restricting r ∈ R∗

+ if necessary, we can find two functions ψ ∈ C1(Ω0
r × T; R) and

W ∈ C1(R× T; R3) with ∇ψ 6≡ 0 and ∂ψW 6≡ 0 such that

(2.2.7) w(x, θ) = W
(
ψ(x, θ), θ

)
, ∀ (x, θ) ∈ Ω0

r × T .

Lemme 2.2.1. Assume (2.1.9) and (2.2.7). Then, the couple (ϕ,w) is compatible
on the domain Ω0

r × T if and only if the following conditions are verified :

∇ϕ · ∂θw ≡ 0 ,(2.2.8)
(∇ϕ · ∂ψW) (∇ψ · ∂θw) ≡ 0 ,(2.2.9)

∇ψ · ∂ψW ≡ 0 .(2.2.10)

Proof of Lemma 2.2.1. The condition (2.2.8) is the same as (2.2.1). Taking
into account (2.2.7), we find Dxw = ∂ψW ⊗∇ψ so that (2.2.3) becomes

(∇ψ · ∂ψW)2 ∂ψW ⊗∇ψ ≡ 0 , ∂ψW ⊗∇ψ 6≡ 0

which implies (2.2.10). Knowing (2.2.10), the constraint (2.2.4) reduces to

DxwM Dxw = (∇ϕ · ∂ψW) (∇ψ · ∂θw) ∂ψW ⊗∇ψ ≡ 0 .

We recover here (2.2.9) which also allows to guarantee (2.2.2). 2

2.2.1.2 The case of rank two.

In this paragraph, we suppose that

(2.2.11) rg
(
Dxw(x, θ)

)
= dim

(
Im(Dxw)(x, θ)

)
= 2, ∀ (x, θ) ∈ Ω0

r × T .

As before, we can apply the constant rank theorem [2] in order to find three
functions ψ ∈ C1(Ω0

r × T; R), ψ̃ ∈ C1(Ω0
r × T; R) and W ∈ C1(R × T; R3) with

∇ψ 6≡ 0, ∇ψ̃ 6≡ 0, ∇ψ ∧∇ψ̃ 6≡ 0 and ∂ψW 6≡ 0 such that

(2.2.12) w(x, θ) = W
(
ψ̃(x, θ), ψ(x, θ), θ

)
, ∀ (x, θ) ∈ Ω0

r × T .

In the Section 2.2.2, we will show that we can take ψ̃ ≡ ϕ. The precise statement
is the following.

Proposition 2.2.2. Let (ϕ,w) be a compatible couple on the domain Ω0
r × T. By

restricting r ∈ R∗
+ if necessary, we can find a function ψ ∈ C1(Ω0

r×T; R) satisfying
∇ϕ ∧∇ψ 6≡ 0 and a vector function W ∈ C1(R2 × T; R3) such as

(2.2.13) w(x, θ) = W
(
ϕ(x), ψ(x, θ), θ

)
, ∀ (x, θ) ∈ Ω0

r × T .
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Assuming (2.2.13), we can compute

(2.2.14) Dxw(x, θ) = ∂ϕW ⊗∇ϕ+ ∂ψW ⊗∇ψ .

In view of (2.2.11), the two vectors ∇ϕ and ∇ψ, as well as ∂ϕW and ∂ψW, must
be independent. In other words :

(2.2.15) ∇ϕ ∧∇ψ 6≡ 0 , ∂ϕW ∧ ∂ψW 6≡ 0 .

On the other hand, the condition (2.1.9) amounts to the same thing as

(2.2.16) ∂θψ ∂ψW + ∂θW 6≡ 0 .

In the Section 2.2.3, we will further exploit the information (2.2.13) in order to
interpret the system S differently. Just retain here that :

Proposition 2.2.3. Assume (2.2.11) and (2.2.13) together with the preliminary
hypothesis (2.2.16). Then, the couple (ϕ,w) is compatible on the domain Ω0

r × T
if and only if we have (2.2.15) and the following conditions :

∇ϕ · ∂θW + ∂θψ ∇ϕ · ∂ψW ≡ 0 ,(2.2.17)
(∇ϕ · ∂ψW) (∇ψ · ∂θW + ∂θψ ∇ψ · ∂ψW) ≡ 0 ,(2.2.18)

(∇ϕ · ∂ϕW)2 + (∇ϕ · ∂ψW) (∇ψ · ∂ϕW) ≡ 0 ,(2.2.19)
∇ϕ · ∂ϕW +∇ψ · ∂ψW ≡ 0 .(2.2.20)

Comparing the two Propositions 2.2.1 and 2.2.3, we see that (2.2.8)-(2.2.9)-(2.2.10)
can be handled as a special case of (2.2.17)-(2.2.18)-(2.2.19)-(2.2.20). It suffices
to work with ∂ϕW ≡ 0. Thus, in the chapters 2.3 and 2.4, we can concentrate
on the system (2.2.17)-(2.2.18)-(2.2.19)-(2.2.20). We will examine separately what
happens when respectively ∇ϕ · ∂ψW ≡ 0 and ∇ϕ · ∂ψW 6≡ 0.

2.2.2 Factorization of compatible couples.

Suppose (2.2.11). To obtain (2.2.13), we proceed in two steps. First, in the
paragraph 2.2.2.1, we produce a local version of the Proposition 2.2.2. Then, in
the paragraph 2.2.2.2, we complete the proof of the Proposition 2.2.2.

2.2.2.1 The local version of the Proposition 2.2.2.

Note ~0 = (0, 0, 0) ∈ Ω0
r ⊂ R3. In this paragraph, we work locally, near a point

(~0, θ̃) ∈ Ω0
r × T. We select some open connected neighbourhood Γ satisfying

(~0, θ̃) ∈ Γ ⊂ Ω0
r × T. Typically, we can take

Γ ≡ Γθ̃r,r̃ := Ω0
r × ]θ̃ − r̃ , θ̃ + r̃[ , (r, r̃, θ̃) ∈ R∗

+× ]0, 1[×T .
Let (ϕ,w) be a couple which is compatible on Γθ̃r,r̃. By exchanging w(x, θ) into
w(x, θ − θ̃), we can always suppose that θ̃ = 0. In what follows, we will argue on



CHAPTER 2. OSCILLATING SOLUTIONS 47

Γ0
r,r̃. Note i, j and k three distinct elements chosen among the set {1, 2, 3}. The

constraint (2.2.11) means that there is k giving rise to

∇wk(x, θ) ∈ V ec 〈∇wi(x, θ),∇wj(x, θ)〉 , ∀ (x, θ) ∈ Γ0
r,r̃ ,(2.2.21)

∇wi(x, θ) ∧∇wj(x, θ) 6= 0 , ∀ (x, θ) ∈ Γ0
r,r̃ .(2.2.22)

The direction∇ϕ(~0) cannot be simultaneously colinear to the two vectors∇wi(~0, 0)
and ∇wj(~0, 0). Pick the indice l ∈ {i, j} in such a way that ∇ϕ(~0)∧∇wl(~0, 0) 6= 0.
Then, do a permutation on the three directions x1, x2 and x3 (with the corre-
sponding permutation on the components w1, w2 and w3) in order to have l = 1
and k = 3. Then, by restricting r ∈ R∗

+ and r̃ ∈ ]0, 1[, we can obtain

∇ϕ ∧∇w1 6≡ 0 , ∀ (x, θ) ∈ Γ0
r,r̃(2.2.23)

while the conditions (2.2.21) and (2.2.22) become

∇w3(x, θ) ∈ V ec 〈∇w1(x, θ),∇w2(x, θ)〉 , ∀ (x, θ) ∈ Γ0
r,r̃ ,(2.2.24)

∇w1(x, θ) ∧∇w2(x, θ) 6= 0 , ∀ (x, θ) ∈ Γ0
r,r̃ .(2.2.25)

The constraint (2.2.24) allows to deduce the existence of a scalar function W3 in
C1(R2×]− r̃, r̃[; R) such that

(2.2.26) w3(x, θ) = W3

(
w1(x, θ), w2(x, θ), θ

)
, ∀ (x, θ) ∈ Γ0

r,r̃ .

Then, using the convention

W(w1, w2, θ) =

 W1(w1, w2, θ)
W2(w1, w2, θ)
W3(w1, w2, θ)

 :=

 w1

w2

W3(w1, w2, θ)

 ,

we can get

(2.2.27) w(x, θ) = W
(
w1(x, θ), w2(x, θ), θ), ∀ (x, θ) ∈ Γ0

r,r̃ .

Lemme 2.2.2. Select a couple (ϕ,w) which is compatible on Γ0
r,r̃ and which

satisfies (2.2.24) together with (2.2.25). Then, there exists a scalar function
W2 ∈ C1(R2× ]− r̃, r̃[; R) such that the component w2 can be put in the form

(2.2.28) w2(x, θ) = W2

(
ϕ(x), w1(x, θ), θ

)
, ∀ (x, θ) ∈ Γ0

r,r̃ .

Proof of Lemma 2.2.2. To obtain (2.2.28), it suffices to show that

(2.2.29) ∇w2(x, θ) ∈ V ec 〈∇ϕ(x),∇w1(x, θ)〉 , ∀ (x, θ) ∈ Γ0
r,r̃ .

The proof is by contradiction. Suppose that (2.2.29) is not verified :

(2.2.30) ∃ (x0, θ0) ∈ Γ0
r,r̃ , ∇w2(x0, θ0) /∈ V ec 〈∇ϕ(x0),∇w1(x0, θ0)〉 .
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Combining (2.2.23) and (2.2.30), we see that the vectors ∇ϕ(x0), ∇w1(x0, θ0) and
∇w2(x0, θ0) give rise to a basis of R3. In addition, by using the definition of the
Ξj and the restrictions (2.2.1), (2.2.2), (2.2.3) and (2.2.4), we can get(

Dxw + ∂θw ⊗∇ϕ
)3 =

∑3
j=0 Ξj = 0 .

Thus, the matrice

Dxw + ∂θw ⊗∇ϕ =

 t∇w1 + ∂θw1
t∇ϕ

t∇w2 + ∂θw2
t∇ϕ

t∇w3 + ∂θw3
t∇ϕ


is at most of rank two. In view of (2.2.26), the third row vector is

∇w3 + ∂θw3 ∇ϕ = ∂w1W3 (∇w1 + ∂θw1 ∇ϕ)
+ ∂w2W3 (∇w2 + ∂θw2 ∇ϕ) + ∂θW3∇ϕ .

It must be a linear combination of the two first row vectors so that

(2.2.31) (∂θW3)
(
w1(x0, θ0), w2(x0, θ0), θ0) = 0.

In what follows, the functions will be (unless stated otherwise) computed at the
point (x, θ) = (x0, θ0). The information (2.2.31) implies that

∂θw3 = ∂w1W3(w1, w2, θ0) ∂θw1 + ∂w2W3(w1, w2, θ0) ∂θw2 .

Looking at (2.1.9), we note that either ∂θw1(x0, θ0) 6= 0 or ∂θw2(x0, θ0) 6= 0.
We will below consider the case ∂θw2(x0, θ0) 6= 0. The other situation (that is
∂θw1 6= 0) can be dealt in a similar way.

The constraint (2.2.31) allows simplifications when writing (2.2.1), (2.2.2), (2.2.3)
and (2.2.4). For example, the condition (2.2.1) reduces to

(2.2.32) ∇ϕ · ∂w2W = − ∂θw1

∂θw2
∇ϕ · ∂w1W.

The condition (2.2.3) is nothing other than

(Dxw)3 =
[
(Dxw)2 ∂w1W

]
⊗∇w1 +

[
(Dxw)2 ∂w2W

]
⊗∇w2 ≡ 0 .

Taking into account (2.2.25), this identity is possible only if

(2.2.33) (Dxw)2 ∂w1W ≡ 0, (Dxw)2 ∂w2W ≡ 0.

Defining α := t∇w1Dxw ∂w1W and β := t∇w2Dxw ∂w1W, we find

(Dxw)2 ∂w1W = α t(1, 0, ∂w1W3) + β t(0, 1, ∂w2W3) .

The first constraint of (2.2.33) means that the two coefficients α and β are zero,
yielding

(∇w1 · ∂w1W)2 + (∇w1 · ∂w2W) (∇w2 · ∂w1W) = 0 ,(2.2.34)
(∇w2 · ∂w1W) (∇w1 · ∂w1W +∇w2 · ∂w2W) = 0 .(2.2.35)
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By the same method followed this time at the level of the second condition, we
can extract the necessary and sufficient conditions

(∇w1 · ∂w2W) (∇w1 · ∂w1W +∇w2 · ∂w2W) = 0 ,(2.2.36)
(∇w2 · ∂w2W)2 + (∇w1 · ∂w2W) (∇w2 · ∂w1W) = 0 .(2.2.37)

We claim that it is not possible to have

(2.2.38) ∇w1 · ∂w1W +∇w2 · ∂w2W 6= 0.

Indeed, suppose that (2.2.38) is true. Then, the relations (2.2.35) and (2.2.36)
imply that ∇w2 · ∂w1W = 0 and that ∇w1 · ∂w2W = 0. Using these informations,
the relations (2.2.34) and (2.2.37) lead to ∇w1 · ∂w1W = 0 and ∇w2 · ∂w2W = 0.
Now, these two last informations are in contradiction with (2.2.38). Therefore, we
are sure that

(2.2.39) ∇w1 · ∂w1W +∇w2 · ∂w2W = 0.

The condition (2.2.39) induces (2.2.35) and (2.2.36). It is also adjusted in such a
way that (2.2.37) is equivalent to (2.2.34). Thus, the analysis of (2.2.3) is the same
as the one of (2.2.34) and (2.2.39). These two constraints (2.2.34) and (2.2.39) say
in particular that the two vectors

(∇w1 · ∂w1W,∇w2 · ∂w1W) ∈ R2, (∇w1 · ∂w2W,∇w2 · ∂w2W) ∈ R2

are colinear. In other words, we can find (α̃, β̃) ∈ R2\(0, 0) such that

(2.2.40) ∇w1 · (α̃ ∂w1W + β̃ ∂w2W) = 0, ∇w2 · (α̃ ∂w1W + β̃ ∂w2W) = 0.

Now, we consider (2.2.2) computed at (x0, θ0). Exploiting the informations (2.2.31),
(2.2.32) and (2.2.39), we can formulate (2.2.2) according to

(2.2.41)

[
2 ∂θw1 (∇w1 · ∂w1W) + ∂θw2 (∇w1 · ∂w2W)

−(∂θw1)2

∂θw2
(∇w2 · ∂w1W)

]
(∇ϕ · ∂w1W) = 0.

Multiply (2.2.41) by ∂θw2 (∇w2 ·∂w1W). Then, use (2.2.34) and (2.2.39) to obtain

(2.2.42) (∇ϕ · ∂w1W) (∇w2 · ∂θw)2 = 0 .

In the same way, multiply (2.2.41) by ∂θw2 (∇w1 · ∂w2W). Then, use (2.2.34) in
order to extract

(2.2.43) (∇ϕ · ∂w1W) (∇w1 · ∂θw)2 = 0 .

Two situations can happen :
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. 1 / The case ∇ϕ · ∂w1W 6= 0. The equations (2.2.1), (2.2.42) and (2.2.43) imply
that ∇ϕ, ∇w1 and ∇w2 belong to the same plane (∂θw⊥). It follows that
these vectors are linearly dependent, in contradiction with (2.2.30).

. 2 / The case ∇ϕ · ∂w1W = 0. From (2.2.32), we deduce that ∇ϕ · ∂w2W = 0. It
follows that

(2.2.44) ∇ϕ · (α′ ∂w1W + β
′
∂w2W) = 0, ∀ (α

′
, β

′
) ∈ R2.

We choose α
′
= α̃ and β

′
= β̃. According to the definition of the function

W and since (α̃, β̃) 6= (0, 0), we have

α̃ ∂w1W + β̃ ∂w2W = t(α̃, β̃, ?) 6= (0, 0, 0) .

The informations (2.2.40) and (2.2.44) (where α
′

= α̃ and β
′

= β̃) indi-
cate that the vectors ∇ϕ, ∇w1 and ∇w2 belong to the same plane, namely
(α̃ ∂w1W+ β̃ ∂w2W)⊥. It follows that these three vectors are linearly depen-
dent. This is in contradiction with (2.2.30).

In conclusion, we have (2.2.29), as expected.
2

Proposition 2.2.4 (local version of the Proposition 2.2.2). Assume (2.2.11) and
select any θ̃ ∈ T. Let (ϕ,w) be a couple which is compatible on Γθ̃r,r̃. Then, by
selecting r ∈ R∗

+ and r̃ ∈ ]0, 1[ conveniently and by permuting the directions x1, x2

and x3 (with accordingly the components w1, w2 and w3 of w), it is possible to
obtain (2.2.23) and to write the profile w(x, θ) in the form

(2.2.45) w(x, θ) = W
(
ϕ(x), w1(x, θ), θ

)
, (x, θ) ∈ Γθ̃r,r̃

with a function W = t(W1,W2,W3) ∈ C1(R2× ]− r̃, r̃[; R3) whose two first compo-
nents W1 and W2 satisfy

W1(ϕ,w1, θ) = w1 , ∀ (ϕ,w1, θ) ∈ R2× ]− r̃, r̃[ ,(2.2.46)
∂ϕW2(ϕ,w1, θ) 6= 0 , ∀ (ϕ,w1, θ) ∈ R2× ]− r̃, r̃[ .(2.2.47)

Proof of proposition 2.2.4. Without loss of generality, we can suppose that
θ̃ = 0. Taking into account (2.2.28), the function w3 can be put in the form

w3(x, θ) = W3

(
ϕ(x), w1(x, θ), θ

)
, ∀ (x, θ) ∈ Γ0

r,r̃

with W3(ϕ,w1, θ) := W3

(
w1,W2(ϕ,w1, θ), θ

)
. In addition, we can define

W1(ϕ,w1, θ) := w1 , ∀ (ϕ,w1, θ) ∈ R2× ]− r̃, r̃[ .

With these conventions, we recover both (2.2.45) and (2.2.46). Recalling (2.2.23),
to have (2.2.11), the vector ∂ϕW ∧ ∂w1W must not vanish on R2× ] − r̃, r̃[. This
amounts to saying that the function ∂ϕW2 does not vanish on R2× ]− r̃, r̃[. This
is exactly what requires the condition (2.2.47).

2
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2.2.2.2 The proof of the Proposition 2.2.2.

Select a compatible couple (ϕ,w). The condition (2.2.11) implies that

(2.2.48) dim V ec 〈∇w1,∇w2,∇w3〉 = 2, ∀ (x, θ) ∈ Ω0
r × T .

Locally, by permuting the directions x1, x2 and x3 as it is made in the Proposition
2.2.4, we can get ∇ϕ ∈ V ec 〈∇w1,∇w2〉. It follows that the direction ∇ϕ belongs
to the vector space V ec 〈∇w1,∇w2,∇w3〉. Observe that this property does not
depend on the choice of the coordinates. Thus, it remains to be true in all the
domain under study. We must have

(2.2.49) ∇ϕ ∈ V ec 〈∇w1,∇w2,∇w3〉 , ∀ (x, θ) ∈ Ω0
r × T .

Fix θ ∈ T. Given a function Ψθ ∈ C1(R3; R) and rθ ∈ ]0, r[, introduce

ψθ(x, θ̃) := Ψθ(w1, w2, w3)(x, θ̃) , ∀ (x, θ̃) ∈ Ω0
rθ
×]θ − rθ, θ + rθ[ .

We can deduce from (2.2.48) and (2.2.49) the existence of Ψθ ∈ C1(R3; R) and
rθ ∈ ]0, r[ such that ∇ϕ is not colinear to ∇ψθ, namely that the first component
of ∇ϕ ∧∇ψθ is positive

(∇ϕ ∧∇ψθ)1 > 0 , ∀ (x, θ) ∈ Ω0
rθ
×]θ − rθ, θ + rθ[

whereas
V ec 〈∇ϕ,∇ψθ〉 ≡ V ec 〈∇w1,∇w2,∇w3〉 , ∀ (x, θ) ∈ Ω0

rθ
×]θ − rθ, θ + rθ[ .

The family of intervals ]θ − rθ, θ + rθ[ with θ ∈ T is an open cover of T. Since T
is compact, there is a finite subcover T ⊂

⋃N
i=1 ]θi − rθi , θi + rθi [ . Now, consider

some associated partition of unity {χi}Ni=1 where the functions χi ∈ C∞(T; R+)
are adjusted such that suppχi ⊂ ]θi − rθi , θi + rθi [ and

∑N
i=1 χi ≡ 1. We replace

r ∈ R∗
+ by the minimum of the numbers rθi (with i ∈ {1, · · · , N}). Then, we

can introduce ψ(x, θ) :=
∑N

i=1 ψθi(x, θ)χi(θ). The preceding construction yields
(2.2.15) as well as

(2.2.50) V ec 〈∇ϕ,∇ψ〉 ≡ V ec 〈∇w1,∇w2,∇w3〉 , ∀ (x, θ) ∈ Ω0
r × T .

The restriction (2.2.50) means that the three components wi can be expressed as
functions of ϕ, ψ and θ. At this level, we recover (2.2.13).

2.2.3 Necessary and sufficient constraints on (ϕ, ψ,W).

In this Section 2.2.3, we first show the Proposition 2.2.3, see the paragraph 2.2.3.1.
Then, in the paragraph 2.2.3.2, we exclude the situations already examined in [7]
and we precise the assumptions on (ϕ,ψ,W) to be retained.
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2.2.3.1 The proof of the Proposition 2.2.3.

The restriction (2.2.17) is just a repetition of (2.2.1). Concerning (2.2.18), it comes
from the constraint (2.2.2) in which the matrix Dxw(x, θ) is replaced as in (2.2.14).
The relation (2.2.1) induces simplifications leading to (2.2.18). With (2.2.14), we
can formulate (2.2.3) according to

(Dxw)2 ∂ϕW ⊗∇ϕ + (Dxw)2 ∂ψW ⊗∇ψ = 0 .

Recall (2.2.15). The two vectors∇ϕ and∇ψ being independent, the above identity
is equivalent to

(Dxw)2 ∂ϕW = 0 ,(2.2.51)
(Dxw)2 ∂ψW = 0 .(2.2.52)

Plug (2.2.14) into (2.2.51). Then, exploit (2.2.15) in order to extract

(∇ϕ · ∂ϕW)2 + (∇ψ · ∂ϕW) (∇ϕ · ∂ψW) = 0 ,(2.2.53)
(∇ψ · ∂ϕW) (∇ψ · ∂ψW +∇ϕ · ∂ϕW) = 0 .(2.2.54)

We do the same with (2.2.52). This time, we get

(∇ψ · ∂ψW)2 + (∇ψ · ∂ϕW) (∇ϕ · ∂ψW) = 0 ,(2.2.55)
(∇ϕ · ∂ψW) (∇ψ · ∂ψW +∇ϕ · ∂ϕW) = 0 .(2.2.56)

The relations (2.2.19) and (2.2.53) are similar. Observe that we cannot have
∇ψ · ∂ψW +∇ϕ · ∂ϕW 6= 0. Indeed, in such a case, (2.2.53), (2.2.54), (2.2.55) and
(2.2.56) would provide

∂ϕW ∈ V ec 〈∇ϕ,∇ψ〉⊥ , ∂ψW ∈ V ec 〈∇ϕ,∇ψ〉⊥ .

In other words, because of (2.2.15), the two vectors ∂ϕW and ∂ψW of R3 would
be colinear. This is clearly not coherent with (2.2.15). Therefore, we are sure to
have (2.2.20).
Now, we have to show the opposite implication, that is the ”only if” part of the
Proposition 2.2.3. Using (2.2.13) and (2.2.15), the relations (2.2.1), (2.2.2), (2.2.11)
and (2.1.9) are respectively equivalent to (2.2.17), (2.2.18), (2.2.15) and (2.2.16).

In addition, we have seen that looking at (2.2.3) is the same as imposing (2.2.53),
(2.2.54), (2.2.55) and (2.2.56). The three conditions (2.2.53), (2.2.54) and (2.2.56)
are taken into account at the level of (2.2.19) and (2.2.20). In view of (2.2.20), the
remaining condition (2.2.55) reduces to (2.2.53).
It remains to check that the relation (2.2.4) is indeed a consequence of the con-
straints of the Proposition 2.2.3. To this end, use (2.2.14) in order to identify
the different terms of (2.2.4). With (2.2.19) et (2.2.20), we can easily recover
M (Dxw)2 ≡ 0. Then, we can exploit (2.2.17) and (2.2.18) to obtain

DxwM Dxw + (Dxw)2M = (∇ψ · ∂θw) (∇ϕ · ∂ϕW +∇ψ · ∂ψW) ∂ψW ⊗∇ϕ .

In view of (2.2.20), we have (2.2.4). The proof of the Proposition 2.2.3 is finished.
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2.2.3.2 Further adjustments.

Before going further in the analysis, we must take care to deal with situations which
are not considered in [7]. Noting W̃(x, θ) := W

(
ϕ(x), ψ(x, θ), θ

)
, the article [7] is

based on the following condition, see (35) of [7] :

(2.2.57) Π
∂θfW⊥ DxW̃ Π∇ϕ⊥ ≡ Π(∂θψ ∂ψW+∂θW)⊥ (∂ψW ⊗∇ψ) Π∇ϕ⊥ ≡ 0 .

Therefore, in order not to repeat what is made in [7], we have to work with W, ϕ
and ψ adjusted such that ∂ψW ∧ ∂θW 6≡ 0 and ∇ψ ∧∇ϕ 6≡ 0.

There are different ways to factorize the profile w(x, θ) as it is proposed in (2.2.13).
Indeed, if χ(ϕ,ψ, θ) ∈ C∞(R2 × T; R) is any function such that ∂ψχ 6≡ 0, not-
ing ψ̃ := χ(ϕ,ψ, θ), we find w ≡ W(ϕ,ψ, θ) ≡ W̃(ϕ, ψ̃, θ) with W(ϕ,ψ, θ) ≡
W̃

(
ϕ, χ(ϕ,ψ, θ), θ

)
. Then, we find ∂ψW ≡ ∂ψχ ∂ψ̃W̃ 6≡ 0 together with

∂ϕW ≡ ∂ϕW̃ + ∂ϕχ ∂ψW/∂ψχ , ∂θψ̃ ≡ ∂θψ ∂ψχ+ ∂θχ .

In this transformation, the conditions ∂ψW 6≡ 0 and ∂ϕW 6≡ 0 are preserved. On
the other hand, we have some freedom concerning ∂θψ. By adjusting χ conve-
niently, we can make sure that ∂θψ 6≡ 0 or ∂θψ ≡ 0. According to circumstances,
we will use one or other of these two conditions. In preparation for what follows,
we put aside the framework (2.2.58) given below

(2.2.58) ∂θψ 6≡ 0 , ∂ϕW 6≡ 0 , ∂ψW ∧ ∂θW 6≡ 0 , ∇ψ ∧∇ϕ 6≡ 0 .

2.3 Compatible couples when ∇ϕ · ∂ψW ≡ 0.

We discuss here the system (2.2.17)-(2.2.18)-(2.2.19)-(2.2.20) under the restriction
(2.2.58) and when ∇ϕ · ∂ψW ≡ 0. In other words, we have to deal with (2.2.13),
(2.2.15) and (2.2.58) combined with

∇ϕ · ∂θW = 0,(2.3.1)
∇ϕ · ∂ϕW = 0,(2.3.2)
∇ψ · ∂ψW = 0,(2.3.3)
∇ϕ · ∂ψW = 0.(2.3.4)

2.3.1 The foliated structure associated to the phase ϕ.

The phase ϕ must here inherit some special structure.

Lemme 2.3.1. Assume (2.1.9), (2.2.15) and (2.2.58) as well as (2.3.1), (2.3.2),
(2.3.3) and (2.3.4). By restricting r ∈ R∗

+ and by permuting the coordinates
x1, x2, x3 and the components ∂1ϕ, ∂2ϕ, ∂3ϕ, we can find two scalar functions
f ∈ C1(R; R) and g ∈ C1(R; R) adjusted such that

(2.3.5) ∇ϕ(x) ≡ t
(
f ◦ ϕ(x), 1, g ◦ ϕ(x)

)
∂2ϕ(x) , ∀x ∈ Ω0

r .
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Proof of the Lemma 2.3.1. The conditions (2.3.1) and (2.3.4) say that the
direction ∇ϕ is parallel to ∂θW ∧ ∂ψW 6≡ 0. It follows that the direction ∇ϕ can
be viewed as a function of only (ϕ,ψ, θ). By restricting r ∈ R∗

+ and by permuting
the coordinates x1, x2, x3 and the components ∂1ϕ, ∂2ϕ, ∂3ϕ, we can always
recover

∇ϕ = E(ϕ,ψ, θ) ∂2ϕ , E(ϕ,ψ, θ) := t
(
f(ϕ,ψ, θ), 1, g(ϕ,ψ, θ)

)
.

Since the function ϕ does not depend on θ, we must have ∂θψ ∂ψE + ∂θE ≡ 0.
When ∂ψE ≡ 0, we find also ∂θE ≡ 0 so that (2.3.5) is verified. From now on, we
supppose that ∂ψE 6≡ 0.

The application ∂θψ can be represented as a function of only the variables (ϕ,ψ, θ),
say ∂θψ = k(ϕ,ψ, θ) with k ∈ C1(R2 × T; R). Consider any function χ(ϕ,ψ, θ)
satisfying ∂ψχ 6≡ 0 and k ∂ψχ+∂θχ ≡ 0. Define ψ̃ := χ(ϕ,ψ, θ). We can change the
set of independent variables (ϕ,ψ, θ) into (ϕ, ψ̃, θ) to find E(ϕ,ψ, θ) ≡ Ẽ(ϕ, ψ̃, θ).
Observe that

∂θ
[
E(ϕ,ψ, θ)

]
≡ ∂θψ ∂ψE + ∂θE ≡ 0 ≡ ∂θ

[
Ẽ(ϕ, ψ̃, θ)

]
≡ ∂θψ̃ ∂ψ̃Ẽ + ∂θẼ .

By construction, we have ∂θψ̃ ≡ 0. It follows that the function Ẽ does not depend
on θ. Retain that

(2.3.6) ∇ϕ = Ẽ(ϕ, ψ̃) ∂2ϕ , Ẽ(ϕ, ψ̃) := t
(
f̃(ϕ, ψ̃), 1, g̃(ϕ, ψ̃)

)
.

Since ∂ψE ≡ 0, we must have ∂ψ̃Ẽ 6≡ 0. Writing W(ϕ,ψ, θ) ≡ W̃(ϕ, ψ̃, θ), we

still have to deal with (2.3.1)-(2.3.2)-(2.3.3)-(2.3.4) but this time with W̃ and ψ̃

in place of W and ψ. We decompose W̃ into

(2.3.7) W̃(ϕ, ψ̃, θ) = α t(0,−g̃, 1) + β t(1,−f̃ , 0) + γ t(f̃ , 1, g̃)

where the three functions α, β and γ depend on ϕ, ψ̃ and θ. The condition (2.3.1)
yields ∂θγ ≡ 0. On the other hand, the restriction (2.3.4) leads to

(2.3.8) ∂ψ̃γ (f̃2 + 1 + g̃2)− α∂ψ̃ g̃ − β ∂ψ̃f̃ + γ (f̃ ∂ψ̃f̃ + g̃ ∂ψ̃ g̃) ≡ 0 .

Taking the derivative of (2.3.8) with respect to θ, we find

(2.3.9) ∂θα∂ψ̃ g̃ + ∂θβ ∂ψ̃f̃ ≡ 0 .

The symmetry of second derivatives expressed in the form ∂2
13ϕ ≡ ∂2

31ϕ can be
traducted according to

(2.3.10) (−∂ψ̃ g̃, f̃ ∂ψ̃ g̃ − g̃ ∂ψ̃f̃ , ∂ψ̃f̃) · t(∂1ψ̃, ∂2ψ̃, ∂3ψ̃) ≡ 0 .

Combining (2.3.9) and (2.3.10) with ∂ψ̃Ẽ 6≡ 0, we can deduce that

(2.3.11) ∇ψ̃ · ∂θW̃ ≡ ∂θβ ∂1ψ̃ − (f̃ ∂θβ + g̃ ∂θα) ∂2ψ̃ + ∂θα∂3ψ̃ ≡ 0 .
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Recall that ∇ϕ∧∇ψ̃ 6≡ 0. Thus, the relations (2.3.1), (2.3.3), (2.3.4) and (2.3.11)
indicate that the two vectors ∂θW̃ and ∂ψ̃W̃ are colinear. It follows that ∂θW ∧
∂ψW = ∂ψχ ∂θW̃ ∧ ∂ψ̃W̃ ≡ 0. This last information is clearly in contradiction
with (2.2.58).

2

Recall here a basic result (see also [5, 7]) concerning (2.3.5).

Lemme 2.3.2. Select three functions f(ϕ), g(ϕ) and ϕ00(x2) in C1(R; R). Then,
for r ∈ R∗

+ small enough, there is a unique expression ϕ(x) ∈ C1(Ω0
r ; R) satisfying

(2.3.5), that is

(2.3.12) ∂1ϕ− f ◦ ϕ ∂2ϕ = 0 , ∂3ϕ− g ◦ ϕ(x) ∂2ϕ = 0 , ∀x ∈ Ω0
r

together with the initial data ϕ(0, x2, 0) = ϕ00(x2) for all x2 ∈ ]− r, r[.

Proof of the Lemma 2.3.2. The Cauchy problem for the first conservation law
involved at the level of (2.3.12), namely

(2.3.13) ∂1ϕ0 − f ◦ ϕ0 ∂2ϕ0 = 0 , ϕ0(0, x2) = ϕ00(x2)

has a local C1 solution ϕ0(x1, x2) near the point (0, 0) ∈ R2. Then, consider the
local C1 solution ϕ(x) of

(2.3.14) ∂3ϕ− g ◦ ϕ(x) ∂2ϕ = 0 , ϕ(x1, x2, 0) = ϕ0(x1, x2) .

To verify (2.3.5), it suffices now to check that Ξ := ∂1ϕ − f ◦ ϕ(x) ∂2ϕ ≡ 0 also
when x3 6= 0. This property is in fact a consequence of the preceding construction
which implies that

∂3Ξ− g ◦ ϕ(x) ∂2Ξ = g′ ◦ ϕ ∂2ϕ Ξ , Ξ(x1, x2, 0) = 0 .
2

2.3.2 The description of (ϕ,w).

In this paragraph 2.3.2, the starting point is the description (2.3.7) which is based
on some auxiliary function ψ(x) (not depending on θ). At this stage, we know
that w can be put in the form

(2.3.15)

w(x, θ) = W
(
ϕ(x), ψ(x), θ

)
= α

(
ϕ(x), ψ(x), θ

) 0
−g ◦ ϕ(x)

1


+β

(
ϕ(x), ψ(x), θ

) 1
−f ◦ ϕ(x)

0

 + γ
(
ϕ(x), ψ(x), θ

) f ◦ ϕ(x)
1

g ◦ ϕ(x)


with a phase ϕ satisfying (2.3.12). It remains to adjust the ingredients ϕ, ψ and
W according to (2.3.1)- · · · -(2.3.4). We have already observed that the constraint
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(2.3.1) is the same as ∂θγ ≡ 0. In the same way, using again (2.3.12), the condition
(2.3.4) is equivalent to ∂ψγ ≡ 0. Thus, the function γ depends only on the variable
ϕ. Retain that γ(ϕ,ψ, θ) ≡ γ(ϕ).

Now, we can interpret the two remaining restrictions (2.3.2) and (2.3.3) into

−α g′ − β f ′ + γ′ (f2 + 1 + g2) + γ (f f ′ + g g′) = 0 ,(2.3.16)
∂ψα ∇ψ · t(0,−g, 1) + ∂ψβ ∇ψ · t(1,−f, 0) = 0 .(2.3.17)

From (2.3.16), it is easy to extract

(2.3.18) ∂θα g
′ + ∂θβ f

′ ≡ 0 , ∂ψα g′ + ∂ψβ f
′ = 0 .

The discussion about (2.3.16)-(2.3.17) is separated in two cases.

2.3.2.1 The case f ′ ≡ g′ ≡ 0.

By hypothesis, we have f ≡ a and g ≡ b with (a, b) ∈ R2. It follows that

(2.3.19) ϕ(x) = ϕ00(a x1 + x2 + b x3) , ϕ00 ∈ C1(R; R) .

In view of (2.3.16), we have also γ ≡ c for some c ∈ R. On the other hand, the
function ψ(x) can always be put in the form

(2.3.20) ψ(x) = Ψ(x1, x3, a x1 + x2 + b x3) , Ψ(X,Y, Z) ∈ C1(R3; R) .

Then, the condition (2.3.17) becomes the following scalar conservation law (im-
plying Z and θ as parameters)

(2.3.21) ∂ψβ
(
ϕ00(Z),Ψ, θ

)
∂XΨ + ∂ψα

(
ϕ00(Z),Ψ, θ

)
∂Y Ψ ≡ 0 .

At the level of (2.3.21), the variables Z and θ play the part of parameters. Since
Ψ(X,Y, Z) does not depend on θ ∈ T, we must have (when ∂ψα 6≡ 0)

(2.3.22) ∂ψβ = χ(ϕ,ψ) ∂ψα , χ ∈ C1(R2; R) .

The equation (2.3.21) reduces to

(2.3.23) χ
(
ϕ00(Z),Ψ

)
∂XΨ + ∂Y Ψ ≡ 0 .

We can sum up the situation when ∇ϕ · ∂ψW ≡ 0 and f ′ ≡ g′ ≡ 0 through the
following result.

Proposition 2.3.1. Select any constants (a, b, c) ∈ R3. Select any smooth func-
tions ϕ00(Z), χ(ϕ,ψ) and α(ϕ,ψ, θ), any solutions β(ϕ,ψ, θ) and Ψ(X,Y, Z) satis-
fying respectively (2.3.22) and (2.3.23). Define ϕ(x) and ψ(x) according to (2.3.19)
and (2.3.20). Consider the function w(x, θ) given by

(2.3.24) w = α(ϕ,ψ, θ)

 0
−b
1

 + β(ϕ,ψ, θ)

 1
−a
0

 + c

 a
1
b

.
Then, the couple (ϕ,w) is compatible.
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Take ϕ as indicated in (2.3.19). Given any function m ∈ C1(R× T; R), define

β(ϕ,ψ, θ) := m(ϕ, θ) + ϕ

∫ ψ

0
s (∂ψα)(ϕ, s, θ) ds .

Then, we recover (2.3.21) with ψ(x) = x1/
(
1 + x3 ϕ(x)

)
. The vectors ∇ϕ and ∇ψ

are not colinear. By choosing m and α conveniently, we can obtain

∂ψW ∧ ∂θW = (∂ψα ∂θβ − ∂ψβ ∂θα) t(a, 1, b)
= ∂ψα

(
∂θm− ϕ

∫ ψ
0 ∂θα(ϕ, s, θ) ds

)
t(a, 1, b) 6≡ 0 .

The relation (2.2.57) is not satisfied. This example shows that the situations
considered in Proposition 2.3.1 may not fall under the scope of [7].

Note that the support in (X,Y ) of any non trivial solution Ψ 6≡ 0 of (2.3.23)
cannot be compact. Moreover, when χ depends in a non linear way on ψ, due to
the formation of singularities, the construction is valid only locally.

2.3.2.2 The case f ′ 6≡ 0 or g′ 6≡ 0.

In view of (2.3.18), we must have ∂θW ∧ ∂ψW ≡ 0 that implies (2.2.57). This
situation is excluded at the level of (2.2.58) because it has been treated in [7].

Still, for the sake of completeness, we explain below what happens. We deal with
the case f ′ 6≡ 0, the other situation (g′ 6≡ 0) being similar. This time, seek the
function ψ(x) in the form

(2.3.25) ψ(x) = Ψ
(
x1, x3, ϕ(x)

)
, Ψ(X,Y, Z) ∈ C1(R3; R) .

From (2.3.18), extract ∂ψβ in function of ∂ψα. Plug the result into (2.3.17). Due
to (2.2.58), we must have ∂ψα 6≡ 0. Thus, it remains

(2.3.26) Ψ(X,Y, ϕ) = Ψ0

(
g′(ϕ)Y + f ′(ϕ)X

)
, Ψ0 ∈ C1(R; R) .

Thus, the variable ϕ being fixed, the function Ψ is constant on lines. Again, its
support cannot be compact.

Proposition 2.3.2. Select functions f , g, γ and Ψ0 in C1(R; R) with f ′ 6≡ 0.
By applying the Lemma 2.3.2, we can construct a phase ϕ(x) which is solution
of (2.3.12). Define the function ψ(x) as it is indicated in (2.3.25) and (2.3.26).
Given any α ∈ C1(R2 × T; R) with ∂ψα 6≡ 0, define β ∈ C1(R2 × T; R) through
the relation (2.3.16). Finally, consider the expression w(x, θ) which is given by
(2.3.15) where γ(ϕ,ψ, θ) ≡ γ(ϕ).

Then, the couple (ϕ,w) is compatible.

To illustrate the situation under study, we produce some example. Just take
f(ϕ) = ϕ, g(ϕ) = ϕ−1 and γ(ϕ) ≡ 0. As a solution of (2.3.5), we can choose

ϕ(x) =
1− x2

2x1
+

√(1− x2

2x1

)2
− x3

x1
.
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Concerning ψ, given any function Ξ ∈ C1(R3; R), we can take

ψ(x) ≡ ψ(x, θ) = Ξ
(
ϕ(x), x2 + 2ϕ(x)x1, x3 − ϕ(x)2 x1

)
.

2.4 Compatible couples when ∇ϕ · ∂ψW 6≡ 0.

We discuss here the system (2.2.17)-(2.2.18)-(2.2.19)-(2.2.20) under the restriction
(2.2.58) and when ∇ϕ · ∂ψW 6≡ 0.

Lemme 2.4.1. Assume ∇ϕ·∂ψW 6≡ 0. The couple (ϕ,w) with w given by (2.2.13)
is compatible if and only if there exists a function k(x, θ) such that

∇ϕ · ∂θw ≡ 0 ,(2.4.1)
∇ψ · ∂θw ≡ 0 ,(2.4.2)

∇ϕ ·
(
∂ϕW − k ∂ψW) ≡ 0 ,(2.4.3)

∇ψ ·
(
∂ϕW − k ∂ψW) ≡ 0 ,(2.4.4)

(k ∇ϕ+∇ψ) · ∂ϕW ≡ 0 ,(2.4.5)
(k ∇ϕ+∇ψ) · ∂ψW ≡ 0 .(2.4.6)

Proof of the Lemma 2.4.1. The relation (2.4.1) is a repetition of (2.2.17).
When ∇ϕ ·∂ψW 6≡ 0, the condition (2.2.18) amounts to the same thing as (2.4.2).
On the other hand, from (2.2.19) and (2.2.20), we can extract

(∇ϕ · ∂ψW) (∇ψ · ∂ϕW)− (∇ψ · ∂ψW) (∇ϕ · ∂ϕW) ≡ 0

meaning that the vectors t(∇ϕ · ∂ψW,∇ψ · ∂ψW) and t(∇ϕ · ∂ϕW,∇ψ · ∂ϕW)
are colinear. The second one can be obtained by multiplying the first one (which
by hypothesis is not equal to zero) by a factor k. This is precisely (2.4.3) and
(2.4.4). From (2.2.19) or (2.2.20) with (2.4.3) and (2.4.4), we can extract (2.4.5)
and (2.4.6). Reciprocally, from the informations (2.4.3), (2.4.4), (2.4.5) and (2.4.6),
it is easy to deduce (2.2.19) and (2.2.20).

2

2.4.1 Reduction of the problem : preliminaries.

The system (2.4.1)- · · · -(2.4.6) is not yet in a suitable form.

2.4.1.1 Restatement of the problem.

Since ∂ψW 6≡ 0, by permuting the coordinates, we can always suppose that
∂ψW2 6≡ 0, allowing to exchange the variable ψ into W2(ϕ,ψ, θ). After this
modification, we have to deal with

(2.4.7) W(ϕ,ψ, θ) = t
(
V(ϕ,ψ, θ), ψ,W3(ϕ,ψ, θ)

)
, V := W1 .
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Recall (2.2.58) which says in paticular that ∂ϕW 6≡ 0. After permuting the two
indices 1 and 3 (if necessary), we can suppose that ∂ϕW1 ≡ ∂ϕV 6≡ 0. It follows
that we can regard W3 as a function of (ψ,V, θ). In other words, we can find
some function L(ψ,V, θ) ∈ C1(R2 × T; R) such that

(2.4.8) W(ϕ,ψ, θ) = t
(
V(ϕ,ψ, θ) , ψ , L

(
ψ,V(ϕ,ψ, θ), θ

) )
.

Using (2.2.58) together with (2.4.1), (2.4.2), (2.4.3) and (2.4.4), we can see that the
two vectors ∂θw and ∂ϕW− k ∂ψW are colinear meaning that there is a function
β(x, θ) which is adjusted such that

(2.4.9) ∂ϕW − k̃ ∂ψW = β ∂θW, k̃ := k + β ∂θψ .

Knowing (2.4.8), this information (2.4.9) becomes

(2.4.10) β ∂θL ≡ 0 , ∂ϕV = β ∂θV , k = −β ∂θψ .

Since ∂ϕV 6≡ 0, we must have β 6≡ 0 and ∂θV 6≡ 0, this last condition being also a
consequence of (2.2.58). Necessarily, we must have ∂θL ≡ 0. Introduce

(2.4.11) v(x, θ) := V
(
ϕ(x), ψ(x, θ), θ

)
, v ∈ C1(Ω0

r × T; R) .

Note simply

L(ψ, v) = L(ψ, v)(x, θ) := L
(
ψ(x, θ), v(x, θ)

)
,

∂ψL(ψ, v) := ∂ψL
(
ψ(x, θ), v(x, θ)

)
,

∂vL(ψ, v) := ∂VL
(
ψ(x, θ), v(x, θ)

)
.

Observe that ∇ϕ · t(1, 0, ∂vL) ∂θV = ∇ϕ · ∂θw − ∇ϕ · ∂ψW ∂θψ. In view of the
restriction (2.4.1), the condition ∂θψ 6≡ 0 of (2.2.58) and the hypothesis∇ϕ·∂ψW 6≡
0, we are sure that ∂θV 6≡ 0. Retain that

(2.4.12) ∂ϕV 6≡ 0 , ∂θV 6≡ 0 , ∂θψ 6≡ 0 , k ≡ − ∂θψ ∂ϕV/∂θV .

Proposition 2.4.1. Assume (2.2.58), (2.4.8) and ∇ϕ · ∂ψW 6≡ 0. Then, the
function L does not depend on the variable θ ∈ T and we have (2.4.12). Moreover,
the system (2.4.1)- · · · -(2.4.6) is equivalent to

∂θv
[
∂1ϕ+ ∂vL(ψ, v) ∂3ϕ

]
+ ∂θψ

[
∂2ϕ+ ∂ψL(ψ, v) ∂3ϕ

]
≡ 0 ,(2.4.13)

∂θv
[
∂1ψ + ∂vL(ψ, v) ∂3ψ

]
+ ∂θψ

[
∂2ψ + ∂ψL(ψ, v) ∂3ψ

]
≡ 0 ,(2.4.14)

∂1ψ + ∂vL(ψ, v) ∂3ψ − ∂θψ
∂ϕV
∂θV

[
∂1ϕ+ ∂vL(ψ, v) ∂3ϕ

]
≡ 0 ,(2.4.15)

where v is given by (2.4.11) whereas ∂ϕV and ∂θV are computed at (ϕ,ψ, θ).
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In view of (2.4.11), from (2.4.13) and (2.4.14), we can easily deduce that

(2.4.16) ∂θv
[
∂1v + ∂vL(ψ, v) ∂3v

]
+ ∂θψ

[
∂2v + ∂ψL(ψ, v) ∂3v

]
≡ 0 .

Proof of the Proposition 2.4.1. We have already seen that the function L

does not depend on the variable θ ∈ T and that the conditions inside (2.4.12) are
verified. By construction, we know also that

(2.4.17) w(x, θ) = t
(
v(x, θ), ψ(x, θ),L(ψ, v)(x, θ)

)
, ∂θw 6≡ 0 .

Taking into account (2.2.58) and (2.4.8), the two constraints (2.4.1) and (2.4.2)
are equivalent to the existence of some (nonzero) function α(x, θ) such that

(2.4.18) ∂θv

 1
0
∂vL

 + ∂θψ

 0
1
∂ψL

 = α ∇ϕ ∧∇ψ .

Since ∂ϕV 6≡ 0, we have ∂ϕW ∧ ∂ψW = ∂ϕV t(−∂vL,−∂ψL, 1) 6≡ 0. Combining
this with (2.4.5), (2.4.6) and (2.4.12) yields the existence of some (nonzero) scalar
function γ(x, θ) such that

(2.4.19) − ∂θψ
∂ϕV

(
ϕ(x), ψ(x, θ), θ

)
∂θV

(
ϕ(x), ψ(x, θ), θ

) ∇ϕ+∇ψ = γ

 ∂vL
∂ψL
−1

.
Plug the expression ∇ψ given by (2.4.19) into (2.4.18) in order to extract

∂θv = −α γ (∂2ϕ+ ∂ψL ∂3ϕ) ,(2.4.20)
∂θψ = +α γ (∂1ϕ+ ∂vL ∂3ϕ) ,(2.4.21)

∂θv ∂vL + ∂θψ ∂ψL = +α γ (∂ψL ∂1ϕ− ∂vL ∂2ϕ) .(2.4.22)

Since αγ 6≡ 0 (because ∂θψ 6≡ 0), from (2.4.20) and (2.4.21), we can deduce
(2.4.13). On the other hand, the relation (2.4.22) provides no new information
because it is a linear combination of (2.4.20) and (2.4.21). Observe that

(1, 0, ∂vL) · t(∂vL, ∂ψL,−1) ≡ 0 , (0, 1, ∂ψL) · t(∂vL, ∂ψL,−1) ≡ 0 .

Using these identities and (2.4.13), coming back to (2.4.19) multiplied by the non
zero vector valued function ∂θw, we can obtain (2.4.14). The last condition (2.4.15)
is just the product of (2.4.19) with the vector t(1, 0, ∂vL).

Conversely, suppose that ϕ(x) and ψ(x, θ) are such that ∇ϕ ∧ ∇ψ 6≡ 0 and sat-
isfy (locally) the system (2.4.13)-(2.4.14)-(2.4.15) for some functions L(ψ, v) and
V(ϕ,ψ, θ). Define v and w as in (2.4.11) and (2.4.17).

Both (2.4.1) and (2.4.2) become a direct consequence of (2.4.13) and (2.4.14).
We can obtain (2.4.9), that is (2.4.3) and (2.4.4), through (2.4.10) by adjusting
the coefficient β (and then k) conveniently. At this stage, the interpretation of
(2.4.13)-(2.4.14)-(2.4.15) is that the vector on the left of (2.4.19) is orthogonal to
the direction t(1, 0, ∂vL) and t(0, 1, ∂ψL). Thus, we must have (2.4.19) for some
coefficient γ. This is exactly (2.4.5) and (2.4.6).
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2

Since ∂θw 6≡ 0, by a small rotation in the space variable x ∈ R3, we can always
obtain that ∂θv 6≡ 0. All the restrictions in (2.4.12) are stable under such a
modification (if it is small enough). In what follows, we work locally in (x, θ)
under the assumptions ∂θv 6≡ 0 and (2.4.12). We will exploit these informations in
order to perform different changes of variables which are crucial when discussing
the content of (2.4.13)-(2.4.14)-(2.4.15).

2.4.1.2 Various changes of variables.

Subtract (2.4.15) from (2.4.14), use (2.4.13) to replace ∂1ϕ + ∂vL(ψ, v) ∂3ϕ, and
then exploit (2.2.58) to make simplifications in order to extract the identity

(2.4.23) (∂2ψ + ∂ψL ∂3ψ)/∂θψ = ∂ϕV (∂2ϕ+ ∂ψL ∂3ϕ)/∂θV .

The identity a/b = c/d implies that a/b = (c + γ a)/(d + γ b) for all γ ∈ R. This
implication applied to (2.4.23) with γ = ∂ψV furnishes

∂2ψ + ∂ψL ∂3ψ

∂θψ
=

∂ϕV (∂2ϕ+ ∂ψL ∂3ϕ) + ∂ψV (∂2ψ + ∂ψL ∂3ψ)
∂θV + ∂ψV ∂θψ

.

Recalling (2.4.11), this is the same as

(2.4.24) (∂2ψ + ∂ψL ∂3ψ)/∂θψ = (∂2v + ∂ψL ∂3v)/∂θv .

Since ∂θv 6≡ 0, we can work (locally) with the variables (x, v) in place of (x, θ).
The function ϕ does not depend on θ ∈ T and therefore it does not depend on v.
On the contrary, the function ψ can be put in the form

(2.4.25) ψ(x, θ) = u
(
x, v(x, θ)

)
, ∂vu 6≡ 0 .

Formulating (2.4.24) at the level of u(x, v) yields

(2.4.26) ∂2u + ∂uL(u, v) ∂3u = 0 .

Recalling (2.4.16) and exploiting (2.4.26), the constraint (2.4.14) becomes

(2.4.27) ∂1u + ∂vL(u, v) ∂3u = 0 .

Knowing what is the function u(x, v), it is not complicated to obtain v(x, θ). To
this end, it suffices to consider the scalar conservation law

(2.4.28)
∂1v + ∂vL

(
u(x, v), v

)
∂3v

+ ∂vu(x, v)
[
∂2v + ∂uL

(
u(x, v), v

)
∂3v

]
≡ 0 .
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To sum up, the system (2.4.13)-(2.4.14)-(2.4.15) amounts to the same thing as to
identify the two expressions u(x, v) and v(x, θ) as it is explained above and then
to focus on the remaining constraint, namely

(2.4.29)
∂1ϕ + ∂vL

(
u(x, v), v

)
∂3ϕ

+ ∂vu(x, v)
[
∂2ϕ+ ∂uL

(
u(x, v), v

)
∂3ϕ

]
≡ 0 .

Recall that v ∈ K ⊂ R must be seen here, at the level of (2.4.29), as a parame-
ter. Thus, all the difficulty is to solve (2.4.29) with a phase ϕ(x) which does not
depend on v. We first explain what happens when ∂3u ≡ 0. Then, we present the
problematic when ∂3u 6≡ 0.

• The case ∂3u ≡ 0 . In view of (2.4.26) and (2.4.27), we have ∇xu ≡ 0. It
follows that u(x, v) = U(v) with a function U ∈ C1(K; R) such that U ′ 6≡ 0.
Necessarily, the function V depends only on the variable ψ. This is a contradiction
with (2.4.12). For the sake of completeness, we still describe below what happens
when ∂3u ≡ 0 and U ′ 6≡ 0. Noting L̃(v) := L

(
U(v), v

)
, we can see that (2.4.29)

becomes

(2.4.30) ∂1ϕ(x) + U ′(v) ∂2ϕ(x) + L̃′(v) ∂3ϕ(x) ≡ 0 .

Recall that the variables x and v are independent. Thus, the relation (2.4.30)
implies that L̃(v) ≡ L

(
U(v), v

)
= a v+ b U(v) + c for some (a, b, c) ∈ R3. We have

to deal with

(2.4.31) ∂1ϕ+ a ∂3ϕ+ U ′(v) (∂2ϕ+ b ∂3ϕ) ≡ 0 .

This is possible only if U ′ ≡ c ∈ R and

ϕ(x) = Φ
(
c x1 − x2, (a+ b c)x2 − c x3

)
, Φ ∈ C1(R× R; R) .

On the other hand, the function v can be obtained through

(2.4.32) ∂1v + a ∂3v + U ′(v) (∂2v + b ∂3v) = 0 , v(0, ·) = v0 .

By varying the ingredients a, b, U , Φ and v0, we can obtain a whole class of
solutions to the system (2.4.13)-(2.4.14)-(2.4.15).

• The case ∂3u 6≡ 0 . Since ∂3u 6≡ 0, we can exchange the variables (x, v) into
(x1, x2, u, v). In particular, the applications ϕ, ∂vu and ∂3u can be regarded as
functions of (x1, x2, u, v) instead of (x, v). Taking this point of view into account,
we adopt the following conventions

ϕ(x) = Φ
(
x1, x2, u(x, v), v

)
, ∀ (x, v) ,(2.4.33)

∂vu(x, v) = R
(
x1, x2, u(x, v), v

)
, ∀ (x, v) ,(2.4.34)

∂3u(x, v) = S
(
x1, x2, u(x, v), v

)
, ∀ (x, v) .(2.4.35)



CHAPTER 2. OSCILLATING SOLUTIONS 63

Recall that R 6≡ 0 and S 6≡ 0. The constraint (2.4.29) becomes

(2.4.36) X Φ ≡ 0 , X := ∂1 +R ∂2 ,

whereas the fact that ϕ does not depend on v amounts to the same thing as

(2.4.37) Y Φ ≡ 0 , Y := R ∂u + ∂v .

The rest of this chapter 2.4 is devoted to the case ∂3u 6≡ 0. Thus, it should be
clearly noted here what the current matter is.

Remaining work. When ∂3u 6≡ 0, the problem is to find a non constant func-
tion Φ(x1, x2, u, v) satisfying the transport equations (2.4.36) and (2.4.37) with a
coefficient R(x1, x2, u, v) issued from (2.4.26), (2.4.27) and (2.4.34).

Forcing the presence of u and v at the level of ϕ and passing through (2.4.37) to
express that ∂θϕ ≡ 0 may seem unnatural. However, this process allows to simplify
the equation (2.4.29). It leads to the above problem which, to our knowledge, is
original. The strategy to solve it is the following.

In the Section 2.4.2, we extract from (2.4.36)-(2.4.37) the necessary and sufficient
conditions (2.4.39) and (2.4.40) to impose on R. In the Section 2.4.3, we exhibit the
special form (2.4.51) of a coefficient R coming from (2.4.26), (2.4.27) and (2.4.34).
In the Section 2.4.4, we test our criteria (2.4.39) and (2.4.40) on the functions
R which conform to (2.4.51). All requirements are met in different cases leading
to a classification of all compatible couples (when ∇ϕ · ∂ψW 6≡ 0 and ∂3u 6≡ 0).
Illustrative examples are proposed in the Section 2.4.6.

2.4.2 Reduction of the problem : geometrical step.

The existence of a non constant solution to (2.4.36)-(2.4.37) relies deeply on the
geometrical properties of the two vector fields X and Y . Introduce the Lie algebra
A generated by the successive Poisson brackets of X and Y . The dimension being
4, we find here

A ≡
〈
X , Y , [X;Y ] ,

[
X; [X;Y ]

]
,
[
Y ; [X;Y ]

] 〉
.

Proposition 2.4.2. The system (2.4.36)-(2.4.37) has a non constant solution Φ
if and only if the dimension of A is strictly less than 4. Two different situations
may occur :

i) dim A = 2. The function Φ(x1, x2, u, v) depends on two independent variables.
Then, the coefficient R must satisfy :

(2.4.38) ∂1R+R ∂2R ≡ X R ≡ 0 , R ∂uR+ ∂vR ≡ Y R ≡ 0 .

ii) dim A = 3. The function Φ(x1, x2, u, v) depends on one variable. The coeffi-
cient R must satisfy XR 6≡ 0 or Y R 6≡ 0 together with

(XR) Y XR− 2 (XR) XY R+ (Y R) X2R = 0 ,(2.4.39)
(Y R) XY R− 2 (Y R) Y XR+ (XR) Y 2R = 0 .(2.4.40)
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Proof of Proposition 2.4.2. Recall that the Poisson bracket of the vector fields
X and Y is the vector field [X;Y ] which is adjusted such that

[X;Y ] f = −Y R ∂2f +XR ∂uf = XY f − Y Xf , ∀ f ∈ C∞(R4; R) .
From (2.4.36) and (2.4.37), it is easy to infer that Z Φ ≡ 0 for all Z ∈ A. Thus,
when dimA = 4, the function Φ is constant. It means that the phase ϕ is station-
ary, in contradiction with (2.1.4). We examine the other situations.

i) dim A = 2. This situation can occur if and only if [X;Y ] is a linear combination
of X and Y , giving rise to (2.4.38). By applying the Frobenius Theorem [2], we
see that the field of planes V ec 〈X,Y 〉 is associated with a foliated structure of
R4 by submanifolds of dimension 2 along which Φ must be constant. Clearly, the
function Φ inherits two degrees of freedom. In particular, it can be a non constant
solution of the system (2.4.36)-(2.4.37).

i) dim A = 3. To avoid (2.4.38), we have to require XR 6≡ 0 or Y R 6≡ 0. Then,
to obtain dimA = 3, it is necessary to impose[

X; [X;Y ]
]
∈ V ec

〈
X,Y, [X;Y ]

〉
,(2.4.41) [

Y ; [X;Y ]
]
∈ V ec

〈
X,Y, [X;Y ]

〉
.(2.4.42)

Under the conditions (2.4.41) and (2.4.42), we find that dimA = 3. By apply-
ing again the Frobenius Theorem [2], we can see that the field of hyperplanes
V ec

〈
X,Y, [X;Y ]

〉
is associated with a foliated structure of the space R4 by hy-

persurfaces along which Φ must be constant. On the other hand, the function Φ
can actually vary in the directions which are transversal to these hypersurfaces.
Now, it remains to convert (2.4.41)-(2.4.42) in the form of constraints implying
the coefficient R. To this end, compute[

X; [X;Y ]
]
f = (− 2XY R+ Y XR) ∂2f + X2R ∂uf ,[

Y ; [X;Y ]
]
f = −Y 2R ∂2f + (2Y XR−XY R) ∂uf .

Taking into acount these informations combined with the specific forms of X, Y
and [X;Y ], we can deduce that the two constraints (2.4.41) and (2.4.42) can be
verified on condition that [X;Y ] is colinear to both

[
X; [X;Y ]

]
and

[
Y ; [X;Y ]

]
.

This remark, leads directly to (2.4.39) and (2.4.40).
2

Given some initial data R(0, x2, u, 0) := R00(x2, u), we can solve the system of
two conservation laws (2.4.38) in the same way as in the Lemma 2.3.2. Then, to
recover Φ, it suffices to fix any function Φ00(x2, u) satisfying ∇x2,uΦ00 6≡ 0 and to
integrate the two equations

(2.4.43) ∂1Φ +R ∂2Φ ≡ 0 , R ∂uΦ + ∂vΦ ≡ 0 .

The discussion about (2.4.39)-(2.4.40) is delicate. We explain below how to con-
struct R and Φ in the more general situation (when XR Y R 6≡ 0).
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Lemme 2.4.2. Fix any (non zero) function Q(y,R,Φ) ∈ C3(R3; R∗). Select any
couple of functions R00(x1, x2) ∈ C1(R2; R) and Φ00(x1, x2) ∈ C1(R2; R) satisfying
∇x1,x2Φ00 6≡ 0 as well as

(2.4.44) ∂1R00 +R00 ∂2R00 6≡ 0 , ∂1Φ00 +R00 ∂2Φ00 ≡ 0 .

Then, the system (2.4.39)-(2.4.40) has a solution R(x1, x2, u, v) such that

(2.4.45) R(x1, x2, 0, 0) = R00(x1, x2) , X R 6≡ 0 , Y R 6≡ 0 .

Moreover, there exists a non constant solution Φ of (2.4.36)-(2.4.37) such that

(2.4.46) Φ(x1, x2, 0, 0) = Φ00(x1, x2) ,
Y R

X R
≡ Q(Rx1 − x2, R,Φ) .

Proof of Lemma 2.4.2. We start by studying a little more the structure of
the system (2.4.39)-(2.4.40). Since XR 6≡ 0, we can introduce the quantity Q :=
Y R/XR. In fact, the restrictions (2.4.39) and (2.4.40) are equivalent to

Y Q−Q XQ = 0 ,(2.4.47)
− [Y ;X]R+ (XQ) (XR) = 0 .(2.4.48)

Since Y R 6≡ 0 whereas XΦ ≡ 0, we can always consider that Q is a function of
the variables (x1, x2, R,Φ), namely

Q(x1, x2, u, v) = Q
(
x1, x2, R(x1, x2, u, v),Φ(x1, x2, u, v)

)
.

In view of the definition of Q and knowing that XΦ ≡ 0 and Y Φ ≡ 0, the equation
(2.4.47) reduces to XQ = 0, meaning that Q ≡ Q(Rx1 − x2, R,Φ) for some
function Q(T,R,Φ) ∈ C1(R3; R).
The conditions (2.4.47) and (2.4.48) become the two scalar conservation laws

∂vR + R ∂uR− Q(Rx1 − x2, R,Φ) ∂1R
− Q(Rx1 − x2, R,Φ) R ∂2R ≡ 0 ,

(2.4.49)

∂uR− Q(Rx1 − x2, R,Φ) ∂2R
+ (x1 ∂TQ+ ∂RQ)(Rx1 − x2, R,Φ) (∂1R+R∂2R) ≡ 0 .

(2.4.50)

Consider the equation (2.4.50) written for R0(x1, x2, u) and associated with the
initial data R0(x1, x2, 0) = R00(x1, x2). At first sight, the access to R0 (and R)
requires the knowledge of Φ0(x1, x2, u) := Φ(x1, x2, u, 0) (and Φ). Nevertheless, by
construction, the function Φ is constant along the characteristics associated with
(2.4.49) and (2.4.50). Thus, in doing so, it suffices to know who is Φ00(x1, x2) :=
Φ0(x1, x2, 0).

Look at (2.4.49) as an evolution equation in v associated with the initial data R0.
For the same reasons as above, we can solve this Cauchy problem knowing only who
is Φ00. There is still a difficulty coming from a problem of compatibility between
(2.4.49) and (2.4.50). We must check that the expression R thus obtained is still
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a solution of (2.4.50). To this end, it suffices to show that (2.4.50) is propagated
(in the direction v). This is due to the identity

(Y − αX)
{
−[Y ;X]R+ (XQ) (XR)

}
=

2
{
−[Y ;X]R+ (XQ) (XR)

}2

XR
.

Note that Y R 6≡ 0 as a consequence of (2.4.49) and Q 6≡ 0. The function Φ can be
obtained by the same procedure, by first integrating (2.4.50) and then by looking
at (2.4.49). Geometrically, we have

∇Φ = λ t(−RXR,XR, Y R,−RY R) , λ 6= 0

implying that the level surfaces of Φ intersect the plane {u = v = 0} ⊂ R4

transversally. Thus, there is a unique function Φ satisfying (2.4.46).
2

2.4.3 Reduction of the problem : analytical step.

In the preceding paragraph 2.4.2, we have developped only the aspects of R related
to (2.4.38) or (2.4.39) and (2.4.40). However, the coefficient R(x1, x2, u, v) is also
linked through the implicit relation (2.4.34) to the selection of a function u(x, v)
satisfying (2.4.26) and (2.4.27).

At the level of (2.4.26) and (2.4.27), the variable v plays the part of a parameter.
The situation is the same as in the Lemma 2.3.2. It suffices to select some data
u00(x3, v) ≡ u(0, 0, x3, v) such that ∂3u00 6≡ 0 in order to obtain (locally in R4)
some solution u of (2.4.26) and (2.4.27) satisfying ∂3u 6≡ 0.

Proposition 2.4.3. Let u(x, v) be any (local) solution of (2.4.26) and (2.4.27)
satisfying ∂3u 6≡ 0. Define R(x1, x2, u, v) through (2.4.34). Then, there is a func-
tion K ∈ C1(R2; R) such that R can be put in the form

(2.4.51) R(x1, x2, u, v) = − ∂vα(x1, x2, u, v) / ∂uα(x1, x2, u, v)

where the scalar function α is given by

(2.4.52) α(x1, x2, u, v) := K(u, v) + ∂vL(u, v) x1 + ∂uL(u, v) x2 .

In this context, the two restrictions R 6≡ 0 and S 6≡ 0 which are prerequisites in
the analysis, see after (2.4.35), become ∂uK 6≡ 0 and ∂vK 6≡ 0.

Proof of Proposition 2.4.3. From (2.4.26) and (2.4.27), it is easy to deduce

∂1(∂vu) + ∂vL ∂3(∂vu) + (∂2
vvL + ∂2

uvL ∂vu) ∂3u = 0 ,(2.4.53)
∂1(∂3u) + ∂vL ∂3(∂3u) + ∂2

uvL (∂3u)2 = 0 ,(2.4.54)
∂2(∂vu) + ∂uL ∂3(∂vu) + (∂2

uvL + ∂2
uuL ∂vu) ∂3u = 0 ,(2.4.55)

∂2(∂3u) + ∂uL ∂3(∂3u) + ∂2
uuL (∂3u)2 = 0 .(2.4.56)
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Since ∂3u 6≡ 0, these equations can be interpreted in the variables x1, x2, u and v.
Then, it remains the following ODEs (with respect to x1 and x2) :

∂1(R/S) = − ∂2
vvL , ∂1(1/S) = ∂2

uvL ,(2.4.57)
∂2(R/S) = − ∂2

uvL , ∂2(1/S) = ∂2
uuL .(2.4.58)

Observe that u and v play the part of parameters. It is easy to integrate (2.4.57)
and (2.4.58). There are functions k(u, v) and h(u, v) such that

R/S = k(u, v)− ∂2
vvL(u, v) x1 − ∂2

uvL(u, v) x2 ,(2.4.59)
1/S = h(u, v) + ∂2

uvL(u, v) x1 + ∂2
uuL(u, v) x2 .(2.4.60)

In fact, the two functions k and h are linked together. This is due to the equality
of the mixed partials derivatives ∂v(∂3u) and ∂3(∂vu) :

∂v
[
∂3u(x, v)

]
= ∂v

[
S(x1, x2, u, v)

]
= ∂uS R+ ∂vS

= ∂3

[
∂vu(x, v)

]
= ∂3

[
R(x1, x2, u, v)

]
= ∂uR S .

In other words, we must have
(R ∂uS − S ∂uR)/S2 = − ∂u(R/S) = − ∂vS/S2 = ∂v(1/S) .

Apply this at the level of (2.4.59) and (2.4.60) to obtain −∂uk = ∂vh. There
is K(u, v) such that k = −∂vK and h = ∂uK. Dividing (2.4.59) by (2.4.60) and
replacing k and h as indicated previously, we get (2.4.51) and (2.4.52).

2

The explicit formulas (2.4.51) and (2.4.52) indicate that R = −∂1β/∂2β with

β(x1, x2, u, v) := ∂vK x1 + ∂uK x2 + 1
2 ∂

2
vvL x2

1 + ∂2
uvL x1 x2 + 1

2 ∂
2
uuL x2

2 .

Combining the informations obtained in this paragraph 2.4.3 with (2.4.36) and
(2.4.37), we can observe that

(2.4.61) R = − ∂1Φ
∂2Φ

= − ∂1β

∂2β
, R = − ∂vα

∂uα
= − ∂vΦ

∂uΦ
.

Now, we can produce another interpretation of the intermediate problem under
study which is emphasized in the introduction.

Remark 2.4.3.1. The question is to know if we can find two functions K(u, v)
and L(u, v) allowing a simultaneous factorization of some Φ in the form

Φ = A
(
x1, x2, α(x1, x2, u, v)

)
= B

(
u, v, β(x1, x2, u, v)

)
, ∇Φ 6≡ 0 .

Since ∇Φ 6≡ 0, the two functions A and B cannot be constant. This is the source
of the difficulty.
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2.4.4 Test of the integrability conditions.

At this stage, we have to plug the coefficient R given by (2.4.51)-(2.4.52) into the
integrability conditions (2.4.38) or (2.4.39)-(2.4.40). In this procedure, we have a
little freedom coming from the choice of L and K. The matter is to check that the
related constraints on L and K can indeed be realized for non trivials choices of L

and K.

In the paragraph 2.4.4.1, we examine the case dimA = 2, that is (2.4.38). Then,
in the paragraph 2.4.4.2, we consider the case dimA = 3, that is (2.4.39)-(2.4.40).

2.4.4.1 The two-dimensional criterion.

This is when dimA = 2. We have to deal with (2.4.38).

Lemme 2.4.3. A function R given by (2.4.51) with α as in (2.4.52) satisfies
(2.4.38) if and only if one of the two distinct following conditions is verified :

i.1. We have ∂2
vvL ≡ 0. The function L is linear, say L(u, v) = a+ b u+ c v with

(a, b, c) ∈ R3. Moreover, we can find R ∈ C1(R; R) such that

(2.4.62) R(u, v) = R
(
K(u, v)

)
, R(K) ∂uK + ∂vK = 0 .

i.2. We have ∂2
vvL 6≡ 0. We can find H ∈ C1(R; R) such that

(2.4.63) ∂uL(u, v) = H
(
∂vL(u, v)

)
, ∂uK− H′(∂vL) ∂vK = 0 .

In the first case (2.4.62), we are faced with a scalar conservation law. In the second
case (2.4.63), we have to solve some Hamilton-Jacobi equation. In those cases, the
determination of K and L can be achieved once two functions in C1(R; R) are given,
namely R(·) and K(u, 0) or H(·) and K(u, 0).

Proof of Lemma 2.4.3. The calculation ofXR gives rise to a polynomial fraction
in x. More precisely, we find XR = −(∂vα)−3 P (x) with

P (x) = a(0,0) + Ξ(L)
∑

aβ x
β , Ξ(L) := ∂2

uuL ∂2
vvL− (∂2

uvL)2 .
The sum runs over all multi-indices β ∈ N2 such that 1 ≤ |β| ≤ 2. We find

a(0,0) = (∂uK)2 ∂2
vvL− 2 ∂uK ∂vK ∂2

uvL + (∂vK)2 ∂2
uuL , a(1,0) = 2 ∂vK ,

a(0,1) = 2 ∂uK , a(2,0) = ∂2
vvL , a(1,1) = 2 ∂2

uvL , a(0,2) = ∂2
uuL .

Suppose that Ξ(L) 6≡ 0. Then, the condition XR ≡ 0 requires that all the coeffi-
cients aβ with |β| ≤ 2 are equal to zero. In particular, it follows that ∂uK ≡ 0 and
∂vK ≡ 0. This is not possible because this situation was excluded. Necessarily, we
must impose Ξ(L) ≡ 0.

i.1. When ∂2
vvL ≡ 0, the condition Ξ(L) ≡ 0 becomes ∂2

uvL ≡ 0. It remains
a(0,0) = (∂vK)2 ∂2

uuL ≡ 0 . The function L must be linear in u and v, say L(u, v) =
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a+b u+c v. It follows that R ≡ −∂vK/∂uK. The other constraint Y R ≡ 0 amounts
to the same thing as

∂uK (R ∂uR+ ∂vR) ≡ −∂vK ∂uR+ ∂uK ∂vR ≡ 0
implying that R ≡ R(K) for some R ∈ C1(R; R). We have (2.4.62).

i.2. When ∂2
vvL 6≡ 0, the relation Ξ(L) ≡ 0 is equivalent to ∂uL = H(∂vL)

for some H ∈ C1(R; R). Then, the condition a(0,0) ≡ 0 leads to the condition
∂2
vvL

[
∂uK−H′(∂vL) ∂vK

]2 ≡ 0. We recognize here the second part of (2.4.63). We
find R ≡ −H′(∂vL)−1 and, combining the preceding informations, it becomes easy
to check that the relation Y R ≡ 0 is sure to be satisfied. 2

2.4.4.2 The three-dimensional criterion.

This is when dimA = 3. We have to deal with (2.4.39) and (2.4.40), knowing that
XR 6≡ 0 or Y R 6≡ 0. We consider separately the different situations which can
happen concerning XR or Y R.

Lemme 2.4.4. [Case XR ≡ 0 and Y R 6≡ 0]. A function R given by (2.4.51)
with α as in (2.4.52) satisfies XR ≡ 0, (2.4.39) and (2.4.40) without (2.4.38) if
and only if the function L is linear, say L(u, v) = a + bu + cv with (a, b, c) ∈ R3,
whereas R ≡ −∂vK/∂uK with K such that

(2.4.64) (∂vK)2 ∂2
uuK− 2 ∂uK ∂vK ∂2

uvK + (∂uK)2 ∂2
vvK 6≡ 0 .

Proof of Lemma 2.4.4. The discussion is the same as in the proof of Lemma
2.4.3. The option i.2 must be excluded because it leads to Y R ≡ 0. Just go back
to i.1 where (2.4.62) must be exchanged with (2.4.64). 2

Lemme 2.4.5. [Case XR 6≡ 0 and Y R ≡ 0]. A function R given by (2.4.51) with
α as in (2.4.52) satisfies Y R ≡ 0, (2.4.39) and (2.4.40) without (2.4.38) if and
only if the function K is linear in u and v, say K(u, v) = αu+ β v + γ with α 6= 0
and β 6= 0, whereas the function L(u, v) is polynomial in u and v with degree less
or equal to 2. Moreover, the involved coefficients must be adjusted in order to have
XR 6≡ 0.

Proof of Lemma 2.4.5. We have (2.4.40) and the condition (2.4.39) reduces
to Y XR ≡ 0 yielding [X;Y ]R = XY R − Y XR ≡ 0 ≡ XR∂uR. It means that
∂uR ≡ 0 and therefore ∂vR ≡ 0. The function R does not depend on (u, v). In
particular, for (x1, x2) = (0, 0), we find that ∂vK/∂uK is constant. Since ∂uK 6≡ 0
and ∂vK 6≡ 0, we must have

K(u, v) ≡ K(u− a v) , a ∈ R∗ , K ∈ C2(R; R) , K ′ 6≡ 0 .

Either K ′′ ≡ 0 and all derivatives DβL with |β| = 2 are constant, leading to the
description of Lemma 2.4.5. Or K ′′ 6≡ 0 and L(u, v) = F (u − a v) + β v for some
function F ∈ C2(R; R) and some constant β ∈ R. Nevertheless, this last case must
be excluded. Indeed, it yields R ≡ −a so that XR ≡ 0 (in contradiction with the
hypothesis XR 6≡ 0).
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2

The remaining case is when XR 6≡ 0 and Y R 6≡ 0.

Proposition 2.4.4. [Case XR 6≡ 0 and Y R 6≡ 0]. A function R which is such
that (XR) (Y R) 6≡ 0 and which is given by (2.4.51) with α as in (2.4.52) satisfies
(2.4.39) and (2.4.40) when the expressions K and L are adjusted according to one
of the two following (distinct) situations :

ii.1. Both functions L(u, v) and K(u, v) are polynomial in u and v with degree less
or equal to 2. More precisely, we have

(2.4.65) L(u, v) = a20 u
2 + 2 a11 u v + a02 v

2 + a1u+ a2v + a0 , a? ∈ R ,

(2.4.66) K(u, v) = k20 u
2 + 2 k11 u v + k02 v

2 + k1u+ k2v + k0 , k? ∈ R ,

with coeffecients a20, a11 and a02 (not all equal to zero) and coeffecients k20, k11

and k02 (not all equal to zero) adjusted such that

(2.4.67) k11 a02 − k02 a11 = k20 a02 − k02 a20 = k20 a11 − k11 a20 = 0 .

ii.2. The functions L(u, v) can be put in the form

(2.4.68) L(u, v) = a u + F(b u+ v) , (a, b) ∈ R2

where the auxiliary function F ∈ C3(R; R) satisfies F(3) 6≡ 0 and the ODE

(2.4.69) (γ s2 + 2β s+ δ) F(3)(s) + 3 (γ s+ β) F(2)(s) = 0 , s ∈ R

with constants γ, β and δ not all equal to zero. The gradient of K(u, v) is adjusted
as indicated at the level of (2.4.75) (with polynomial functions A and B which are
defined in the proof).

ii.3. The function L(u, v) can be put in the form

(2.4.70) L(u, v) = u F
(
u− 1 (v + α)

)
+ G(u) , α ∈ R

where the auxiliary functions F ∈ C2(R; R) and G ∈ C2(R; R) satisfy

(2.4.71) F(2)(u) 6= 0 , δ F(2)(u) = u3 G(2)(u) , u ∈ R

with δ ∈ R∗. Moreover K(u, v) = ∂vL(u, v).

Proof of Proposition 2.4.4. Below, we check that the different choices described
in the paragraphs ii.1, ii.2 and ii.3 are convenient. Showing that there are no other
possible situations is delicate. This aspect of the discussion is postponed to the
Appendix 2.6. Recall that (2.4.39)-(2.4.40) is equivalent to (2.4.47)-(2.4.48) or to
(2.4.49)-(2.4.50). We start by looking at the equation (2.4.49) which is the same
as Z R ≡ 0 where Z is the vector field
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Z := Y −Q(Rx1 − x2, R,Φ)X , X = ∂1 +R ∂2 , Y = R ∂u + ∂v .

By construction, we have also

(2.4.72) Z (Rx1 − x2) ≡ 0 , Z Φ ≡ 0 , Z
[
Q(Rx1 − x2, R,Φ)

]
≡ 0 .

Select ṽ ∈ R near 0. Given f ∈ C1
l (R4; R), note fṽ(x1, x2, u) := f(x1, x2, u, ṽ). For

instance, we have Rṽ(x1, x2, u) := R(x1, x2, u, ṽ) and
Qṽ(x1, x2, u) := Q(x1, x2, u, ṽ) = Q(Rṽ x1 − x2, Rṽ,Φṽ) .

We also adopt the following conventions

dvf := ∂v
[
f(x1, x2, u+Rṽ v, ṽ + v)

]
= (Rṽ ∂uf + ∂vf)(x1, x2, u+Rṽ v, ṽ + v) ,

d2
vf := ∂v(dvf) = (R2

ṽ ∂
2
uuf + 2Rṽ ∂2

uvf + ∂2
vvf)(x1, x2, u+Rṽ v, ṽ + v) .

To avoid confusions, retain that, in general, we have d2
v 6≡ dv ◦ dv. In view of

(2.4.72), the characteristic associated with (2.4.49) and starting from the point
(x1, x2, u, ṽ) is a straight line given by

(2.4.73) (X1, X2, U, V )(v) = (x1 −Qṽ v , x2 −Qṽ Rṽ v , u+Rṽ v , ṽ + v ) .

The function R must be constant along the characteristics. Expressing this prin-
ciple in connection with the definitions (2.4.51)-(2.4.52) yields

(2.4.74) dvK + dv(∂vL)x1 + dv(∂uL)x2 −Qṽ v d
2
vL ≡ 0 .

• The situation ii.1. Observe that, due to (2.4.65), the three quantities dv(∂vL),
dv(∂uL) and d2

vL are constant functions. Thus, applying the second order deriva-
tive ∂2

vv to the identity (2.4.74), we can extract
∂3
uuuK(U, V )R3

ṽ + 3 ∂3
uuvK(U, V )R2

ṽ + 3 ∂3
uvvK(U, V )Rṽ + ∂3

vvvK(U, V ) = 0 .
Since the three variables Rṽ, U and V are independent, we must have (2.4.66).
Then, observe that

∂uR = −2 (∂uα)−1 (k11 + k20R) , ∂vR = −2 (∂uα)−1 (k02 + k11R) ,
∂1R = −2 (∂uα)−1 (a02 + a11R) , ∂2R = −2 (∂uα)−1 (a11 + a20R) .

It follows that

Q(x1, x2, u, v) ≡ Q(R) =
Y R

XR
=

k02 + 2 k11R+ k20R
2

a02 + 2 a11R+ a20R2
.

We can work at the level of (2.4.47)-(2.4.48). By construction, the condition
(2.4.47) is satisfied. On the other hand, (2.4.48) becomes

∂uR − Q(R) ∂2R + Q′(R) (∂1R+R ∂2R) = 0 .
This relation amounts to the same thing as

(k11 a02 − k02 a11) + (k20 a02 − k02 a20) R+ (k20 a11 − k11 a20) R2 = 0 .
This polynomial function of R is identically zero if and only if the restriction
(2.4.67) is verified.
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• The situation ii.2. Since F(2) 6≡ 0, we can introduce

(2.4.75) A(u, v) :=
∂uK(u, v)

F(2)(b u+ v)
, B(u, v) :=

∂vK(u, v)
F(2)(b u+ v)

.

With these conventions, the function R can be put in the form
R = −

(
B(u, v) + x1 + b x2

) (
A(u, v) + b x1 + b2 x2

)−1

whereas
Q = Q̃(R, u, v) :=

(
∂uA R2 + (∂vA+ ∂uB) R+ ∂vB

)
(R b+ 1)−2 .

The condition (2.4.47) reduces to ∂vQ̃ + R ∂uQ̃ = 0. Taking into account the
above specific form of Q, we find a fraction in R whose coefficients must be zero.
This criterion leads to

(2.4.76) ∂2
uuA = 2 ∂2

uvA+ ∂2
uuB = ∂2

vvA+ 2 ∂2
uvB = ∂2

vvB ≡ 0 .

Exploiting (2.4.76), we can obtain
A(u, v) = +αu v − γ v2 + a1

0 u+ a1
1 v + a0 ,

B(u, v) = −αu2 + γ u v + b10 u+ b11 v + b0 .

Look at (2.4.48) which can also be formulated as ∂uR−Q ∂2R+XQ = 0. Noting
D := A+ b x1 + b2 x2, we find that

D (R b+ 1)XQ = 2 b ∂vB − ∂vA− ∂uB + (b ∂vA+ b ∂uB − 2 ∂uA) R .
Again, the condition (2.4.48) becomes a fraction in R whose coefficients must be
zero. It follows that

−3 ∂uA+ 2 b ∂vA+ b ∂uB = 0 ,(2.4.77)
−2 ∂uB + 3 b ∂vB − ∂vA = 0 .(2.4.78)

It remains α = −b γ and
A(u, v) = − b γ u v − γ v2 + b (−b10 + 2 b b11)u+ (−2 b10 + 3 b b11) v + a0 .

Coming back to (2.4.75), we have to test the existence of K through Clairaut’s
Theorem. This is guaranteed by (2.4.69) if we choose β := b10−b b11 and δ = b b0−a0.
The remaining restriction on γ, β and δ comes from the two conditions XR 6≡ 0
and Y R 6≡ 0.

• The situation ii.3. In this context, the definition of R gives rise to

(2.4.79) R = − R1(x1, x2, u, v)
R2(x1, x2, u, v)

:= − 1 + x1 + a(u, v) x2

a(u, v) (1 + x1) + b(u, v) x2
,

where we have introduced

(2.4.80) a(u, v) := −u−1 (v + α) , b(u, v) = u−2
[
(v + α)2 + δ

]
.

We can use the formula given for R in (2.4.79) to compute
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Q(x1, x2, u, v) ≡
Y R

XR
≡ (Y R1)R2 − (Y R2)R1

(XR1)R2 − (XR2)R1
.

From (2.4.79), we can also extract

1 + x1 = − h1(u, v,R)
h2(u, v,R)

x2 := − a(u, v) +Rb(u, v)
1 +Ra(u, v)

x2 .

Then, replacing 1 + x1 accordingly in the expression of Q, we can derive

Q(x1, x2, u, v) = Q(R, x2, u, v) = Q1(R, u, v) Q2(R, u, v)−1 x2

where Q1 and Q2 are only functions of R, u and v. We find

Q1 := (b Y a− aY b) h2
2 + Y b h1 h2 − Y a h2

1 ,

Q2 := (b− a2) h2 (h2 +Rh1) .

Many simplifications occur. It remains Q = −x2 u
−1 allowing to check (2.4.47)

directly. On the other hand, the condition (2.4.48) reduces to

R1 (u ∂u + x2 ∂2)R2 − R2 (u ∂u + x2 ∂2)R1 + R1 R2 ≡ 0 .

Taking into account the definitions of R1, R2, a and b, this last relation becomes
obvious to verify.

2

2.4.5 Discussion summary.

Up to now, we have described which conditions are needed in order to progress.
Our aim here is to explain how to proceed concretely in order to build compatible
couples (ϕ,w) in the case ∇ϕ · ∂ψW 6≡ 0. Select two functions L and K as it
is indicated in the paragraphs 2.4.4.1 or 2.4.4.2. In particular, we have ∂uK 6≡ 0
and ∂vK 6≡ 0. Define the coefficient R(x1, x2, u, v) through (2.4.51) and (2.4.52).
Knowing R, we have access to Φ. More precisely, when dimA = 2, the function
Φ is entirely determined by prescribing

(2.4.81) Φ00(x2, u) := Φ(0, x2, u, 0) ∈ C1(R2; R) , ∇x2,uΦ00 6≡ 0 .

On the other hand, when dimA = 3 (implying that XR 6≡ 0 and Y R 6≡ 0), the
situation is more restricted. Then the function Φ00(x2, u) must in fact depend only
on one variable, say u. Indeed, it can be obtained by solving

(2.4.82) −Y R ∂2Φ00 +XR ∂uΦ00 = 0 , Φ00(0, u) = Φ000(u) ∈ C1(R; R) .

Once the function Φ00(x2, u) is fixed as it is indicated above, we can recover a non
stationnary phase Φ(x1, x2, u, v). Now, select any function χ ∈ C1(R; R) such that
χ′ 6≡ 0 and consider the solution u00(x3, v) of the following ordinary differential
equation (in the variable v)

(2.4.83) ∂uK(u00, v) ∂vu00 + ∂vK(u00, v) = 0 , u00(x3, 0) = χ(x3) .
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By construction, the expression u00(x3, v) satisfy (2.4.34). The resolution of the
equations (2.4.26) and (2.4.27), where v belongs to some compact set K ⊂ R and
plays the part of a parameter, has already been discussed.

Given L and u00, there is a unique expression u(x, v) ∈ C1(Ω0
r ×K; R) satisfying

(2.4.26)-(2.4.27) together with the inital data

(2.4.84) u(0, 0, x3, v) = u00(x3, v) ∈ C1(R2; R) .

Moreover, as a consequence of the proof of Proposition 2.4.3, we have the relation
(2.4.34) for all (x, v). Deducing the expression ϕ from Φ(x1, x2, u, v) and u(x, v)
through the formula (2.4.33), we obtain a function ϕ(x) which does not depend
on the variable v.

The determination of the function v(x, θ) is delicate. Combining (2.4.11) and
(2.4.25), we can extract the functional identity

(2.4.85) v(x, θ) = V
(
ϕ(x), u

(
x, v(x, θ)

)
, θ

)
, ∀ (x, θ) ∈ Ω0

r × T .

In particular, for x = 0 and for all θ ∈ T, we are faced with

v(0, θ) = V
(
ϕ(0), u00

(
0, v(0, θ)

)
, θ

)
, ϕ(0) = Φ00

(
0, χ(0)

)
.

To simplify, we can seek a function v(x, θ) such that v(0, ·) ≡ 0. It means that the
function V(ϕ,ψ, θ) must be such that

(2.4.86) V
(
ϕ(0), χ(0), θ) ≡ 0 , ∀ θ ∈ T .

In what follows, we select a function V satisfying (2.4.86). We suppose also that
∂θV is not the zero function and that

(2.4.87) ∂vK
(
χ(0), 0

)
∂ψV

(
ϕ(0), χ(0), θ

)
+ ∂uK

(
χ(0), 0

)
6= 0 , ∀ θ ∈ T .

For each θ ∈ T, the informations (2.4.86) and (2.4.87) allow to apply the implicit
Theorem at the point (0, θ, 0) to the application

R3 × T× R −→ R
(x, θ, v) 7−→ v −V

(
ϕ(x), u(x, v), θ

)
.

It yields locally, near (0, θ) ∈ R3×T, a unique function v(x, θ) satisfying the relation
of (2.4.85). Due to the compactness of the torus T, by adjusting the number r ∈ R+

∗
sufficiently small, we can recover (2.4.85). Note that the expression v(x, θ) is (by
construction) necessarily a solution of (2.4.28). Moreover, we do not have ∂θv ≡ 0.

Define the function ψ(x, θ) through (2.4.25). All the ingredients ϕ(x), ψ(x, θ) and
V(ϕ,ψ, θ) are determined. It means that the profile w(x, θ) is known. Just use
(2.2.13) and (2.4.8). By construction, the couple (ϕ,w) is compatible. Below, we
sum up the preceding discussion by clearly precising the degrees of freedom at
disposal in the construction of compatible couples (ϕ,w).
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Proposition 2.4.5. In the case ∇ϕ · ∂ψW 6≡ 0, the class of compatible couples
(ϕ,w) is entirely determined by giving locally
• functions L(u, v) and K(u, v) coming from the paragraphs 2.4.4.1 or 2.4.4.2 ;
• a function Φ00(x2, u) which must satisfy (2.4.82) when dimA = 3 ;
• a function χ(x3) ;
• a function V(ϕ,ψ, θ) which is adjusted as in (2.4.86) and (2.4.87).

2.4.6 Illustrative examples.

The purpose here is to illustrate the various situations which can occur through
corresponding examples. In practice, we select functions L and K resulting from
the different cases classified in Section 2.4.4. In each case, we produce the cor-
responding phases ϕ(x), and also the ingredients u and v allowing to recover the
profile w(x, θ) through (2.4.17) and (2.4.25).
To facilitate the presentation, we recall below the equations to deal with. Once L

and K are fixed, the expression R is given by (2.4.51) and (2.4.52). By construction,
there exist adequate functions Φ such that

(2.4.88) ∂1Φ + R ∂2Φ ≡ 0 , ∂vΦ + R ∂uΦ ≡ 0 .

The function u must satisfy (2.4.26), (2.4.27) and (2.4.34), that is :

(2.4.89)


∂1u + ∂vL(u, v) ∂3u ≡ 0 ,
∂2u + ∂uL(u, v) ∂3u ≡ 0 ,
∂vu(x, v) = R

(
x1, x2, u(x, v), v

)
.

The function v(x, θ) is obtained through (2.4.28), that is

(2.4.90)
∂1v + ∂vL

(
u(x, v), v

)
∂3v

+ ∂vu(x, v)
[
∂2v + ∂uL

(
u(x, v), v

)
∂3v

]
≡ 0 .

Then, it becomes possible to determine ϕ through (2.4.33). By construction, the
function ϕ does not depend on θ and it satisfies (2.4.29).

2.4.6.1 Example in the case i.1 of Lemma 2.4.3.

By assumption, the function L is linear, say L(u, v) = a u+ b v+ c with (a, b, c) ∈
R3. The function R ≡ −∂vK/∂uK must be as indicated at the level of (2.4.62).
To simplify, just take R ≡ 1 so that Φ = Φ00(x2 − x1, u − v). From (2.4.89), we
deduce that u(x, v) = χ(x3 − a x2 − b x1) + v. On the other hand, the function v
can be written

v(x, θ) = v0
(
x1 − x2, x3 − (a+ b) x2, θ

)
, ∂θv0 6= 0 .

It remains to compute ϕ(x) = Φ00

(
x2 − x1, χ(x3 − a x2 − b x1)

)
.
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2.4.6.2 Example in the case i.2 of Lemma 2.4.3.

To simplify the discussion, we work with the choice H(t) = t implying that both
L and K are functions of u + v. For instance, we have L(u, v) = L(u + v) for
some function L satisfying L(2) 6≡ 0. On the other hand, we find R ≡ −1 and
Φ = Φ00(x1 + x2, u+ v). Looking at (2.4.89), we can infer that u(x, v) can be put
in the form ũ(x1+x2, x3)−v where ũ(z, x3) is obtained by solving the conservation
law

∂zũ(z, x3) + L′
(
ũ(z, x3)

)
∂3ũ(z, x3) = 0 , ũ(0, x3) = χ(x3) .

From (2.4.90), we deduce that v(x, θ) = ṽ(x1 + x2, x3, θ). Observe also that
ϕ(x) = Φ00

(
x1 + x2, ũ(x1 + x2, x3)

)
.

2.4.6.3 Example in the case of Lemma 2.4.4.

The function L is here linear, say L(u, v) = a u+ b v + c with (a, b, c) ∈ R3. The
function K must satisfy (2.4.64). We choose K(u, v) = −1

2 v
2 + u in order to deal

with R ≡ v. From (2.4.88), we can extract that Φ = Φ00(2u − v2). As expected,
we see that Φ depends this time on only one variable. Moreover

u(x, v) = 2−1 v2 + χ(x3 − a x2 − b x1) , χ(1) 6= 0 .
From (2.4.90), we obtain that

v(x, θ) = ṽ(b x1 − x3, a x2 − x3, θ) , ṽ(y, z) ∈ C1(R2; R)
where ṽ(y, z) must satisfy the Burger’s law b ∂z ṽ + a ṽ ∂yṽ ≡ 0. Finally :

ϕ(x) =
(
Φ00 ◦ χ

)
(x3 − a x2 − b x1) .

2.4.6.4 Example in the case of Lemma 2.4.5.

The context is as in Lemma 2.4.5 with K = αu + β v + γ. Choose L = 2−1 v2 so
that R = −α−1 (β + x1) and Φ ≡ ϕ = Φ00

(
x2 + α−1 β x1 + (2α)−1 x2

1

)
. Note that

u(x, v) = −α−1
[
(β + x1) v − x3

]
+ c with c ∈ R. On the other hand, the function

v is obtained through
∂1v + v ∂3v − α−1 (x1 + β) ∂2v ≡ 0 .

2.4.6.5 Example in the case ii.1 of Proposition 2.4.4.

In agreement with (2.4.65) and (2.4.66), we can select K(u, v) = L(u, v) = v2 + u
so that R = −2 (v + x1) and Φ ≡ Φ00(v2 + u+ x2

1 + 2 x1 v + x2). Moreover
u(x, v) = − 2 v x1 − x2 + x3 − v2 , ϕ(x) = Φ00(x2

1 + x3) ,
whereas v(x, θ) is any solution of

∂1v − 2 (x1 + v) ∂2v − 2 x1 ∂3v = 0 .



CHAPTER 2. OSCILLATING SOLUTIONS 77

2.4.6.6 Example in the case ii.2 of Proposition 2.4.4.

Choose K(u, v) = u v−1 and L(u, v) = (2 v)−1 so that R = u v−1 − x1 v
−2. We can

take
Φ(x1, x2, u, v) = Φ00

(
u
v x1 −

x2
1

2 v2
− x2

)
, u(x, v) = x3 v + x1

2 v + α v .

The function v is again solution of a suitable conservation law. On the other
hand, we have again to deal with a phase ϕ which is some function of a quadratic
expression in x, namely ϕ(x) = Φ00(x1 x3 + αx1 − x2).

2.4.6.7 Example in the case ii.3 of Proposition 2.4.4.

In accordance with (2.4.71), select

F(t) =
t2

2
, G(t) =

1
2 t

, δ = 1 , α = 0 , L(u, v) =
v2 + 1

2u
.

From (2.4.27), we can deduce the implicit relation

(2.4.91) u(x, v) = Ũ
(
v x1 − u(x, v) x3, x2, v

)
, Ũ(X,x2, v) ∈ C1(R3; R) .

From (2.4.26) together with (2.4.91), we can also derive

(2.4.92) Ũ(X,x2, v) = U
(
2 X Ũ − (v2 + 1) x2, v

)
, U(Y, v) ∈ C1(R2; R) .

Use (2.4.91) and (2.4.92) in order to extract respectively ∂vu and ∂X Ũ . Replace
x3 as indicated by a function of x1, x2, Y , v and U . By this way, we obtain a
first expression for ∂vu. It is compared below with the one coming directly from
(2.4.51)-(2.4.52). We find :

R ≡ ∂vu =
∂vU

2 U ∂Y U
+ x1 − v

u x2

v
U

[
U−2 Y ∂Y U
2 v U ∂Y U

+ x1

]
− v2+1

u2 x2

=
1 + x1 − v

u x2

v
U [1 + x1]− v2+1

u2 x2

.

It follows that U(Y, v) = v ±
√
Y + v2. The function u(x, v) can now be deduced

by just imposing u(0, 0) = 0 together with the implicit relation :
u(x, v) = U

(
2 v x1 u(x, v)− 2 x3 u(x, v)2 − (v2 + 1) x2, v

)
.

On the other hand, we seek Φ(x1, x2, u, v) in the form
Φ = Φ

(
u (1 + x1)− v x2, x2, u, v

)
, Φ(Y, x2, u, v) ∈ C1(R4; R) .

Taking into account the preceding definition of R, the condition (2.4.36) gives
rise to the equation − x2 ∂Y Φ + Y ∂2Φ = 0. Thus, there is some function
Φ0(X,u, v) ∈ C1(R3; R) such that Φ(Y, x2, u, v) = Φ0(Y 2 +x2

2, u, v). From (2.4.37),
we can then deduce that ∂vΦ0 ≡ 0 and 2 X ∂XΦ0 + u ∂uΦ0 = 0. In conclusion,
the following choice is suitable :

Φ(x1, x2, u, v) = Φ00

( [u (1 + x1)− v x2]2 + x2
2

u2

)
, Φ00 ∈ C1(R; R) .

With u(x, v) and Φ(x1, x2, u, v) as above, we can deduce ϕ(x) through (2.4.33).
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2.5 The time evolution problem.

Let (ϕ,w) be a compatible couple. We recall that the profile w(x, θ) can be put
in the form (2.2.13) with a triplet (ϕ,ψ,W) which is adjusted as it is indicated in
(2.2.17)-(2.2.18)-(2.2.19)-(2.2.20) and which satisfies (2.2.15). The purpose of this
last chapter is to explain what happens as time evolves.

2.5.1 Propagation of compatible datas.

The purpose of this paragraph 2.5.1 is to show the Theorem 5. Consider the system
(2.1.11). Standard results (see for instance [25]) guarantee the existence locally
in time, say on the domain ΩT

r × T with T ∈ R∗
+, of a C1−solution to (2.1.11).

Introduce U(t, x, θ) := W
(
Φ(t, x, θ),Ψ(t, x, θ), θ

)
. From (2.1.11), we can easily

deduce that

(2.5.1) ∂tU + (U · ∇)U = 0 , U(0, x, θ) = W
(
ϕ(x), ψ(x, θ), θ

)
= w(x, θ) .

By integrating (2.1.11) along the associated characteristics (which are straight
lines), we can exhibit the identities

Φ(t, x, θ) = ϕ
(
x− tU(t, x, θ)

)
, ∀ (t, x, θ) ∈ ΩT

r × T ,(2.5.2)

Ψ(t, x, θ) = ψ
(
x− tU(t, x, θ), θ

)
, ∀ (t, x, θ) ∈ ΩT

r × T .(2.5.3)

Lemme 2.5.1. Assume that the three ingredients ϕ, ψ and W are adjusted ac-
cording to (2.2.17)-(2.2.18)-(2.2.19)-(2.2.20). Then, the function Φ(t, x, θ) issued
from (2.1.11) is such that ∂θΦ ≡ 0. Moreover, noting

y ≡ y(t, x) := x− tU(t, x, θ) , Ξ(y, θ) :=
(
ϕ(y), ψ(y, θ), θ

)
∈ R2 × T ,

the expression Ψ(t, x, θ) coming from (2.1.11) satisfies

(2.5.4)
∂θΨ(t, x, θ) ≡ ∂θψ(y, θ)

− t ∇ψ(y, θ) ·
[
∂θW

(
Ξ(y, θ)

)
+ ∂θψ(y, θ) ∂ψW

(
Ξ(y, θ)

)]
.

Proof of the Lemma 2.5.1. Use the relations (2.5.2) and (2.5.3) with the
formula given for U to compute ∂θΦ and ∂θΨ according to

M
(
∂θΦ(t, x, θ)
∂θΨ(t, x, θ)

)
=

(
− t∇ϕ(y) · ∂θW

(
Ξ(y, θ)

)
∂θψ(y, θ)− t ∇ψ(y, θ) · ∂θW

(
Ξ(y, θ)

) )
with a matrix M given by

M(t, y, θ) :=
(

1 + t ∇ϕ(y) · ∂ϕW t ∇ϕ(y) · ∂ψW
t ∇ψ(y, θ) · ∂ϕW 1 + t ∇ψ(y, θ) · ∂ψW

)
.

In the preceding formula for the matrix M, the functions ∂?W are evaluated
at the point Ξ(y, θ). A consequence of (2.2.19) and (2.2.20) is the information :
detM(t, y, θ) = 1. It follows that

∂θΦ(t, x, θ) = − t ∇ϕ · (∂θW + ∂θψ ∂ψW)
+ t2

[
(∇ψ · ∂θW) (∇ϕ · ∂ψW)− (∇ϕ · ∂θW) (∇ψ · ∂ψW)

]
.
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Note that the right hand term can be regarded as a function of (y, θ). The condition
(2.2.17) is the same as

(2.5.5) ∇ϕ(y) ·
[
∂θψ(y, θ) ∂ψW

(
Ξ(y, θ)

)
+ ∂θW

(
Ξ(y, θ)

)]
= 0 .

Therefore, it remains

∂θΦ(t, x, θ) = t2 (∇ϕ · ∂ψW) (∇ψ · ∂θW + ∂θψ ∇ψ · ∂ψW) .

Due to (2.2.18), this is ∂θΦ ≡ 0. Proceeding as above, we can obtain

∂θΨ(t, x, θ) = ∂θψ + t
(
∂θψ ∇ϕ · ∂ϕW −∇ψ · ∂θW

)
+ t2

[
(∇ϕ · ∂θW) (∇ψ · ∂ϕW)− (∇ϕ · ∂ϕW) (∇ψ · ∂θW)

]
.

Exploiting again (2.2.19), (2.2.20) and (2.5.5), this is equivalent to

∂θΨ(t, x, θ) = ∂θψ − t
(
∇ψ · ∂θW + ∂θψ ∇ψ · ∂ψW

)
− t2 (∇ϕ · ∂ϕW) ∇ψ ·

(
∂θW + ∂θψ ∂ψW

)
.

Due to (2.2.18) and (2.2.19), the term in factor of t2 is necessarily equal to zero.
By this way, we can see how (2.5.4) appears.

2

Consider the expression uε which is defined on the domain ΩT
r through

(2.5.6)
uε(t, x) := U

(
t, x, Φ(t,x)

ε

)
= W

(
Φ(t, x),Ψ

(
t, x, Φ(t,x)

ε

)
, Φ(t,x)

ε

)
, ε ∈ ]0, 1] .

By construction, we have uε(0, ·) ≡ hε(·) with hε given by (2.1.2). A direct com-
putation based on (2.1.11) indicates that uε(t, x) is indeed a solution of (2.1.1)
on ΩT

r . By applying the Theorem 2.6 of [6], we obtain that
(
Dxu

ε(t, x)
)3 ≡ 0 on

B(0, r − t V ) for all t ∈ [0, T ]. Repeating at the time t ∈ ]0, T ] the procedure of
the Section 2.2, we can deduce that the constraints (2.2.17), (2.2.18), (2.2.19) and
(2.2.20) are propagated. In other words :

Lemme 2.5.2. For all t ∈ [0, T ], the solutions Φ(t, x) and Ψ(t, x, θ) of (2.1.11)
satisfy (2.1.13), (2.1.14), (2.1.15) and (2.1.16).

These identities can also be derived by using (2.2.17)-(2.2.18)-(2.2.19)-(2.2.20) as
well as (2.5.2), (2.5.3) and the Lemma 2.5.1. The Theorem 5 is proved.

For the sake of completeness, we can also remark that the rank of the solution is
a preserved quantity. In the case of rank 1, this is obvious. In the case of rank 2,
this is a consequence of what follows.

Lemme 2.5.3. The solutions Φ(t, x) and Ψ(t, x, θ) of (2.1.11) satisfy

(2.5.7)
(
∇Φ ∧∇Ψ

)
(t, x, θ) =

(
∇ϕ ∧∇ψ

)
(y, θ) , ∀ (t, x, θ) ∈ ΩT

r × T .
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Thus, the volume measure ∇Φ∧∇Ψ is constant along the characteristics. This is
in fact a by-product of the divergence free relation.

Proof of the Lemma 2.5.3. By differentiating (2.5.2) and (2.5.3) with respect
to xj , we can extract

M(t, y, θ)
(
∂jΦ(t, x, θ)
∂jΨ(t, x, θ)

)
=

(
∂jϕ(y)
∂jψ(y)

)
, ∀ j ∈ {1, 2, 3} .

It follows that

∇Φ = (1 + t ∇ψ · ∂ψW) ∇ϕ− t (∇ϕ · ∂ψW) ∇ψ ,(2.5.8)
∇Ψ = − t (∇ψ · ∂ϕW) ∇ϕ+ (1 + t ∇ϕ · ∂ϕW) ∇ψ .(2.5.9)

Now, we can use (2.5.8) and (2.5.9) in order to compute the cross product of ∇Φ
and ∇Ψ. Due to (2.2.19) and (2.2.20), it remains (2.5.7). 2

2.5.2 Asymptotic phenomena.

Families like {uε}ε give many informations on the complex phenomena which may
occur at the level of (2.1.7) when passing to the limit (as ε→ 0).

Noting S(t) with t ∈ R∗
+ the semi-group operator which is associated with incom-

pressible Euler equations, we can for instance use {uε}ε to study the well-posedness
(or not) of S(t) in functional spaces (thus arising the delicate problem of the local-
ization of the solutions, see [4]). We can also investigate the weak L2−continuity
(or not) of S(t) (in the spirit of [5, 21]). These applications of our current approach
will not be developed in these pages. Nevertheless, we will point out some related
very specific aspect.

We want here to show that the phenomenon of superposition of oscillations already
noted in [5] (only when d = 2 and in the absence of the divergence free constraint)
can indeed occur at the level of (2.1.7) when d = 3.

The idea is to start at the initial time t = 0 with a function ψ(x) which does not
see the variable θ ∈ T and with a function Wε(·) which depends on the parameter
ε ∈ ]0, 1] and contains oscillations in the variable ψ, as it is indicated in (2.1.22).
Then, in order to prove the mechanism (2.1.23), it suffices to exhibit some t ∈]0, T ]
such that ∂θΨ 6= 0.

In view of (2.5.1) and because ∂θψ ≡ 0, it suffices to test if

(2.5.10) ∃ (x, θ) ∈ Ω0
r × T ; ∂θW(ϕ,ψ, θ) · ∇ψ = ∂θw · ∇ψ 6= 0 .

In the framework ∇ϕ · ∂ψW 6≡ 0 of the Section 2.4.1, because of (2.4.2), it is not
possible to obtain (2.5.10). When ∇ϕ · ∂ψW ≡ 0, in the case f ′ 6≡ 0 and g′ 6≡ 0,
we can see with (2.3.15), (2.3.23) and (2.3.24) that

∂θw · ∇ψ =

∂θα
 0

−g
1

+ ∂θβ

 1
−f
0


 ·

Ψ′
0

 f ′(ϕ)
0

g′(ϕ)

+ ∂ϕΨ

 ∂1ϕ
∂2ϕ
∂3ϕ


 .
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Taking into account (2.3.12) and (2.3.18), we must necessarily have ∂θw · ∇ψ ≡ 0.
It remains to examine the situation of the paragraph 2.3.2.1. The context is the
one of Proposition 2.3.1. Choose (a, b) ∈ (R∗)2, c = 0 and ϕ00 ∈ C1(R; R). Define
ϕ(x) as in (2.3.19). Select some function αε which is such that

αε(ϕ,ψ, θ) = A(ϕ,ψ, ψ/ε, θ) , ∂ψA 6= 0 , A ∈ C∞(R2 × T2; R) .

Choose two auxiliary functions φ(θ) ∈ C∞(T; R) and Ψ0(T,Z) ∈ C∞(R2; R) satis-
fying φ′ 6= 0 and ∂Tψ0 6= 0. Take

χ ≡ 1 , βε(ϕ,ψ, θ) = αε(ϕ,ψ, θ)− φ(θ) , Ψ(X,Y, Z) = Ψ0(Y −X,Z) .

Obviously, we have (2.3.22) and (2.3.23). With w(x, θ) defined according to
(2.3.24), compute

∂θw · ∇ψ =

∂θα
 0

−b
1

+ ∂θβ

 1
−a
0


 ·

∂TΨ0

 −1
0
1

+ ∂ZΨ0

 a
1
b




= ∂TΨ0 φ
′ 6= 0 .

In fact, the corresponging solution of (2.1.7) can be produced explicitly. It is

uε(t, x) = Aε(t, x)

 1
−a− b

1

 − φ
(ϕ(x)

ε

) 1
−a
0


with

Aε(t, x) := A
(
ϕ(x),

ψ
(
x3 − x1 − t φ

(ϕ(x)
ε

))
ε

,
ϕ(x)
ε

)
.

2.6 Appendix.

This appendix is concerned with the three-dimensional criterion which is studied
at the level of Section 2.4.4.2. The matter is to consider the more complicated case,
when XR 6≡ 0 and Y R 6≡ 0. The Proposition 2.4.4 gives sufficient conditions on K

and L in order to solve the system (2.4.39)-(2.4.40). The aim of this Appendix is
to explain (under suitable assumptions that will be precised later) why there are
no other possible choices.
Thus, in all this Section 2.6, we deal with (2.4.39)-(2.4.40) or (2.4.47)-(2.4.48),
in the case XR 6≡ 0 and Y R 6≡ 0. The starting point of our analysis is the
equation (2.4.74). In a first approach, we assume that ∂2

vvL 6≡ 0. We will see in
the paragraph 2.6.5 that the case ∂2

vvL ≡ 0 can be dealt separately and that it
does not produce other cases than (2.4.65).
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2.6.1 Preliminary informations.

In what follows, we assume that ∂2
vvL 6≡ 0. In doing so, as seen below, no infor-

mation is forgotten.

Lemme 2.6.1. The assumption ∂2
vvL ≡ 0 is not compatible with solving the system

(2.4.39)-(2.4.40) in the case (XR) (Y R) 6≡ 0.

Proof of Lemma 2.6.1. First, consider the case when ∂2
vvL ≡ 0 and also ∂2

uvL 6≡
0. To this end, introduce c(u, v) := ∂2

uuL/∂
2
uvL. The notations are as in (2.4.73).

The starting point of the discussion is the identity (2.4.74) which can here be
reduced to

dvK

∂2
uvL

+Rṽ x1 +
[
c(U, V )Rṽ + 1

]
x2 −Qṽ v

[
c(U, V )R2

ṽ + 2 Rṽ
]
≡ 0 .

Since ∂2
vvL ≡ 0 and ∂2

uvL 6≡ 0, we are sure that ∂1Rṽ 6≡ 0. Thus, we can work with
Rṽ, x2, u, v, ṽ instead of x1, x2, u, v, ṽ. In particular, for Rṽ = 0, it remains

∂vK(u, V ) ∂2
uvL(u, V )−1 + x2 ≡ 0 , ∀ (x2, u, V ) , V = v + ṽ .

This is not possible since the three variables x2, u and V are independent. Thus,
we have necessarily ∂2

uvL ≡ 0. Knowing that ∂2
vvL ≡ ∂2

uvL ≡ 0 and that XR 6≡ 0,
the function L can be put in the form F (u) + b v for some constant b ∈ R and
some function F ∈ C2(R; R) satisfying F (2) 6≡ 0. This time, the identity (2.4.74)
becomes

(2.6.1) dvK(U, V ) + x2 F
(2)(U) Rṽ − v Qṽ F

(2)(U) R2
ṽ ≡ 0 .

In particular, for Rṽ = 0, we find ∂vK ≡ 0, that is K(u, v) ≡ K̃(u). Then, dividing
(2.6.1) by Rṽ and taking v = 0, we obtain K̃′(u) + x2 F

(2)(u) ≡ 0. Since F (2) 6= 0,
this furnishes the expected contradiction. 2

From now on, assume that ∂2
vvL 6≡ 0. Introduce the two auxiliary functions

(2.6.2) a(u, v) := ∂2
uvL/∂

2
vvL , b(u, v) := ∂2

uuL/∂
2
vvL .

From the informations (2.4.51)-(2.4.52) written with v = ṽ, we obtain that

(2.6.3)
[
a(u, ṽ)Rṽ + 1

]
∂2Rṽ −

[
b(u, ṽ)Rṽ + a(u, ṽ)

]
∂1Rṽ = 0 .

Now, the idea is to manipulate (2.4.74) in order to eliminate the contribution

dvK ≡ Rṽ ∂uK(u+Rṽ v, ṽ + v) + ∂vK(u+Rṽ v, ṽ + v) .

To this end, it suffices to apply the vector field ∂2Rṽ ∂1 − ∂1Rṽ ∂2 to the equation
(2.4.74). Then, use (2.6.3) in order to extract

(2.6.4)
Ξ(u, v, ṽ, Rṽ) :=

[
a(u, ṽ)− a(U, V )

]
+

[
b(u, ṽ)− b(U, V )

]
Rṽ

+
[
a(U, V ) b(u, ṽ)− a(u, ṽ) b(U, V )

]
R2
ṽ

− v χ̃(x1, x2, u, ṽ)
[
1 + 2 a(U, V )Rṽ + b(U, V )R2

ṽ

]
= 0
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with
χ̃(x1, x2, u, ṽ) :=

[
b(u, ṽ)Rṽ + a(u, ṽ)

]
∂1Qṽ −

[
a(u, ṽ)Rṽ + 1

]
∂2Qṽ .

By definition, the function χ̃ does not depend on v. On the other hand, in view
of (2.6.4), it is an expression of the four variables u, v, ṽ and Rṽ (which are
independent because XR 6≡ 0). It means that

(2.6.5) ∃χ ∈ C∞(R3; R) ; χ̃(x1, x2, u, ṽ) = χ(u, ṽ, Rṽ) .

Lemme 2.6.2. There exist functions f , g, k and l in C2(R; R) such that

(2.6.6) a(u, v) = f(u) v + g(u) , b(u, v) = (2 f2 − f ′)(u) v2 + k(u) v + l(u)

where the expression Z(u) := 2 f(u)2 − f ′(u) must satisfy

(2.6.7) Z′(u) = 2 f(u) Z(u) .

Proof of Lemma 2.6.2. As indicated line (2.6.5), we can replace χ̃ by χ at the
level of (2.6.4). Then, compute

∂2
vvΞ(u, v, ṽ, 0) = − ∂2

vva(u, ṽ + v) = 0 .
Thus, we can find functions f and g such that a(u, v) = f(u) v + g(u). On the
other hand ∂vΞ(u, v, ṽ, 0) ≡ −∂va(u, ṽ + v) − χ(u, ṽ, 0) ≡ 0 which implies that
χ(u, ṽ, 0) = −f(u). It follows that

(2.6.8)
0 = ∂RṽΞ(u, v, ṽ, 0) = b(u, ṽ)− b(u, ṽ + v)

+ v (ṽ + v)
[
2 f(u)2 − f ′(u)

]
+ v

[
2 f(u) g(u)− g′(u)

]
− v ∂Rṽχ(u, ṽ, 0) .

In particular, we must have
∂3
Rṽvv

Ξ(u, v, ṽ, 0) = −∂2
vvb(u, ṽ + v) + 4 f(u)2 − 2 f ′(u) = 0 .

In other words, there are two functions k and l such that the second part of (2.6.6)
is verified. Coming back to (2.6.8), we can see that

∂Rṽχ(u, ṽ, 0) = −Z(u) ṽ − k(u) + 2 f(u) g(u) − g′(u) .
Then look at the condition

(2.6.9)
0 = (∂Rṽ)

2 Ξ(u, v, ṽ, 0) = − v2 ∂2
uua(u, V )− 2 v ∂ub(u, V )

+ 2
[
a(u, V ) b(u, ṽ)− a(u, ṽ) b(u, V )

]
− v (∂Rṽ)

2 χ(u, ṽ, 0)
− 4 v ∂Rṽχ(u, ṽ, 0) a(u, V ) + 2 v f(u)

[
2 v ∂ua(u, V ) + b(u, V )

]
.

Taking into account the preceding informations on a and b, then the expression
(∂Rṽ)

2 Ξ(u, v, ṽ, 0) is a polynomial function with respect to v. In particular, the
coefficient in factor of v3 must be zero. This criterion yields (2.6.7).

2
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From (2.6.4), we can extract a formula for χ, namely

χ(u, ṽ, Rṽ) = P̃1(u, ṽ, v, Rṽ) P̃2(u, ṽ, v, Rṽ)−1

where P̃1 and P̃2 are polynomial functions in Rṽ. Work in a neighbourhood of R2

where v 6= 0. Since χ does not depend on v, we must have

(2.6.10)
[
(v3 ∂vP̃1) (v P̃2)− (v2 P̃1) (v2 ∂vP̃2)

]
v−4 P̃−4

2 ≡ 0 .

Replace Rṽ by (U − u)/v. Then, change the point of view by adopting u, U , ṽ
and v as being the new (independant) variables. Noting simply ã and a∗ when
the function a is evaluated at the points (u, ṽ) and (U, ṽ), the condition (2.6.10)
becomes

D(u, ṽ, U, v) := (P1 P2 −P3 P4)(u, ṽ, U, v) = 0 .

More precisely

P1 = v3 [−f(U)− (U − u) Z(U)]
+ v2 [ã− a∗ − 2 (U − u) Z(U) ṽ − (U − u) k(U)− (U − u)2 ã Z(U)] +

+ v
[
(U − u) (b̃− b∗) + (U − u)2

(
b̃ f(U)− 2 ã Z(U) ṽ − ã k(U)

)]
+

+
[
(U − u)2 (b̃ a∗ − ã b∗)

]
,

P2 = v2 [1 + 4 (U − u) f(U) + 2 (U − u)2 f (1)(U) + 3 (U − u)2 Z(U)
+(U − u)3 Z(1)(U)]

+ v
[
(U − u)3

(
k(1)(U) + 2 Z(1)(U) ṽ

)
+(U − u)2

(
2 ∂ua∗ + 4 Z(U) ṽ + 2 k(U)

)
+ 2 (U − u) a∗

]
+

[
∂ub

∗(U − u)3 + b∗(U − u)2
]
,

P3 = v2 [1 + 2 (U − u) f(U) + (U − u)2 Z(U)]
+ v

[
2 (U − u) a∗ + 2 (U − u)2 Z(U) ṽ + (U − u)2 k(U)

]
+ [(U − u)2 b∗] ,

P4 = v3
[
− f(U)− (U − u)

(
f (1)(U) + 2 Z(U)

)
− (U − u)2 Z(1)(U)

]
+ v2

[
(U − u)

(
− ∂ua

∗ − 2 Z(U) ṽ − k(U)
)

+(U − u)2
(
− 2 Z(1)(U) ṽ − k(1)(U)− 2 ã Z(U)

)
+(U − u)3

(
− ã Z(1)(U)

)]
+ v

[
(U − u)2

(
− ∂ub

∗ + b̃ f(U)− 2 ã Z(U) ṽ − ã k(U)
)

+(U − u)3
(
− ã k(1)(U) + b̃ f (1)(U)− 2 ã Z(1)(U) ṽ

)]
+ [b̃ ∂ua∗ − ã ∂ub

∗] (U − u)3 .
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All expressions Pj are polynomial functions in v and ṽ, with degree at most 5 in
v and 3 in ṽ. It follows that D can be put in the form

D(u, ṽ, U, v) =
5∑
j=0

Dj(u, ṽ, U) vj ≡ 0, Dj(u, ṽ, U) =
3∑

k=0

Dk
j (u, U) ṽk .

Of course, the condition D ≡ 0 amounts to the same thing as

(2.6.11) Dk
j ≡ 0 , ∀ (j, k) ∈ {0, · · · , 5} × {0, · · · , 3} .

Lemme 2.6.3. Concerning the structures of the functions Z and f , there are three
possible situations:
a) Z ≡ 0 and f ≡ 0 ;
b) There exists a constant δ ∈ R such that Z ≡ 0 and f(u) = (δ − 2u)−1 ;
c) There exist two constants (δ1, δ2) ∈ R2 such that Z(u) = (u2 − 2 δ1 u + δ2)−1

and f(u) = (−u+ δ1) (u2 − 2 δ1 u+ δ2)−1.

Proof of Lemma 2.6.3. When Z ≡ 0, the function f must satisfy 2 f2 − f ′ ≡ 0
and we are faced with situations a) or b).

From now on, suppose that Z 6≡ 0. First, look at the coefficient D5
0 which is

D5
0 = (U − u)4 ×

{[
Z(u) f(U)− f(u) Z(U)

]
Z(U)

+ (U − u) Z(u)
[
Z(1)(U) f(U)− Z(U) f (1)(U)

]}
.

Since Z 6≡ 0, dividing the expression D5
0 by Z(u) Z(U)2, the condition D5

0 ≡ 0
becomes

f(U)
Z(U)

− f(u)
Z(u)

− (U − u)
[ f(U)
Z(U)

](1)
= 0 .

It means that the function f Z−1 is linear with respect to U . Combining this
information with (2.6.7), it first remains

(2.6.12)
f(U)
Z(U)

= −U + δ1, δ1 ∈ R

and then, replacing f by Z′/(2Z), we have access to c). 2

2.6.2 Discussion of the case Z 6≡ 0.

This paragraph 2.6.2 is aimed to be the source of the situation ii.3 described in
Proposition 2.4.4. First, by changing u into u − δ1 and defining γ := δ2 − δ21 , we
can always assume that

(2.6.13) f(u) = −u/(u2 + γ)−1 , Z(u) = (u2 + γ)−1 .

The functions a and b are given by (2.6.6). We have to determine g, k and l.



CHAPTER 2. OSCILLATING SOLUTIONS 86

Lemme 2.6.4. Assume that Z 6≡ 0. Then, there are constants α ∈ R, β ∈ R and
δ ∈ R such that

(2.6.14) g(u) = − αu− β

u2 + γ
, k(u) =

2α
u2 + γ

, l(u) =
δ

u2 + γ
.

Proof of Lemma 2.6.4. Complete (2.6.2) with the introduction of

(2.6.15) c̃(u, v) := ∂vK/∂
2
vvL , d̃(u, v) := ∂uK/∂

2
vvL .

We have here to work with

(2.6.16) R = − R1

R2
:= − c̃(u, v) + x1 + a(u, v) x2

d̃(u, v) + a(u, v) x1 + b(u, v) x2

.

It is easy to check that 1 + aR 6≡ 0. Otherwise R = a(u, v)−1 so that XR ≡ 0
which is in contradiction with the assumptions of Proposition 2.4.4. From (2.6.16),
we can extract

x1 = −
{
R d̃(u, v) + c̃(u, v) + x2

[
R b(u, v) + a(u, v)

]}
/
[
R a(u, v) + 1

]
.

Use the relation (2.6.16) to compute Q(x1, x2, u, v) ≡ Y R/XR. Then replace x1

as it is indicated above in order to obtain

Q(x1, x2, u, v) = Q(R, x2, u, v) =
Q0(R, u, v)
Q2(R, u, v)

+
Q1(R, u, v)
Q2(R, u, v)

x2

with

Qi(R, u, v) =
3∑
j=0

Q
j
i (u, v) R

j , i ∈ {0, 1, 2}

and
Q3

1 = ∂ub a− ∂ua b , Q2
1 = a ∂vb+ ∂ub− ∂va b ,

Q1
1 = ∂vb+ ∂ua , Q0

1 = ∂va ,

Q3
0 = ∂ud̃ a− ∂ua d̃ , Q2

0 = ∂ud̃+ a2 ∂v(da) + a2 ∂u( ca) ,
Q1

0 = a ∂v c̃+ ∂vd̃+ ∂uc̃− ∂va c̃ , Q0
0 = ∂v c̃ .

Q3
2 = a b , Q2

2 = b+ 2 a2 ,
Q1

2 = 3 a , Q0
2 = 1 .

The condition (2.4.48) is the same as ∂uR−Q∂2R+XQ ≡ 0. Compute

∂uR = − pu
p0

:= − ∂uc̃+ ∂ua x2 +R [∂ud̃+ ∂ua x1 + ∂ub x2]
d̃+ a x1 + b x2

,

∂2R = − p2

p0
:= − a+ b R

d̃+ a x1 + b x2

,

XR = − px
p0

:= − 1 + 2 a R+ b R2

d̃+ a x1 + b x2

.

With these conventions, the condition (2.4.48) becomes

(2.6.17) − pu + Q p2 − ∂RQ px −R1 ∂2Q ≡ 0 .
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Observe that (2.6.17) is linear with respect to the variable x2. In particular, the
term in factor of x2 must be zero implying that

(2.6.18)
− Q2 (∂ua+ ∂ub R) − ∂RQ1 (R2 b+ 2 a R+ 1)

+∂ua R (R b+ a) (R2 b+ 2 a R+ 1) + 4 Q1 (R b+ a) ≡ 0 .

Since ∂1R 6≡ 0 (because 1 + aR 6≡ 0), the four variables R, x2, u and v are
independent. The left hand side of (2.6.18) is a polynomial function in R of degree
4 whose four coefficients must all be zero.

Applying this criterion, we can derive the two following conditions :

(2.6.19) 2 b ∂ua− 2 a ∂ub+ b ∂vb ≡ 0 , −∂ub+ 2 b ∂va ≡ 0 .

From (2.6.6), (2.6.13) and (2.6.19), we can derive the expressions of k and l given
in (2.6.14). Then, it suffices to exploit (2.6.19) to obtain g. 2

At this stage, the functions a and b are determined. From the first part of (2.6.2),
we can deduce the existence of functions F, G and g such that

(2.6.20) L(u, v) = (u2 + γ)1/2 F
(
(v + α) (u2 + γ)− 1/2 + g(u)

)
+ G(u)

where F(2) 6≡ 0 and g is some primitive of the function u 7−→ β (u2 + γ)− 3/2.
Then, testing the second part of (2.6.2) with the formula (2.6.20), we can see that
necessarily β = γ = 0, yielding the form (2.4.70) for L. As already observed at
the level of the proof of Proposition 2.4.4, once L is given by (2.4.70) with F and
G as in (2.4.71), the choice K = ∂vL is suitable. The existence of other convenient
functions K will not be discussed.

2.6.3 Exclusion of the case Z ≡ 0 and f 6≡ 0.

In this paragraph, we consider the situation b) of Lemma 2.6.3. When Z ≡ 0, we
can compute the quantities Dk

j of (2.6.11) to find the following list :

D0
5 := 2 (U − u) [f (1)(U)− 2 f2(U)] ,

D1
4 := f(u)− f(U) + (U − u) [4 f(U) f(u)− 4 f2(U) + f (1)(U)]

+ (U − u)2 [2 f (1)(U) f(u)] ,
D0

4 := g(u)− g(U) + (U − u)
[
− 4 f(U) g(U) + g(1)(U) + 4 f(U) g(u)

]
+(U − u)2

[
2 f (1)(U) g(u) + k(1)(U)− 3 f(U) k(U)

]
+(U − u)3

[
k(1)(U) f(U)− k(U) f (1)(U)

]
,

D2
3 := 2 (U − u) [f(u) f(U)− f2(U) + (U − u) f (1)(U) f(u)] ,

D1
3 := (U − u)

[
2 f(u) g(U)− 4 g(U) f(U) + 2 f(U) g(u) + k(u)− k(U)

]
+(U − u)2

[
2 g(1)(U) f(u)− 6 f(U) k(U) + 2 k(U) f(u)

+ 2 g(u) f (1)(U) + 4 k(u) f(U) + k(1)(U)
]

+(U − u)3
[
2 k(1)(U) f(u) + 2 k(1)(U) f(U)− 2 f (1)(U) k(U)

+ 2 f2(U) k(u)− 2 f(u) f(U) k(U) + f (1)(U) k(u)
]

+(U − u)4
[
2 f(U) f(u) k(1)(U)− 2 f (1)(U) f(u) k(U)

]
,
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D2
2 := (U − u)2 [3 k(u) f(U)− 3 k(U) f(U)]

+ (U − u)3 [2 k(1)(U) f(u) + k(1)(U) f(U) + 4 k(u) f2(U)
−4 k(U) f(U) f(u) + k(u) f (1)(U)− k(U) f (1)(U)]

+ (U − u)4 [4 f(U) f(u) k(1)(U)− 4 f(u) f (1)(U) k(U)] ,
D0

3 := (U − u)
[
2 g(u) g(U)− 2 g2(U) + l(u)− l(U)

]
+(U − u)2

[
2 g(1)(U) g(u) + 2 k(U) g(u)− 2 k(U) g(U)

+4 f(U) l(u)− 4 f(U) l(U) + l(1)(U)
]

+(U − u)3
[
l(1)(U) f(U) + 2 k(1)(U) g(u) + k(1)(U) g(U)
−g(1)(U) k(U)− f (1)(U) l(U)− 2 f(U) k(U) g(u)
+2 l(u) f2(U) + f (1)(U) l(u)− k2(U)

]
+(U − u)4

[
2 g(u) f(U) k(1)(U)− 2 f (1)(U) g(u) k(U)

]
,

D1
2 := 3 (U − u)2 [−f(U) l(U)− k(U) g(U) + k(u) g(U) + l(u) f(U)]

+ (U − u)3 [2 l(1)(U) f(u) + f(U) l(1)(U)− 2 k2(U) + 2 k(1)(U) g(u)
+k(1)(U) g(U) + k(u) g(1)(U) + 2 k(u) k(U)− k(U) g(1)(U)
+4 g(U) k(u) f(U) + 4 l(u) f2(U)− 4 f(U) k(U) g(u)
+l(u) f (1)(U)− l(U) f (1)(U)− 4 f(U) f(u) l(U)]

+ (U − u)4 [k(u) k(1)(U) + k(U) k(u) f(U)− 2 g(1)(U) k(U) f(u)
−f(u) k2(U)− 4 f (1)(U) g(u) k(U)− 2 f (1)(U) f(u) l(U)
+2 f(U) f(u) l(1)(U) + 4 f(U) g(u) k(1)(U) + 2 g(U) f(u) k(1)(U)]

+ (U − u)5 [k(u) f(U) k(1)(U)− k(U) k(u) f (1)(U)] ,
D0

2 := (U − u)2 [3 l(u) g(U)− 3 l(U) g(U)]
+ (U − u)3 [2 l(1)(U) g(u) + l(1)(U) g(U)− 2 k(U) l(U) + l(u) g(1)(U)

+2 k(U) l(u)− l(U) g(1)(U) + 4 f(U) g(U) l(u)− 4 g(u) l(U) f(U)]
+ (U − u)4 [l(u) k(1)(U) + l(u) f(U) k(U)− 2 g(1)(U) g(u) k(U)− k2(U) g(u)

−2 f (1)(U) l(U) g(u) + 2 f(U) l(1)(U) g(u) + 2 g(U) g(u) k(1)(U)]
+ (U − u)5 [l(u) f(U) k(1)(U)− l(u) k(U) f (1)(U)] ,

D3
1 := (U − u)3 [2 k(u) f2(U)− 2 f(u) f(U) k(U)]

+ (U − u)4 [2 f(u) f(U) k(1)(U)− 2 f(u) k(U) f (1)(U)] ,
D2

1 := (U − u)3 [k(u) k(U)− k2(U) + 4 k(u) f(U) g(U)− 2 f(u) g(U) k(U)
+2 l(u) f2(U)− 2 g(u) f(U) k(U)− 2 f(u) f(U) l(U)]
+ (U − u)4 [k(u) k(1)(U) + 3 k(u) k(U) f(U)− 2 f(u) k2(U)

−2 f(u) k(U) g(1)(U)− 2 g(u) k(U) f (1)(U)
−2 f(u) l(U) f (1)(U) + 2 f(u) g(U) k(1)(U)
+2 f(u) f(U) l(1)(U) + 2 g(u) f(U) k(1)(U)− k(u) f(U) k(U)]

+ (U − u)5 [2 k(u) f(U) k(1)(U)− 2 k(u) k(U) f (1)(U)] ,
D0

1 := (U − u)3 [l(u) l(U)− l2(U) + 2 l(u) g2(U)− 2 g(u) g(U) l(U)]
+ (U − u)4 [l(u) l(1)(U)− 2 g(u) k(U) l(U) + 2 l(u) g(U) k(U)

−2 g(u) l(U) g(1)(U) + 2 g(u) g(U) l(1)(U)]
+ (U − u)5 [l(u) f(U) l(1)(U) + l(u) g(U) k(1)(U)

−l(u) k(U) g(1)(U)− l(u) l(U) f (1)(U)] ,
D3

0 := (U − u)4 [k(u) k(U) f(U)− f(u) k2(U)]
+ (U − u)5 [k(u) k(1)(U) f(U)− k(u) k(U) f (1)(U)] ,
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D1
1 := (U − u)3 [k(u) l(U)− 2 k(U) l(U) + l(u) k(U) + 2 k(u) g2(U)

+ 4 f(U) g(U) l(u)− 2 f(u) l(U) g(U)
− 2 f(U) g(u) l(U)− 2 g(u) g(U) k(U)]

+ (U − u)4 [k(u) l(1)(U)− 2 f(u) k(U) l(U) + l(u) k(1)(U) + 2 l(u) k(U) f(U)
− 2 k2(U) g(u) + 2 k(u) k(U) g(U)− 2 f(u) l(U) g(1)(U)
− 2 g(1)(U) g(u) k(U)− 2 g(u) l(U) f (1)(U) + 2 f(U) l(1)(U) g(u)
+ 2 g(U) f(u) l(1)(U) + 2 g(U) g(u) k(1)(U)]

+ (U − u)5 [k(u) f(U) l(1)(U) + k(1)(U) k(u) g(U)− k(U) k(u) g(1)(U)
−2 k(U) l(u) f (1)(U)− l(U) k(u) f (1)(U) + 2 l(u) f(U) k(1)(U)] ,

D2
0 := (U − u)4 [k(u) f(U) l(U)− 2 f(u) k(U) l(U) + k(u) k(U) g(U)

+l(u) k(U) f(U)− g(u) k2(U)]
+ (U − u)5 [k(u) f(U) l(1)(U) + k(u) k(1)(U) g(U) + l(u) f(U) k(1)(U)

−k(u) k(U)g(1)(U)− l(u) k(U) f (1)(U)− k(u) l(U) f (1)(U)] ,
D1

0 := (U − u)4 [k(u) g(U) l(U) + l(u) f(U) l(U)− f(u) l2(U)
− 2 g(u) k(U) l(U) + l(u) g(U) k(U)]

+ (U − u)5 [k(u) l(1)(U) g(U) + l(u) l(1)(U) f(U) + l(u) g(U) k(1)(U)
− l(u) l(U) f (1)(U)− k(u) l(U) g(1)(U)− l(u) k(U) g(1)(U)] ,

D0
0 := (U − u)4 [l(u) g(U) l(U)− g(u) l2(U)]

+ (U − u)5 [l(u) l(1)(U) g(U)− l(u) l(U) g(1)(U)] .

We start by obtaining preliminary informations on g, k and l.

Lemme 2.6.5. In the case Z ≡ 0 and f(u) = (δ − 2u)−1, we can find a constant
β ∈ R and a function Q ∈ C2(R; R) such that

g(u) = Q(u) f(u)2 , Q(2)(u) = 2 β,(2.6.21)
k(u) = β f(u) ,(2.6.22)
l(u) = β g(u) .(2.6.23)

Proof of Lemma 2.6.5. Since f 6≡ 0, the condition D3
1 ≡ 0 amounts to the same

thing as
k(u)
f(u)

− k(U)
f(U)

+ (U − u)
(k(U)
f(U)

)(1)
≡ 0 .

In other words k(u) = (αu + β) f(u) with (α, β) ∈ R2. On the other hand, the
restriction D3

0 ≡ 0 is equivalent to

k(u)
f(u)

k(U)
f(U)

− k(U)2

f(U)2
+ (U − u)

k(u)
f(u)

(k(U)
f(U)

)(1)
= 0 .

This is possible only if α = 0, yielding (2.6.22).

Knowing (2.6.22), the constraint D0
4 ≡ 0 allows to extract

g(u)
f(u)2

=
[ g(U)
f(U)2

+ 4 U
g(U)
f(U)

− U
g(1)(U)
f(U)2

+ U2 β
]

+[
− 4

g(U)
f(U)

+
g(1)(U)
f(U)2

− 2 U β
]
u+ β u2 .
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Since the left hand side of this identity does not depend on the variable U , the
coefficients of the right hand side must be constants. We recognize here what is
said at the level (2.6.21). In view of of the informations (2.6.21) and (2.6.22), the
condition D2

1 ≡ 0 becomes

(2.6.24)

2 l(u) f(U)2 = −β2 f(u) f(U) + β2 f(U)2

− 2 β Q(U) f(u) f(U)3 + 2 β Q(u) f(u)2 f(U)2

+2 f(u) f(U) l(U) + (U − u)
{
−2 β2 f(u) f(U)2

+2 β Q(1)(U) f(u) f(U)3 + 4 β Q(U) f(u) f(U)4

+4 l(U) f(u) f(U)2 − 2 f(u) f(U) l(1)(U)
}
.

Dividing this identity by 2 f(u)2 f(U)2, the left hand side is simply l(u) f(u)−2

whereas the right hand side is some polynomial function in u of degree 2. To
better visualize the content of (2.6.24), we can work with the auxiliary variables
X := δ − 2 u and Y := δ − 2 U . Observe that

Q(u) = Q̌(X) =
β

4
X2 + Q̌1X + Q̌0 ,

l(u) f(u)−2 = Q̃(X) =
Q̃2

4
X2 + Q̃1X + Q̃0 .

The relation (2.6.24) is the same as

2 Q̃(X) Y 2 = −β2 X Y 3 + β2 X2 Y 2 − 2 β Q̌(Y ) X Y + 2 β Q̌(X) Y 2

+2 Q̃(Y ) X Y + (X − Y )
[
− β2 X Y 2 + β (Q̌)(1)(Y ) X Y

+2 β Q̌(Y ) X − (Q̃)(1)(Y ) X Y − 2 Q̃(Y ) X
]
.

For X = 0 and Y 6= 0, we obtain Q̃0 = β Q̌0. Examining the coefficients in factor
of X2 Y 2 and X Y 2, we get respectively Q̃2 = β2 and Q̃1 = β Q̌1. In other words
we have Q̃ = β Q̌, that is (2.6.23).

2

The above study does not exploit all the informations which are contained in the
coefficients D?

∗. We can go further

Lemme 2.6.6. In the case Z ≡ 0 and f(u) = (δ − 2u)−1, we must have k ≡ 0
and l ≡ 0. On the other hand, we must have g(u) = d f(u) with d ∈ R.

Proof of Lemma 2.6.6. Knowing (2.6.22) and (2.6.23), the coefficient D0
1 can

be simplified into β2
[
g(u) g(U) − g2(U) + (U − u) g(u) g(1)(U)

]
= 0. If β 6= 0,

exploiting (2.6.21), this is possible only if

2 Q̌(X) Q̌(Y ) Y 2 − 2 Q̌(Y )2 X2

+(X − Y ) Q̌(X)
[
Q̌(1)(Y ) Y 2 + 4 Q̌(Y ) Y

]
= 0 .

For X 6= 0 and Y = 0, we obtain Q̌0 = 0. Then, dividing by Y 2 and taking again
X 6= 0 and Y = 0, we can see that Q̌1 = 0 and also β = 0. It means that k ≡ 0
and l ≡ 0. Then, look at the condition D0

3 ≡ 0 which is
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g(u) g(U)− g(U)2 + (U − u) g′(U) g(u) = 0 .
Necessarily, we must have g(u) = d (e − 2u)−1 for some (d, e) ∈ R2. Taking into
account (2.6.21), the only possible choice for the constant e is e = δ giving rise to
the expected result. 2

Lemme 2.6.7. The case Z ≡ 0 and f(u) = (δ − 2u)−1 must be excluded.

Proof of Lemma 2.6.7. If F ′ ≡ 0, we have G(2) ≡ 0 and L is linear in u and
v. This is in contradiction with the assumptions XR 6≡ 0 and Y R 6≡ 0. Therefore
F ′ 6≡ 0, F ′(v) = c (v + d)−2 and G(2)(v) = δ c (v + d)−3 for some c ∈ R∗. Now,
consider the relation (2.4.74) which can be simplified into

(2.6.25)
dvK + x1

[
F (1)(V ) Rṽ + F (2)(V ) U +G(2)(V )

]
+ x2 F

(1)(V )
− v Qṽ

[
2 Rṽ F (1)(V ) + F (2)(V ) U +G(2)(V )

]
= 0 .

Multiply this expression by (V + d)3 and then take V = −d. It remains
c (δ − 2U)

(
x1 + (d+ ṽ) Qṽ

)
= 0 , c ∈ R∗ .

It means that Qṽ = −x1 (d+ ṽ)−1. Replace Qṽ accordingly at the level of (2.6.25).
Multiply the expression thus obtained by (d + ṽ)F ′(V )−1 and then take ṽ = −d
in order to obtain 2Rṽ v − 2U + δ = −2u + δ = 0 which cannot be satisfied for
all u. This is again a contradiction showing finally that the case Z ≡ 0 and f 6≡ 0
must indeed be excluded. 2

2.6.4 Discussion of the case f ≡ 0.

When f ≡ 0, the structure of the coefficients D?
∗ is simplified. It becomes easier

to understand what contains the system (2.6.11).

Lemme 2.6.8. In the case f ≡ 0, the functions k, l, and g must satisfy one of
the two distinct following restrictions:
a) We have k ≡ 0, g(1) ≡ 0 and l(1) ≡ 0 ;
b) There exists a constant Θ ∈ R∗ such that k ≡ −2 Θ, g(1) ≡ Θ and l ≡ 0.

Proof of Lemma 2.6.8. We start by looking at the condition

D0
4(u, U) = g(u)− g(U) + (U − u) g(1)(U) + (U − u)2 k(1)(U) = 0 .

Apply ∂2
uu to see that g(2) = −2 k(1) = δ̃ with δ̃ ∈ R. Then, consider the restriction

D1
2 ≡ 0 which can be rewritten

−3 k(U) g(U) + 3 k(u) g(U)
+ (U − u)

[
−2 k(U)2 + 2 k(1)(U) g(u) + k(1)(U) g(U)

+ k(u) g(1)(U) + 2 k(u) k(U)− k(U) g(1)(U)
]

+(U − u)2
[
k(u) k(1)(U)

]
= 0 .
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Apply ∂2
uu and replace U by u to deduce that g(2) ≡ δ̃ = 0. The next step is to

look at the relation D0
3 ≡ 0 which becomes

2 g(u) g(U)− 2 g(U)2 + l(u)− l(U)
+ (U − u)

[
2 g(1)(U) g(u) + 2 k(U) g(u)− 2 k(U) g(U) + l(1)(U)

]
+(U − u)2

[
− g(1)(U) k(U)− k(U)2

]
= 0 .

Apply again ∂2
uu and replace U by u. Since δ̃ = 0, we obtain by this way that

l is a polynomial function of degree at most 2, say l(u) = l2 u
2 + l1 u + l0 with

(l0, l1, l2) ∈ R3. Now, the condition D0
0 ≡ 0 says that

(2.6.26)
l(u) g(U) l(U)− g(u) l2(U)

+ (U − u) l(u)
[
l(1)(U) g(U)− l(U) g(1)(U)

]
= 0 .

Composing (2.6.26) on the left with ∂3
uuu and replacing U by u gives rise to

l(2)
[
l(1) g − l g(1)

]
≡ 0 .

At this stage, we claim that l(2) ≡ 2 l2 ≡ 0. To see why this is true, first assume
that l2 6= 0. Due to the above relation, we must have g = c l with c ∈ R. We
cannot have c ∈ R∗ because then 0 ≡ g(2) ≡ c l(2) and therefore l(2) ≡ 0 which is a
contradiction. Retain that c = 0 so that g ≡ 0. Looking at the condition D0

1 ≡ 0,
we get

l(u) l(U)− l2(U) + (U − u) l(u) l(1)(U) ≡ 0 , l(u) = l2 u
2 + l1 u+ l0

which is not possible when l2 6= 0. We must have l2 ≡ 0 and l(u) = l1 u+ l0.

Now, we can come back to (2.6.26). Apply ∂2
uu to (2.6.26) and replace U by u. It

remains l(1)
[
l(1)g − lg(1)

]
≡ 0. We claim that l(1) ≡ l1 ≡ 0. Indeed, if l1 6= 0, we

must have g = c l with c ∈ R and the condition D0
1 ≡ 0 becomes

l(u) l(U)− l(U)2 + (U − u) l(u) l(1)(U)
− (U − u)2 c k(U) l(u) l(1)(U) ≡ 0 .

Since l(2) ≡ 0, applying ∂2
uu and replacing U by u gives rise to

l(1)(u)
[
l(1)(u) + c k(u) l(u)

]
≡ 0 .

Recalling that k(1) ≡ 0, we can see that this is not possible when l(1) 6≡ 0. In other
words, the functions k and l are constants, say k = k ∈ R and l = l ∈ R. The
condition D1

1 ≡ 0 can be rewritten

2 k g(U)2 − 2 k g(u) g(U)
+ (U − u)

[
−2 k2 g(u) + 2 k2 g(U)− 2 k g(1)(U) g(u)

]
− (U − u)2

[
k2 g(1)(U)

]
≡ 0 .
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Apply ∂2
uu and replace U by u in order to extract

(2.6.27) k g(1)(u)
[
k + 2 g(1)(u)

]
≡ 0 .

Now look at the restriction D0
3 ≡ 0 which amounts to the same thing as[

2 g(u) g(U)− 2 g(U)2
]

+(U − u)
[
2 g(1)(U) g(u) + 2 k g(u)− 2 k g(U)

]
− (U − u)2

[
k g(1)(U) + k2

]
≡ 0 .

Combining this information with (2.6.27), we obtain that either g(1) ≡ 0 and
k ≡ 0, or that k ≡ −2 g(1) ≡ −2 Θ with Θ ∈ R∗. We recover here the two
situations a) and b) described in Lemma 2.6.8. In the case b), we can even obtain
more informations about l. Indeed, the condition D0

1 ≡ 0 says that

l
{
g(U)2 − g(u) g(U) + (U − u)

[
k g(U)− k g(u)− g(u) g(1)(U)

]
+2−1 (U − u)2

[
k g(1)(U)

]}
≡ 0 .

Apply ∂2
uu and replace U by u to get l

[
2 g(1)(u)2 + 3 k g(1)(u)

]
≡ − 4 lΘ2 ≡ 0. It

follows that l ≡ 0 as expected.
2

Solving the system (2.6.11) is necessary but not sufficient in order to get solutions
of (2.4.39)-(2.4.40). A direct study is still required. We start by examining the
case b) of Lemma 2.6.8.

Lemme 2.6.9. The case k ≡ −2 Θ, g(1) ≡ Θ, l ≡ 0 with Θ ∈ R∗ is excluded.

Proof of Lemma 2.6.9. Taking into account (2.6.2), we have

∂2
uvL = (Θ u+ Θ0) ∂2

vvL , ∂2
uuL = − 2 Θ v ∂2

vvL , Θ 6= 0 , Θ0 ∈ R .

To simplify the presentation, we will adopt in this paragraph the following con-
ventions A := ∂vK/∂

2
vvL and B := ∂uK/∂

2
vvL. We have to deal with

R = − q0
p0

= − A+ x1 + (Θ u+ Θ0) x2

B + (Θ u+ Θ0) x1 − 2 Θ v x2
.

We can compute

∂2R = − p2

p0
= − Θ u+ Θ0 − 2 Θ v R

p0
,

∂uR = − pu
p0

= − ∂uA+ Θ x2 + (∂uB + Θ x1) R
p0

,

and similar expressions for ∂1R and ∂vR. Briefly, the quantity Q is given by

Q =
py
px

=
∂vA+ [∂uA+ ∂vB −Θ x2] R+ [∂uB + Θ x1] R2

1 + 2 [Θ u+ Θ0] R− 2 Θ v R2
.
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Now, we can write XQ = − pQ p−1
x p−1

0 with

pQ := [∂uA+ ∂vB −Θ x2 + 2 (∂uB + Θ x1) R] px
− [2(Θ u+ Θ0)− 4 Θ v R] py .

In this context, the condition (2.4.48) becomes pu px − py p2 + pQ ≡ 0. Now, the
idea is to multiply this quantity by p3

0 and to replace everywhere p0R by −q0
in order to obtain that some polynomial function in x1 and x2 with coefficients
depending on u and v must be zero. In particular, the coefficient in factor of x4

1

must be zero. This criterion yields Θ
[
(Θ u + Θ0)2 + 2Θ v

]
≡ 0. This is not

possible due to the assumption Θ ∈ R∗.
2

2.6.5 Necessary conditions.

We can summarize what has been obtained above and in the preceding Sections
2.6.1, 2.6.3 and 2.6.4 through the following statement.

Proposition 2.6.1. When (XR) (Y R) 6≡ 0, the system (2.4.39)-(2.4.40) can be
solved if and only if ∂2

vvL 6≡ 0. Then, there are two functions f and g in C2(R; R)
such that ∂2

uuL(u, v) =
[
f(u) v + g(u)

]
∂2
vvL. Defining Z := 2 f2 − f ′, we have

either Z ≡ 0 or Z(u) = (u2 − 2 δ1 u+ δ2)−1 with (δ1, δ2) ∈ R2. In the case Z ≡ 0,
the function L is necessarily of the form (2.4.65) or (2.4.68).

Proof of Proposition 2.6.1. The first part is a repetition of Lemma 2.6.3. When
Z ≡ 0, due to Lemmas 2.6.7, 2.6.8 and 2.6.9, there are two constants b ∈ R and
c ∈ R such that ∂2

uvL− b ∂2
vvL ≡ 0 and ∂2

uuL− c ∂2
vvL ≡ 0.

The first relation indicates that
L(u, v) = G(u) + F(b u+ v) , (F,G) ∈ C2(R; R)2 , F(2) 6≡ 0 .

Plugging this expression of L in the second relation, we obtain
G(2)(u) + (b2 − c) F(2)(b u+ v) ≡ 0 .

When b2− c 6= 0, since the variables u and b u+v are independent, both functions
F(2) and G(2) must be constants and we recover (2.4.65). On the contrary, when
b2 − c = 0, there is no restriction on F (apart from F(2) 6≡ 0) but the function G
must be linear in u. It follows that L(u, v) can be put in the form (2.4.68).

2
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