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Introduction

Les équations de I’écoulement d’un fluide parfait incompressible remontent
aux travaux d’Euler (1707-1783). A supposer que le fluide est isolé et s’écoule
dans un espace R? avec d > 1, ces équations s’écrivent

(0.0.1) ou+ (u-Vu+Vp =0, divu=0.

Ici v € R? et p € R représentent respectivement la vitesse et la pression du
fluide. On complete (0.0.1) en fixant les valeurs de w a I'instant initial

(0.0.2) u(0,2) = up(x) .

La théorie d’existence et d'unicité pour le probleme de Cauchy (0.0.1)-(0.0.2)
associé a une condition initiale ug(z) réguliére est maintenant bien établie
[3, 19, 21]. En revanche, de nombreuses questions restent ouvertes en ce
qui concerne les phénomenes susceptibles de se produire lorsque la régularité
de ug se dégrade. L’objectif de ce document est précisément d’apporter un
éclairage sur ces aspects.

Une perte d’informations sur la régularité de uy peut se modéliser par une
explosion de la norme L*° de certaines dérivées de uy. Cela se produit en
particulier lorsque l'expression ug se met a varier rapidement, disons sur
des longueurs de taille € avec £ €0, 1] qui tend vers 0, dans les directions
transverses a un feuilletage prescrit de R%. On a alors affaire & une famille de
conditions initiales u§ pouvant étre représentée sous la forme d’une oscillation
monophase. On a typiquement

(0.0.3) w(z) = hE(z) = H(m@) e €10,1]

pour une phase ¢ € C?(R%R) et un profil He(z,0) € C?(R? x T;RY) qui
dépend de la variable lente z choisie dans ’espace physique R? et de la
variable rapide  décrivant le tore T := R/Z. On note H := H° le profil
principal que 'on suppose non trivial au sens ou JyH % 0. On dit alors de
loscillation ug qu’elle est de grande amplitude.
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En I’absence d’hypotheses supplémentaires, le probleme de Cauchy oscillant
(0.0.1)-(0.0.3) est réputé mal posé [24]. Une part des difficultés [9] provient
de la fagon dont les oscillations sont gérées par la contrainte de divergence
nulle. Dans ce qui suit, on s’intéresse au cas de données initiales h® dont la
matrice Jacobienne D, h® est nilpotente. Plus précisément, on suppose qu’il
existe un entier r € {2,--- ,d} tel que

(0.0.4) D,he(x)" =0,  V(ez)€]0,1] x R?.

Le Théoréme 2.6 énoncé dans [6] garantit alors qu'il suffit de résoudre le
systeme dit des gaz sans pression [12, 14, 22], a savoir

0

(0.0.5) ot + (u - V)u©

en vue de récupérer des solutions u® de (0.0.1). C’est ce point de vue qui
sera adopté. Avant toute chose, la question se pose de savoir s’il est possible
de construire des familles {h}. vérifiant simultanément les deux contraintes
(0.0.3) et (0.0.4). Il s’agit la d’'un probleme d’optique géométrique assez
atypique, posé dans un contexte non encore répertorié, et qui ne se ramene
pas a des situations connues.

Le systeme d’équations aux dérivées partielles (0.0.4) contient 1’équation de
Monge-Ampere "det D, h%(x) = 0” ainsi que d’autres contraintes. Il présente
un caractere non linéaire évident. Sa complexité fait que, a ’exception de
quelques cas tres spécifiques signalés dans [6], son étude générale sous couvert
de (0.0.3) n’a pas encore été complétement traitée.

Une fois les structures des fonctions h° identifiées, on souhaiterait déterminer
la fagon dont elles se trouvent propagées via ’équation d’évolution (0.0.5).
Le régime envisagé étant sur-critique [8, 11, 15], de violentes instabilités sont
susceptibles de survenir.

En particulier, pour d = 3, lorsque le profil H¢(z, §) incorpore des oscillations
dans des directions Vi)(z) qui sont transverses a V(z), il peut se produire
une superposition d’oscillations. En I'occurrence, la phase 1 se met a osciller
selon ¢ & la fréquence €1, 1l s’ensuit que les dérivés de u° & un instant ¢ > 0
sont de taille €72 alors qu’elles sont en ¢! & l'instant initial ¢t = 0.

Ainsi, le passage de t = 0 a tout instant ¢ > 0 s’accompagne d’un changement
qualitatif brutal dans le comportement asymptotique de la famille {u°}..
Cette monté instantanée vers les hautes fréquences traduit une complexité
soudainement croissante des mouvements du fluide, renvoyant (pour e — 0) a
I'image de ce que seraient les turbulences. La justification de tels phénomenes
a déja été entreprise dans [5], mais ¢’était en dehors du contexte de divergence
nulle considéré ici, qui complique beaucoup la discussion.



Au dela de ces motivations physiques, 'objectif de cette these est surtout
de fournir une analyse BKW complete de (0.0.4) dans le cadre fourni par
(0.0.3). Ce faisant, on aura besoin de dégager les structures géométriques
(feuilletages) qui s’averent génériquement compatibles avec la propagation
d’oscillations de grande amplitude.

Les deux paragraphes qui suivent font un bref descriptif des résultats qui
sont obtenus dans ce mémoire de these.

0.1 Reésumé de la premiere partie.

La partie 1 fait I'objet d’'un article déja publié [7]. La discussion porte au
départ sur un systeme qui généralise quelque peu (0.0.5). Etant donnée une
fonction V € C*(R% R?), on y considere les équations

(0.1.1) o+ (Vou -V,)u =0, e €]0,1], deN, d>2.

On complete (0.1.1) a 'aide d’une famille de données initiales {uf}. ajustée
comme en (0.0.3). On fixe > 0 et on travaille sur des domaines localisés en
espace, du type

QF = {(t,x) €[0,T)xR%:  |a|+tV <r}, (V,T,r)e R})>.

On pose W := V o H. On suppose que les ingrédients V, H¢ et ¢ sont des
fonctions régulieres, disons de classe C'. On impose de plus 9W # 0 et le
caractere non stationnaire de la phase

(0.1.2) Vo(r) #0, VYzeQl.

La contrainte (0.1.1) forme un systeme hyperbolique quasilinéaire qui admet
une vitesse de propagation finie controlée par

V= Sup {| VoH(2,0) |5 (2,2,0) € [0,1] x 2 x T} |

Le parametre € €0, 1] étant fixé, des résultats standards [20] garantissent
I'existence de T¢ > 0 tel que le probleme de Cauchy (0.1.1)-(0.0.3) ait une
solution u# (¢, ) de classe C! sur QI°. Par contre, on a généralement
(0.1.3) lims&lp T° = 0.

e—

Les obstructions viennent de la formation éventuelle de chocs. Notant
Xe(ta) = + 1 WE(:C,M) . W=Vl
€

le croisement des droites (dites caractéristiques) {X*(¢,z), t € R, } peut en
effet venir contredire la persistence de la régularité C! de u®. La définition
1.2.1 qui suit met de coté les situations pour lesquelles cela ne se produit pas.



Définition 0.1.1. La famille {h°}_ est dite compatible s’il existe un instant
T > 0 et une constante ¢ > 0 tels que

(0.1.4) det D, X*(t,z) > c>0, VY(tz,¢)€[0,T] x Q22x]0,1].

I1 est possible de traduire le critere (0.1.4) sous la forme des conditions
nécessaires et suffisantes contenues dans (1.2.13), portant sur le couple (¢, W).
C’est ce qui est fait au niveau de la Proposition 1.2.3. Toutefois, la contrainte
(1.2.13) se prete difficilement & une étude complete. C’est pourquoi, dans
une premiere approche, on a eu recours a des conditions plus restrictives (qui
restent cependant intrinseques) sous la forme de la notion suivante.

Définition 0.1.2. Le couples (p, W) € C?(Q%R) x C1(Q° x T;R?) est dit

bien préparé s’il satisfait le systéme de contraintes suivant

%W(w, 9) C VQOJ'

0.1.5 ;o V(2,0 e Q0% T
( ) { H@gW(x,G)J- DJW(J:7 0) HV(p(x)J- =0 ( )

ou I, désigne le projecteur orthogonal dans la direction u € R,

Le chapitre 1.3 est consacré a la discussion du systéme non linéaire (0.1.5).
Cela requiert en premier lieu la succession des Lemmes 1.3.1, 1.3.2 et 1.3.3
en vue de mettre en valeur les conditions satisfaites par la phase ¢. Celle-ci
doit étre localement constante suivant un champ d’espaces vectoriels noté [E.
Une fois la structure de ¢ dégagée, il devient possible d’identifier celle du
profil W via un travail de factorisation, voir la Proposition 1.3.1.

La partie 1.4 aborde le probleme de 1’évolution en temps. Par construction,
on sait que toute famille {h°}. issue d’un couple (¢, W) bien préparé donne
lieu a l'existence d’une suite {u®}, composée de solutions de (0.1.1) sur un
domaine Q7 indépendant de £ €]0,1]. On peut méme établir la propagation
de (0.1.5) au travers de (0.1.1).

Théoréme 1. On se donne un couple (¢, W) bien préparé. Alors, le probléme
de Cauchy formé par le systéeme (a priori surdéterminé)

OH+VoH -V, H=0,
(0.1.6) 0P+ (VoH) -V, ® =0,
VoH* -V, =0,
associé a la donnée initiale
(0.1.7) H(0,2,0) = H(z,0),  0(0,2) = p(x)
admet une solution unique sur QX x T pour un certain T > 0. L’onde simple

u(t,x) == H(t,z,®(t,x)/e) ainsi récupérée est solution de (0.1.1) sur Q.
De plus, pour tout t € [0,T], la trace (®(t,.), H(t,.)) vérifie (0.1.5).



0.2 Résumé de la second partie.

La seconde partie est consacrée uniquement a (0.0.5) dans le seul cas de la
dimension trois (d = 3). Il s’agit cette fois-ci d’aboutir a une discussion
aussi complete que possible de ce que contient le systeme (0.0.3)-(0.0.4). La
prise en compte des situations non encore traitées dans la Partie 1 s’avere en
fait délicate. Elle fournit sa matiere aux longs développements de la Partie
2 et requiert une analyse fine qui, comme on le verra, est en lien avec des
questions de géométrie.

Le probleme en question admet a premiere vue une formulation simple. On
cherche toutes les familles {h°}_ impliquant des données initiales h® qui se
mettent sous la forme

(0.2.1) he(z) = w(x, @) . Buw#0,  V(eax) €], x Q0
pour une phase ¢ non stationnaire, et vérifiant
(0.2.2) (Dh°(z))" =0, ref{2,3}, V(z,e) €Qx]0,1].

On peut formaliser cette double propriété (0.2.1)-(0.2.2) au niveau du couple
(¢, w) suivant la définition suivante.

Définition 0.2.1. Soit p € CH(Q%LR) et w € CH QY x T;R?) tels que
(0.2.3) Opw(z,0) # 0, V(z) # 0.

Le couple (p,w) est dit compatible sur le domaine Q2 si la famille {h®}_ qui
est construite a partir de (p,w) via (0.2.1) vérifie (0.2.2).

Une étape préliminaire (Proposition 2.2.1) consiste a identifier via des calculs
formels les conditions a imposer sur ¢ et w. Lorsque

rg(Dyw(z,0)) = dim(Im(Dyw)(z,0)) = 1, V(2,0) € Q¥ x T,
on peut écrire w sous la forme
w(z,0) = W (¢(z,0),0), V(x,0) € Q2 x T

puis extraire le systeme d’équations (2.2.8)-(2.2.10)-(2.2.9) portant sur les
ingrédients que sont ¢, ¥ et W (voir le Lemme 2.2.1). Il devient alors assez
facile de conclure.

En revanche, sous I'hypothese

rg(Dyw(z,0)) = dim(Im(Dyw)(z,0)) = 2, V(z,0) € Q0 x T,



le travail de factorisation de la fonction w s’avere plus compliqué. 11 faut la
Proposition 2.2.2 pour établir qu’on peut obtenir

w(z,0) = W (p(z),¥(x,0),0), V(z,0) € Q0 x T

tandis que la Proposition 2.2.3 met en valeur les contraintes (2.2.17), (2.2.18),
(2.2.19) et (2.2.20) qu’il convient de retenir en ce qui concerne ¢, 1) et W. Ces
deux derniers énoncés 2.2.2 et 2.2.3 sont prouvés respectivement au niveau
des chapitres 2.2.2 et 2.2.3.

On remarque alors que 'annulation ou non de la quantité Vo - 9, W joue
un role intrinseque, au sens ou elle n’est pas modifiée par les changements
d’inconnues naturellement autorisés. On distingue donc deux situations, celle
correspondant a Vo - 9, W = 0, et celle pour laquelle Vy - 0, W # 0.

Lorsque V-0, W = 0, on retrouve des structures similaires a celles observées
dans la Partie 1. Par exemple, il existe deux fonctions f et g donnant lieu a

Pour autant, en vue d’aboutir a une description complete de ce cas, il convient
d’incorporer quelques aspects inédits (en comparaison de la Partie 1).

Le traitement de I'autre situation, lorsque Vo - 9, W # 0, réclame une tout
autre démarche qui occupe l’essentiel de ce qui suit. Le point de départ est
fourni par le systeme de contraintes du Lemme 2.4.1. Il s’agit maintenant de
trouver des fonctions ¢, ¥ et W non triviales dans le sens ou

VoAV £ 0, 0, W ANOyW # 0, Opw # 0
et ajustées de maniere a ce qu'il existe une fonction k(x, ) telle que

( Vgo-(?gw:O,
VQ/J'@@U) = O,

Vo (0,W —kOyW) =0,
Vi - (&K,W—k&wW) =0,
(kVo+Vy)-0,W =0,
(kVo+Vy)-0,W = 0.

(0.2.4)

\

Un travail de reformulation mené au Paragraphe 2.4.1.1 (voir la Proposition
2.4.1) permet dans un premier temps de remplacer (0.2.4) par

O1p + 0,L(¢Y,v) D30 + % (020 + 0 L(1h,v) B3] = 0,
(025) 811D + &Jﬂ(w, U) (932/1 + ((?;TIQ/J} [azw + 8¢£(1p, ’U) 631/}] =0 s

81w + 8v£(w; 'U) 83w — gj—;/}/_ 8§0V [81(,0 + &,S(z/}, U) 83()0] = 0.




Quelques précisions sont nécessaires pour la lecture de (0.2.5). Il faut dire
que les expressions 9V et 0,V sont évaluées au point (gp(m), (x,0), 9), que
la fonction £ induit de la non linéarité, et que le symbole v désigne

v(z,0) = V(p(x),9(z,0),0).

Bien que déja pas mal décanté, le systeme (0.2.5) n’est pas pour autant
directement exploitable. Il faut encore effectuer plusieurs changements de
variables (voir le Paragraphe 2.4.1.2) afin d’isoler la clé sur laquelle repose
I’ensemble de I’édifice.

Les systemes (0.2.4) et (0.2.5) sont tout a fait spécifiques a la problématique
qui a été mise en place. Visiblement, ils n’ont jamais été étudiés. Du coup,
la méthode employée pour les résoudre est completement originale. Elle ne
s’appuie pas du tout sur une approche classique en optique géométrique.

La stratégie, a prior:i peu naturelle mais a fortior: incontournable, consiste a
éclater la phase ¢(z) en une fonction ®(xy, z2,u,v) qui au lieu de dépendre
des trois variables 1, 9 et 3 met en jeu quatre variables notées x, x2, u
et v. On passe de R? & R*. L’expression ® ainsi obtenue doit vérifier deux
équations de transport dans R*, en 'occurrence

(0.2.6) Xd =0, X = O + R(x1,x9,u,v) Oy ,
(0.2.7) YP=0, Y = R(z1,29,u,v) Oy + 0, .

Intuitivement, la premiere contrainte (0.2.6) peut étre assimilée a la condition
Jpp = 0. Elle est destinée a faire en sorte que la non linéarité n’induise pas
une auto-oscillation de la phase ¢ : on veut que la fonction ¢ ne se mette pas
a dépendre de 6 ce qui ne va pas de soi compte tenu de la force des effets non
linéaires en présence. Quant a la seconde restriction (0.2.7), elle provient de
(0.2.2) a l'issu du long travail de ré-interprétation qui a été effectué.

Le point crucial maintenant, c’est que toute fonction & compatible avec
(0.2.6) et (0.2.7) doit aussi vérifier Z® = 0 pour tout champ de vecteurs
Z appartenant a l'algebre de Poisson A engendrée par X et Y. Comme la
construction impose que le gradient de ¢ (et donc de ®) soit non trivial, il
faut nécessairement que la dimension de A soit inférieure ou égale a 3. Ce
critere induit le systeme d’équations aux dérivées partielles (2.4.38) dans le
cas dim A = 2. Par contre, lorsque dim A = 3, on doit gérer :

(0.2.8) (XR)YXR—-2(XR)XYR+ (YR) X?R = 0,
(0.2.9) (YR) XYR—-2(YR)YXR+ (XR)Y’R = 0.

Par ailleurs, la fonction R étant issue du procédé de réduction, elle doit étre
soumise aux contraintes attenantes. Plus précisément, on doit avoir

R(:Bl, To, u(z,v), v) = Jyu(x,v)
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pour une certaine fonction u(z,v) € C}(R;R) qui est astreinte a la double loi
de conservation scalaire

(0.2.10) Ou + 0,L(u,v) dsu = 0, ou + 0,L(u,v) d3u = 0.

Le chapitre 2.4.3 montre que toute fonction R obtenue par un tel procédé
s’écrit sous la forme
Oyx

o,

(0211) R =

a = Ru,v) + 0,L(u,v) x1 + 0, L(u,v) 9

olt & et £ sont deux fonctions quelconques prises dans C'(R?* R). Arrivé a
ce stade, 'enjeu consiste a pouvoir résoudre (0.2.8)-(0.2.9) en s’appuyant sur
la liberté dont on dispose quant au choix des fonctions K et £. Autrement
dit, il s’agit de tester les conditions d’intégrabilité (0.2.8) et (0.2.9) dans le
contexte offert par (0.2.11).

Ce programme est ce qui fournit la matiere du chapitre 2.4.4. Les différentes
situations possibles sont triées selon la dimension de l'algebre A (c’est a
dire 2 ou 3) puis, plus finement, selon 'annulation ou non des quantités
X R ou YR. On obtient ainsi une une classification (presque exhaustive) de
tous les coefficients R autorisés. Vient ensuite un travail de reconstruction
permettant de remonter de la connaissance de R a l'identification de ¢, 9
et W. C’est ce qui est fait au niveau du chapitre 2.4.5. Quelques exemples
venant illustrer la facon dont la procédure peut se concrétiser sont apportés
a I'occasion du chapitre 2.4.6.

Le chapitre 2.5 est consacré au probleme de ’évolution en temps. Il met en
oeuvre les objets p, ¥ et W extraits ci-dessus de la maniere suivante.

Théoréme 2. [ existe un instant T' > 0 tel que le systeme suivant (qui a
priori est surdéterminé)

0@+ (W(2,0,6)- V) =0,
(0.2.12) OV + (W(P,V,0)-V)¥ =0,
(OeW (P, U, 0) + O WO, W (P, ¥,0)) - VO =0,

associé aux données initiales ®(0,z) = p(z) et V(0,x,0) = ¥(z,0) admette
une unique solution sur QL x T. Pour tout ¢ € 10, 1], loscillation

O(t O(t
u(t,z) = W<<I>(t,x), U(t,z, (g’x)), (g’x)) , e €]0,1]
est solution de (0.0.1) et (0.0.5) sur QOF x T. De plus, pour tout t € [0,T]
le couple (®(t,.), W(t,.)) ot W(t,z,0) = W(D(t,z),U(t,x,0),0) est encore
compatible sur le domaine B(0,r —tV[xT.
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Le paragraphe 2.5.2 revient sur le phénomene de superposition des phases
qui a été évoqué précédemment, en vue de l'illustrer au travers d’un exemple
concret. Tout compte fait, son apparition apparait comme un sous-produit
assez anecdotique de I'analyse.

Il y a aussi une annexe qui se positionne comme suit. La Proposition 2.4.4
traite du probleme soulevé par 'étude du systeme (0.2.8)-(0.2.9) complété
de (0.2.11), ceci dans le cas le plus complexe a savoir lorsque dim A = 3,
XR # 0 et YR # 0. Pour simplifier la présentation, I’énoncé 2.4.4 fournit
directement des formules possibles pour K et £, puis se contente de vérifier
qu’elles conviennent. Montrer que la liste ainsi obtenue est exhaustive est
loin d’étre facile. Ce seul point réclame les raisonnements subtils et les lourds
calculs placés en Appendice 2.6.
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Chapter 1

Compatibility conditions to
allow some large amplitude
WKB analysis for Burger’s
type systems.

Abstract. In this article, we discuss the problem of finding large amplitude
asymptotic expansions for monophase oscillating solutions of the following multi-
dimensional (d > 1) Burger’s type system

(&)  u+ (Vou-Vy)u =0, ueckR?, (t,2)cRxRY, VeCY(RLRY).

More precisely, we are concerned with families {u®}.¢19,1) made of solutions to (<)
and having a development of the form u®(¢,z) = H(t, z, (D(t’m)) + O(e) where the

function § — H(t, z,0) is periodic. In general, due to thz‘ formation of shocks,
such a construction is not possible on a domain 2 which does not depend on
e €]0,1]. In this article, we perform a detailed analysis of the restrictions to im-
pose on the profile H and on the phase ® in order to remedy this. Among these
compatibility conditions, we can isolate some new interesting system of nonlinear
partial differential equations : see (1.1.11). We explain how to solve it and we de-

scribe how the underlying structure is propagated through the evolution equation.

14
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1.1 Introduction.

Note z = (21, - - ,2q4) € R? and
d
|z| - (; xj) , 0j : oz, Op : 50"

Let (T, V,r) € (R%)3. Work on the domain
Qf == {(t,z) € [0,T) xRY; |z|+VE<r}, de N\ {0,1}.
Select a function V € C'(R%;R%) and consider the Burger’s type system

(1.1.1) ou+ (Vou-Vy)u=0, ueR?, (tz)eql.

Associate (1.1.1) with a family of initial datas
(1.1.2) u®(0,z) = h®(x) = H(:U,SO(;;)) + O(e), e €10,1]

defined on the ball B(0,7] := {z € R?; |z| < r}, built with
H(z,0) € C1(B(0,r] x T;RY), o(x) € CY(B(0,r];R), T :=R/Z

and consisting of large amplitude high frequency monophase oscillating waves,
which means to require a non trivial (main) profile

(1.1.3) d(x,0) € B(0,r] x T; OpgW (z,0) #0, W :=VoH
and a non stationary phase
(1.1.4) Vae(x) # 0, Va e B(0,r].

To describe more precisely the expressions involved in (1.1.2) , select a function

H :[0,1] x B(0,r] x T — R4
(e,z,0) — H%(x,0)

which is smooth with respect to the parameter € € [0, 1]
H € C>=([0,1];C*(B(0,7] x T;R%))

and whose Taylor expansion near € = ( is noted

(1.1.5) H®(x,0) := H(x,0) + i e Hi(x,0) + O(e™), m e N*.
j=1

Define :

(1.1.6) he(x) == He(z, ‘P(x)), We(z,0) == Vo H(z,0).
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Associate (1.1.1) with the family of initial datas {h®}.¢)9,1)- The evolution equation
(1.1.1) is a quasilinear (diagonal) system of hyperbolic equations. The speed of
propagation is finite. More precisely, it can be uniformly controlled by

R >V := {sup |VoH(z0)|; (c,2,0) €[0,1] x B(0,r] x T }.

Standard results [20] guarantee the existence of 7° > 0 such that the Cauchy
problem (1.1.1)-(1.1.2) has a local C! solution u®(t,x) on the truncated cone Q7".
In the context of (1.1.1) , the limitations on T are due to the formation of shocks.
The size of T° can be estimated very precisely [1, 5, 22] in terms of h°. In general,
this yields

(1.1.7) limsup 7° = 0.

e—0

In this article, we exhibit solutions u® on a fixed domain Q7 (with 7' > 0) having
the asymptotic description

O(t,x)

(1.1.8) u®(t,z) = H(t,z, ) +O0(e), e€]o,1].

The main novelty in comparison with usual works [18] in WKB analysis is the size
of the involved oscillations. Indeed, in a quasilinear context such as (1.1.1), the
standard regime is given by weakly nonlinear geometric optics [16] which means to
consider expansions of the following form

(1.1.9) u®(t,z) = u(t,z) + ¢ H'(t,z, <I>(t€, x)) + O(e), €€]0,1].

Of course, to deal with (1.1.8) in place of (1.1.9) requires to manage much stronger
nonlinear phenomena. In particular, the interplay between the phase ® and the
profile H is reinforced.

In fact, the construction can be faced only if the expressions ¢ = ®;_g and
H :=H|;— satisty very special restrictions. The corresponding constraints in the
case of the dimension d = 2 are brought out in the recent contribution [5]. The
aim of the present paper is precisely to generalize the discussion when d > 2 and
to study more deeply the structure to impose on ¢ and H.

e In the Section 2, we exhibit (Proposition 1.2.2) necessary and sufficient com-
patibility conditions on ¢(z) and W(x,0) := V o H(x,0) in order to guarantee
that

(1.1.10) liminf 7° = T >0.
E —

From these compatibility conditions, we can isolate some interesting system of
nonlinear partial differential equations which we introduce below.

Let u =*(uy,--- ,ug) € R% Note ut or ‘ut the hyperplane of R? composed with
the directions orthogonal to the vector u, that is
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1

ul = tut

ut = {v="(vy, - ,vq) €RY; tv-u:Z;l:1 viu;=0}.
Consider the orthogonal projector IIx from R? onto the vector space F, that is
the operator IIr defined by the conditions

u=1I0Hpu+ (I —1IIp)u, HruckF, (I —Tlp)ue Ft.
Select W € CY(B(0,r] x T;RY). The symbol D, W (z,0) is for the Jacobian matrix

D;EW(.%,H) = (@-Wi(x, 9))1§i,j§d’ W(a;, 9) = t(Wl, cee ,Wd) .

Définition 1.1.1. The couple
(0, W) € C*(B(0,7];R) x C*(B(0,7] x T;RY)

is said to be well prepared if it satisfies the following system

{ W (x,0) C Vp(x )J‘

1.1.11 ,
( ) HagW(a: 0)+ DIW(JZ 9) chp( )L =0

V(z,0) € B(0,r] x T.

As explained before, the study of (1.1.11) is the main motivation of the present
article. Indeed, the structure of (1.1.11) is new and interesting. It is not a usual
quasilinear system because it is made of fully nonlinear constraints on the deriva-
tives 0;W;, OgW; and 0;p. It extends to the case d > 3 preliminary conditions
which have been emphasized (only when d = 2) in the recent contribution [5].

e In the Section 3, we work under natural assumptions on ¢ and W. In this
framework, we succeed in classifying all the solutions of (1.1.11). The fact that such
a complete discussion is available is very surprising. At all events, this confirms
the coherence of (1.1.11).

The first observation is that any phase ¢ involved in (1.1.11) inherits some affine
structure. Its level surfaces must be spanned by pieces of vector spaces (see Lem-
mas 1.3.2 and 1.3.3). This geometrical particularity seems to always play an im-
portant part when dealing with phase involved in a supercritical WKB calculus, as
here. Once ¢ is determined, it becomes possible to identify all the profiles W (x, 6)
which are subjected to (1.1.11). This is done in Proposition 1.3.1. Quite a lot
freedom is available in the construction of W(z, 6).

The function W (z, ) can be put in the form
W(x,0) = W (gp(x),l/)(a:,ﬁ)) + WJ_(go(x))

where W) € C*(R? R9) and W | € CY(R;RY) are conveniently well-polarized vector
fields whereas ¢ € C1(B(0,7] x T;R) is any scalar function. Define

(Wh(x) = / W(z,0) W*(x,0) = W(z,0) — W(x).

The construction of large amplitude oscillating solutions to system (1.1.1) - or to
variants of system (1.1.1) - is a delicate problem which has recently called some
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attention. The article [14] and the related contributions are mainly concerned with
time oscillations. In the continuity of the works [1, 10, 5], we are faced here with
the case of spatial oscillations.

According to Section 2, any family {h°}. € C'(B(0, r];Rd)]O’H issued from a well
prepared couple (¢, W) leads to a family {u®}. which is composed with C ! solutions

u® of (1.1.1) on QOT. Now, the question is to determine the asymptotic behaviour of
{u®}; when ¢ goes to 0. In particular, we want to understand how the constraint
(1.1.11) is propagated through the evolution equation (1.1.1).

e Fxplanations are given in the Section 4. They can be obtained just by looking
at the simple wave solutions of (1.1.1).
Théoréme 3. Suppose that the couple

(v, W) € C*(B(0,7];R) x CY(B(0,r] x T;RY), W :=VoH

is well prepared. Then, the Cauchy problem consisting in the (apparently overde-
termined) system

O0H+ VoH -V,H =0,

(1.1.12) o0® + (VoH) -V, ® =0,
(VoH)* -V, ® =0,

associated with the initial datas

(1.1.13) H(0,z,0) = H(x,0), ®(0,2) = p(x)

has a unique solution on QT x T for some T > 0. For all ¢ €]0,1], the simple

wave u®(t,z) = H(t,z, @) is a solution of (1.1.1) on Q. Moreover, for all

t € [0,T7], the trace (<I>(t, ), H(t, )) is still subjected to (1.1.11).

At the time ¢ = 0, it is also possible to take into account (small) perturbations of

H (;13, @) For instance, we can select

he(z) = He (2, 22) | £€lo,1]

13

where H¢(z,0) is like in (1.1.5). Again, the discussion of the Section 2 indicates
that corresponding C' solutions u®(t,z) of (1.1.1) are still available on Q7. When
e goes to 0, the expression u®(¢,z) remains close (in a convenient sense) to the
simple wave H(t, x, @) This result can be proved by adapting and extending

the method presented in [5]. The related analysis will not be developed here.

1.2 Analysis of the compatibility conditions

Introduce the curves ¢t — (X(t;x, A), A(t; z, )\)) associated with the integration
of (1.1.1) along the characteristics. They are defined by the ordinary differential
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equations

dx=V(), XO0z,\=uz,
(1.2.1)
%AzO, AO;z,N\) = A.

The corresponding solutions are

(1.2.2) X(tz,\) =z +tV(N), A(t;z,N) = A
Define
(123)  X(t,z) = X(ta,h°(z)) = o + t We(a, @(;”)), We = VoHE.

Any smooth C! solution of (1.1.1)-(1.1.2) must be subjected to the relation
(1.2.4) u® (¢, X5(t,2)) = u(t,z+t Voh'(z)) = h*(z).

Fix £ €]0,1]. For t small enough, say for ¢ € [O,TE] with T¢ > 0, the implicit
theorem guarantees that the application
X¢ : B(0,r] — X°(¢,B(0,7])
x — X¢(t,x)
is a C! diffeomorphism. Then, due to the definition of the maximal speed of

propagation V, any point (¢, z) contained in Q7" is sure to be realized as (t,z) =
(t,X?(t,y)) for some unique y € B(0,r]. We can define

(1.2.5) w(t,z) = hTo (X)) Yz), (L) el

which yields a C! solution on Q7% of the Cauchy problem (1.1.1)-(1.1.2). The
relation (1.2.5) implies that

(1.2.6) D,uf(t,z) := D,hf o (X§) () Co [D,X(¢,2)] / det D,X°(¢, )

where Co [M] stands for the co-matrix of M. We have
(1.2.7)
DX (t,2) = et t 9pWe (, 22) @ V()
+1 4+t DWe (2, 22) ) We = VoH"

£

where we adopt the following convention
u®v—(uivj)1§i7j§d, u = (Ul,"',ud)a v = (UI,"',Ud).

Classical results - see for instance [20] - assert that a C! solution u®(¢,z) on QF
can be extended in time as long as the matrix Dyu®(¢,z) is bounded. In view of
the formula (1.2.6), to recover a C! solution u®(t,z) on QT it is necessary and
sufficient to have
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det D, X¢(t,z) > 0, V(t,z) e QT

Therefore, the life span of a C! solution on a domain of propagation is bounded
below by

T¢ :=sup {T > 0; det D,X*(t,z) >0, V(t,z) € [0,T] x B(0,r[}.

In general, due to the presence in (1.2.7) of the (singular) term with e~! in factor,
only (1.1.7) can be asserted. Now, the opposite situation is still possible providing
that the family {h®}. is conveniently adjusted. This situation is distinguished
below.

Définition 1.2.1. - see (1.1.6) and (1.2.3) for the definitions of h® and X° - The
family {h®}. is said to be compatible if there exists T > 0 and ¢ > 0 such that

(1.2.8) det D, X*(t,z) > ¢ > 0, Y (t,z,e) € [0,T] x B(0,r]x]0,1].
The preceding discussion can be summarized by the following statement.

Proposition 1.2.1. - see (1.1.6) for the definition of h® - Suppose that the family
{h®}c is compatible. Then, for all € €]0,1], the expression u®(t,z) defined through
(1.2.5) is a C' solution on QT of the Cauchy problem (1.1.1)-(1.1.2).

Our aim now is to transcribe (1.2.8) in terms of constraints to impose on ¢(z) and
W (x,#). To this end, introduce

(1.2.9) V= {(2,0) € B0,r] xT; 0pW(z,0)#0}, W :=VoH.
We assume (1.1.3) , that is V # 0.

Proposition 1.2.2. - see (1.1.6) for the definitions of h® and W€ - The family
{h®}c can be compatible only if :

(1.2.10) N(x) - OgW(z,0) = 0, v (z,0) € B(0,r] x T

where we recall that

W(z,0) = Wow,0) = VoH(x,0).

Proof. The reasoning is based on the identity (1.2.7) which can be formulated as
e DX(t,x) = MO(t,2, 22) 4 e M (t,2, 29) 1 &2 ¢ R (t, 2, £2))
where

MO(t,x,0) := t OpW (z,0) @ 'V(z),
MY (t,z,0) =1+ t D;W(,0) + t 0p[DuV (H(z,0))H'(z,0)] @ 'V(z),



CHAPTER 1. COMPATIBILITY CONDITIONS 21

whereas the matrix R°(¢,z, ) is a continuous function of the variables (e, ¢, z,6) €
[0,1] x R x B(0,7] x T. Assume that the restriction (1.2.8) is satisfied for some
T > 0 and some ¢ > 0. We start by showing

(1.2.11) No(x) - 0pgW(x,0) >0,  V(x,0)€V.

To this end, we argue by contradiction. We suppose that we can find a point
(z,0) € V such that

(1.2.12) o(z) 0gW(z,0) < 0.

This information allows to express the matrices M°(t,z,0) and M_1 (t,7,0) in a
basis of R? having the form (ey,es,- - ,ed) where e; := 9pW(Z,0) and where
(e2,-++ ,eq) is a basis of Vip(z)*.

In this special basis, the matrices M? and M look like

t'WVeo-0gW 0 ... 0 mil mid
MO_ 0 0 st 0 Ml_ m21 o m2d
0 0 0 mb mb,

It follows that

det D,X(t,z) = e~ det |MO(t,7, ‘p(x)) +e M (t, 7, ‘p(x)) L0
(

with . .
mag Maq
M° = M°(t,z,0) = : :
1 1
md2 . mdd

When t = 0, we have M'(0,z,0) = I so that Mb~: Ipa—1 and det M° = 1. By
continuity, for ¢ small enough (say ¢ € [0,7] with 7' > 0), it remains
det M*(t,7,28)) > 1 v (te) e [0,7]x]0,1].
Choose t €]0,7] and a sequence {e,,}, €]0,1]N tending to 0 and such that
VneN, 3k,eZ; @) = en (0+2knm).
Then, by construction, we have

3CeR;  det D,X(t,7) < 5 'Vo(z) - 9pW(z,0) + C, VYneN.

For n large enough, the right hand side becomes negative. This is not compatible
with (1.2.8). This means that the case (1.2.12) must be excluded. Now, because
the function 6 — W (z, ) is periodic, we have

1
/0 No(x) - 0gW(x,0) df = 'Vo(x) - W(x,1) - Ve(z) - W(z,0) = 0.
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Combining this with (1.2.11), we see that the restriction (1.2.10) is necessary.
a

Below, up to the end of the proof of Proposition 1.2.3, we select (x,6) € V such
that ‘Vp(x) - 99W (z,0) = 0. Introduce the notations

€ = 69W(l’,9), €d = tvw(x), tél ceqg = 0.

We can complete é; and €4 into some orthonormal basis (€1,€2,- - ,€4-1,€q) of
RY. In this special basis, the matrix I + ¢ D, W (x,6) looks like :
~1 ~1 =1
My e Mgy Mg
~ 1 ~ ~
Mgy .. Moy 1y Mayy
1+t D,W(x,0) = 26D
~ 1 ~ 1 ' ~
Mgy Ma@a—1) ™dd

We can extract the (d — 1) x (d — 1) matrix :

1 1
TTL21 o mz(dil)

L(t,x,0) =
=1 ~1
Mgy e Mgy
Observe that £ is the realisation (in some specific basis) of the linear application :

L:Vo(x)r — 9W(x,0)*
u — Ty wer I+t DW(x,0)) u.

Proposition 1.2.3. The family {h®}. can be compatible only if there is T > 0
such that for all t € [0,T], we have :

(1.2.13) (=1)% det L(t,x,6) > 0.

Proof. Assume again that the restriction (1.2.8) is satisfied for some 7" > 0 and
some ¢ > 0. We already know that (1.2.10) is verified. In the basis (€1, - ,é4) of
R?, the matrices M? and M! take the form

0 --- 0 t|Vy? mil m%d
o0 0o | m
0 - 0 0 ml, ... oml,

It follows that
det DX (t,2) = e (—1)4 ¢ [V(x)]® det M* (1,2, 22)
1+t g5 (t,z, 22)

with
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mb . mbg
M(t,z,0) = : : = Hoywwor M' Myt

1 1
Mgy - Mggy)

whereas the scalar application g°(¢, z, 0) is a continuous function of all the variables
(e,t,z,0) € [0,1] x R x B(0,7] x T. Observe that

[u®'Vep(z)] v =0, V(u,v) € R? x Vo(z)*.
Therefore, the expression of M¥ can be simplified according to
Mt z,0) = L(t,x,0) = Mo,wzpyr (I 4t DW(x,0)) Uzt -

Follow the argument of the preceding proof, using a well adjusted sequence {&, }n,
in order to extract the necessary condition

(—1)¢ det M*(t,2,0) > 0,  V(t,x,0)€[0,T] x B(0,r] x T

which is exactly (1.2.13). O
Remark 2.1. In the basis (€1, -+ ,€4), we can get the decomposition
o10 --- 00
001 -+ 00
L(t,x,0) = Lo+t L(2,0), Lo:=| 1 i : o
0o0¢0 --- 01
0 00 0 0

with £(z,0) = Woyw (2,002 DaW (2,0) g, 1. This special structure implies the
existence of coefficients a;(z, 8) such that

d—1
(=) det L(t,2,0) = > aj(x,0) ¢/

j=1
Noting

f minJ if j:z{j;a-(m,@);ﬁO}#@,
J(x’e)'—{d—1 it 70,

the condition (1.2.13) is equivalent to the restriction
(1.2.14) Qe (z,0) >0, v (z,0) € B(0,r] x T.

On the one hand, especially when d > 1, the conditions (1.2.14) can be techni-
cally difficult to deal with. On the other hand, nothing guarantees that they are
intrinsic. Instead of looking at (1.2.14), we will consider

(1215) HaGW(Iﬁ)L DzW(ZL', 0) va(z)J_ =0, \ (IL‘, (9) ev.

This relation is clearly intrinsic and, if it is satisfied, we are sure that
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det L(t,x,0) = det Ly = 0.

We can summarize the preceding discussion by :

Proposition 1.2.4. Suppose that the relations (1.2.10) and (1.2.15) are verified.
Then, the family {h®}. is compatible.

Proof. Under conditions (1.2.10) and (1.2.15), it remains

det DX (t,x) = 1+ t ¢°(t,2,22) | g7 € C0([0,1] xR x B(0,7] x T;R) .
In particular, we get :

det D, Xe(t,z) > 1 — C(T) t, V(t,x,e) €10,T] x B(0,r]x]0,1]

where the function 7' — C(T') is increasing. Now, it suffices to choose T" > 0
small enough to recover (1.2.8).
g

Remark 2.2. Suppose that V : R* — R? is a C! diffeomorphism. Then, it is
equivalent to solve (1.1.1) or

(1.2.16) ow + (w-Vyw = 0, w:=Vou

completed with the initial data

(1.2.17) w(0,2) = Wz, ‘P(:)), e €lo,1].

The system (1.1.11) can also be interpreted as a compatibility condition in order
to solve the Cauchy problem (1.2.16)-(1.2.17) in the class of C! solutions, locally in
time, on some domain Q7 with 7' > 0 independent of € €]0, 1]. This interpretation
explains why the relevant constraint is concerned with V' o H instead of dealing
separately with V and H. AN

From now on, we consider functions ¢ and W satisfying (1.2.10) and (1.2.15). In
other words, we will concentrate on well prepared couples (@, W).

1.3 Existence of compatible families

The goal of this subsection is to show through a constructive proof that the system
(1.1.11) actually admits non trivial solutions. We want also to understand the
structure of its generic solutions.

Of course, to face (1.1.11), preliminary assumptions are needed. We select some
phase ¢ € C? (B(O, R R) with no critical point in B(0, r]. Without loss of generality
(relabelling the coordinates and diminishing r if necessary) we can adjust ¢ so that

(1.3.1) Ogp(x) #0), Vx e B(0,r], r>0.
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We take W = V o H € C?(B(0,7] x T,R?). Introduce the linear subspace of R?
spanned by the vectors dpW (x,8) with 6 € T, that is

E(z) == {Zj’vzl py OgW (,05); (1, pun) € RV,

(1.3.2)
(61, ,0x) € TV, NeN}.

Choose N =1, u1 =1 and 6; = 0 in this definition to see that
OoW (z,0) € E(z) CR?,  V(x,0) € B(0,7] x T.

Because E(z) is of finite dimension, we can find J* numbers 67, - - -, 6%, such that

E(Q?) = { Z;Iil Ky 8QW(CC, 036) ) (Hla T ’:U’J””) eR” } ) J* = dlmE(I‘) :
Then, in view of the first line of (1.1.11), we must have
E(z) C Vo(x)t,  V(z,0) € B(0,r] x T.

On the one hand, the case J* = dimE(x) = 0 is not interesting because this
situation corresponds to the absence of oscillations. On the other hand, we have
necessarily

J* < dimVe(z)t=d—1, Vo e B(0,r].

Due to the continuity of dyW, the application z —— dimE(z) is lower semi-
continuous. In particular, the set

{zeB(0,r[; J*>d—3} = {2eB0,r[; J°=d—1}

is open. Now, suppose that J% = d — 1. By restricting » > 0 if necessary, we
can always suppose that J* = d — 1 for all x € B(0,7[. More generally, in what
follows, we will retain the generic case where the application z — J* = dim E(z)
is constant (not necessarily equal to d — 1) on B(0,7] :

(1.3.3) 3Je{l,---,d—1}; dimE(z) =J, Vze B(0,r].

Denote by the symbol G C{ the Grassmanian manifold of linear subspaces of R? with
dimension J.

Lemme 1.3.1. Assume that W € C*(B(0,r[xT,R?%) and (1.5.3). Then E €
CH(B(0,r[,GJ).

Proof. Let xo € B(0,r]. By hypothesis, we can find 67°, ---, 67° in T such
that (9gW (zo,07°),- -+, 0gW (w0,0%°)) is a basis of E(zo). Hence, we can extract
a J x J determinant

5($0) := det (é%lﬁgj(xo,ezo)) 1 € Hl,dﬂ

1<j,k<J?
such that 6(xg) # 0. Since JyW is continuous, the function x —— d(x) is con-

tinuous. Therefore, we can isolate some small open neighborhood €2 of zy such
that
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d(z) # 0, Ve, xo € Q.

For z € Q, the family (9pW (z,67°), -+ ,0sW (x,67°)) is still linearly independent
and it is built with J vectors of E(z). Since by hypothesis E(x) is of dimension
J, this is in fact a basis of E(x). Obviously, the application

Tr —— (89W<.1‘,93fo), cee ,89W($,9§0))

is of class C! in €. This remark gives the expected local regularity of E. Finally,
since x¢ € B(0,7] can be chosen arbitrarily, the Lemma 1.3.1 is proved.
g

Recall that
(1.3.4) oW (2,0) € E(z) C Vo(z)*, V(z,0) € B(0,r] x T.

The second line of (1.1.11) implies that
HE(w)J- DxW(.%',g) va(a:)J_ =0, V(l‘, 9) S B(O,T] x T.

Observe that, in this formulation, the two projectors (on the left and on the right)
do not depend any more on the variable § € T. This allows to extract the mean
value to get

(135) HE(z)J- D, W* (.’L‘, 9) va(x)J_ =0, v (l’, 9) S B(O, ’I"] x T.

Lemme 1.3.2. Let ¢ € C*(B(0,r],R) and W € C*(B(0,r] x T,R?) satisfying
respectively the conditions (1.3.1) and (1.3.3). Suppose that the relations (1.3.4)
and (1.3.5) are satisfied. Then, the application x — E(x) is constant on the level
surfaces of p. More precisely

(1.3.6) JE e CY(R,G]);  E(z) = Eop(x), Yze B(0,r].

Proof. Let us denote §;; the usual Dirichlet symbol, and 6(8) the vector of RY
whose components are (d;;)1<i<qd- The d — 1 vectors

vp(z) = — 60 4+ Okp(z) / Dgep(x) 5@ 1<k<d-1

form a C! basis of Vio(z)t. By permutting the components of R? and by dimin-
ishing r if necessary, we can always arrange the datas so that

E(z) @ (vi(z), - ,vg_j_1(x)) = Vo(x)*, Ve B(0,r].

Therefore, for all j € [1,J], the vector vq_;(z) € Vy(z)t can be decomposed
according to

vi-j(z) = ej(x) — Y02 k(@) w(z),  e(z) € E(a)

where, due to the assumptions related to the regularity of ¢ and E, we have

ej = (ejl, e ,e?) e CY(B(0,r];RY), a? e CY(B(0,r];R).
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The vectors e; with j € [1, J] are necessarily independent. They form a basis of
E(z). Besides, we have the general formula

W(z,0) = W(z) + /09 QW (2, ) di — /T(/Oe o9 W (. 0) dB)) df
that, in view of (1.3.4), implies

W(z,0) = W(z) + S, wi(@,0) ej(z),  wieCH{B(0,7] x T;R).
Now, the relation (1.3.5) reads

S wi(,0) Mgyr Deej(@) Mgy =0,  V(x,0) € B(0,r] x T,
Recall that the dimension of E(z) is J. This implies that

3({,~~-,6§)€T‘]; det[wf(m,@f)]lgmg‘];éo.

Combining the preceding informations, we see that (1.3.5) is equivalent to
(137) HE(w)J- Dxej(:z:) va(x)J_ =0, v (], ﬂf) S [[1, J]] X B(O, T‘] .

The vector space E(x)’ is of dimension d — J. It is generated by the vector
eq(x) := Vp(z) and the d — J — 1 vectors

J
ej(x) = =0V~ + 3"l (2) 6“7 jelT+1,d-1].
k=1

Therefore (1.3.7) is exactly the same as
(1.3.8) ‘e)() Dyej(x) Ugymye = 0, V(l,j,2) € [J+1,d] x [1,J] x B(0,r].

For j € [1, J], compute

d—J—-1
Dyej(z) = E Vwoz?(:v) ve(x)
k=1
d—J—1
+ 0} (1) Vi (Op(2)/0ap()) + Va (0a—jp(2)/ap()) | 619
k=1
Applying on the left te;(x) with [ € [J + 1,d — 1], yields
tey(z) Dyej(x) = ané-_‘](a:), 1<j<J<i<d-1.

We can extract from (1.3.8) that
(1.3.9)  Vpal T(@) gy =0, VY(Ljz)e[J+1,d=1] x [1,J] x B(0,r].

Independent statement. Let o € C'(B(0,7|,R) satisfying (1.3.1). Let o €
CH(B(0,7],R) a function which is subjected to the relation (1.3.9). Then, restrict-
ing r > 0 if necessary, we can always find some function Z € C'(R,R) such that

(1.3.10)  a(x) = Zoyp(x), Vx e B(0,r].
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Proof of the independent statement. The geometric reason of (1.3.10) is
the following. The relation (1.3.9) means that the vectors V,a(z) and Vo(x) are
parallel or that the tangent spaces at x to the level surfaces associated with the
scalar functions o and ¢ coincide. Since the level surfaces associated with o and
 are spanned by these tangent spaces, we can deduce that o and ¢ have common
level surfaces. Moreover, the relation (1.3.1) allows to characterize (locally near 0)
these level surfaces through the different values of . This is why we have (1.3.10).

Now, we can also proceed as follows. Due to (1.3.1), the functions z1, xa, ---,
xq—1 and @(x) form locally (near 0) a system of coordinates. Therefore, we can
find Z € C*(R% R) such that

a(z) = Z(i‘,gp(az)), = (x1,29, - ,Tq_1), Vz e B(0,r].
Decompose V(z) according to

Vp(z) = (Vap(e),dap(@)),  Vap(r) = (dip(x), -, darp(z)) € R
Given h € R1 define

ha(z, h) = —dgp(x)~! Vap(z) - h.
Observe that

(hyha(z,h)) € Vp(z)t,  VheR&.
Testing (1.3.9) with such choices gives rise to

Vi‘Z(l'l,I'Q,"' ,:Ud_l,gp(a:))-iz =0, Vhe R,

This information clearly implies that the function Z does not depend on its d — 1
first variables. We have (1.3.10).

O
Applying the independent statement to the functions aé.*‘]
exhibit functions

k 1 :
ZEcCRE)., (k)€ Ld—J—1]x[LJ]
such that, for all (k,j) € [1,d — J — 1] x [1, J], we have

, we see that we can

(1.3.11) e?(m) = —a?(x) = ZjliC o p(z), Ve B(0,r].

This construction of the Z]’-“ is not classical and it is one of the main difficulties
in the proof of Lemma 1.3.2. Finally, the remaining conditions to consider are
obtained by taking j € [1,J] and [ = d. Namely

VSO(x) Dl’ej(x) I_IVQD(:IS)L =0, \V/(], ‘T) € [[17‘]]] X B(O,T‘} .
Use (1.3.1) and (1.3.11) to simplify this into
Vze;l(:(:) HVgp(x)i =0, V(], .%') = [[L J]] X B(()?T]

where we recall that
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a) = — 3 Z¥oule) dple) | Buple) + 0ajole) | Oup(a).
k

Again, this means the existence of Z;-j € CY(R,R) such that

d—J-1

—_

ef(z) = Z{op(z),  V(j,z)€[L,J] x B(,r].
Briefly, we have obtained, for all j € [1, J], that
¢j(x) = Zjop(x),  Zy =YZ},---,2¢7771,0,-,0,-1,0,--+,0,29).

The vector space E is spanned by the e; with j € [1,J]. Therefore, it depends
only on ¢, in a C' way. This gives rise to (1.3.6). In particular, E is constant on
the level surfaces of .

O

Combining (1.3.4) and (1.3.6), we can produce the necessary condition
(1.3.12) Vo(z) € Eop(z)t = B(z)*, Vz e B(0,r].

The condition (1.3.12) is a geometrical constraint on ¢ underlying the resolution
of (1.1.11). We explain below how to solve it.

Lemme 1.3.3. Select :

- a curve E € C%(R, g;{) of J-dimensional vector spaces of R,

- a C? submanifold S C R? of dimension d — J, containing 0 € R?,

- a C? scalar function x : S — R.

Note TyS the tangent space of S at the point 0 € R%. We suppose that
(1.3.13) ToS + E(x(0)) = R?.

Then, we can find r > 0 such that the nonlinear equation (1.3.12) completed with
®|snB(0,s] = X has a unique C? solution on B(0,7]. We will say that the phase ¢
is generated by (E, S, x).

Proof. Select 6 > 0 and J functions
Zj € C*(Ix(0) = 6,x(0) + 6[R),  je[1,]]

adjusted such that, for all ¢ €]x(0) — d, x(0) + 4], (Zl(t), e ,ZJ(t)) is a basis of
E(t). Note

Q% = x1(Ix(0) = 6,x(0) + 4]) C S, z =1z, 27) e R,
Consider the C? application
E: QxR — RE
(,2) — E(y,2) =y + )1 Zjox(y).
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Because of (1.3.13), the linear operator
D,Z(0,0) : TS xR/ — R4
(h k) +— h+ Y7 K Zjox(y)
is invertible. The inverse mapping Theorem can be applied at the point (0,0) €

S x R7. Tt guarantees the existence of r > 0 such that Z is a C? diffeomorphism
from a neighbourhood of (0,0) € S x R’ onto B(0,r]. Introduce the projection

r:SxkR/ — S
(y,2) — T(y,2) =y,
Now, we can define
¢ = xol'oE"1 € C*(B(0,7];R).
Since (I' o E_1)|SQB(O7T} = Id, we have | snpos] = X|snB(0s]- Moreover, the
function ¢ is constant on the set
Fy = (y+{Ziox(y), - Zsox(y)) N BO,r], yeSNBO,r].

More precisely, F, is a piece of affine manifold with direction E o x(y) , on which
¢ takes the value x(y). In particular

Ve(z) € (T.F,)" = Eox(y)t = Eop(x)-, VzeF,.

Since the F, with y € SN B(0, ] form a foliation of B(0,r], we have obtained the
expected relation (1.3.12).
O

Proposition 1.3.1. Let ¢ be generated by (E,S, x). The couple (¢, W) is well pre-
pared if and only if there exist two functions W) € CY(R%,RY) and W, € C'(R,R?)
satisfying

(1.3.14) W(t,s) € E(t),  Wi(t)eE®#)*",  V(ts)eR?
and a scalar function ¢ € C'(B(0,r] x T;R) such that

(1.3.15) W(z,0) =W, (go(ac),w(a:,e)) + W (cp(:c)) , V(x,0) € B(0,r] xT.

Proof. Note (Zi(t), -+ ,Z;(t)) some orthonormal basis of E(t) with a C' reg-
ularity with respect to ¢ € R. Complete it with some C' orthonormal basis
(es41(t), - ,eq(t)) of E(t)*, again of class C'. In view of (1.3.4), the defini-
tion of E(z) and Lemma 1.3.2, the profile W (x,#) can be decomposed according
to

J d
W(z,0) = Y wilz,0) Ziow(x) + Y wjx)ejop()
k=1 k=J+1

with
w; € CH(B(0,r] x T;R) , vielJ],
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w; € C'(B(0,7};R), vjels+1.4d.

Compute the derivative of W (x, ) with respect to the variable x and compose on
the right with IIg ). It remains

DJCW(xv 9) HVg@(a{:)L = Zg:b vmwj(x7 9) : HVg@(aﬁ)L X Zj ° (p(l')
+ Zk:J—f—l wa](a:) . va(x)J_ X €50 (p(.’E) .
Select a point (z,6) € V which means that 9pW (z, 0) # 0. Without loss of general-
ity, we can suppose that 9pWy(z,0) # 0. Otherwise, just permute the components

of R? to obtain this condition. By construction, the hyperplane 9pW (z,0)* is
generated by the d — J vectors e; o p(x) with j € [J +1,d] and the J — 1 vectors

Ogywy(x,0) Zjop(x) — Opwj(x,0) Zjop(x), jet,J—1].

The requirement (1.2.15) is equivalent to the conditions

(1.3.17) (Oowy Vaw; — Opw; Vywy)(z,0) = 0, Viell,J—-1].

On the one hand, from (1.3.16), we deduce that

J; € CL(R,R); wji(z) = w;op(x), VjelJ+1,d].
On the other hand, it follows from the relations (1.3.17) that the mappings T
parameterized by t € R and defined on the level sets

G = {ac € B(0,r]; ¢(x) :t}
by the formulas

Tt : gt xT — RJ
(1’,6) L — t(wla"' ,UJJ)

have rank one. Thus, to each T; corresponds a foliation of G, x T by submanifolds
of dimension d — 1. This foliation depends on the parameter ¢. It can be described
by using a function ¢ € C*(B(0,r] x T,R) so that

wj(z,0) = u?j(cp(x),w(m,ﬁ)), Viel[l,J].

Define
d J
Wi(t) == > @i(t) ei(t),  Wylt,s) = Y @jlt,s) Z(t).
j=J+1 j=1

By construction, we have both (1.3.14) and (1.3.15).

Conversely, suppose that W (z, ) has the form (1.3.15) with W) (z, ) and W, (=, 0)
as in (1.3.14). Then

QW (x,0) = 9gto(,0) x O W) (¢(x),¢(z,0)) € E(p(x)) = E(z)
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which is (1.3.4) and gives rise to the first part of (1.1.11). Moreover

DWW (2,0) My,yr = Vap(a,0) - Ty e X W) (0(x),9(x,0)) .
Since 9pW and 0;W)| are colinear, we get the second equation of (1.1.11).

1.4 Simple wave solutions

The aim of this last part is to explain how the initial oscillating data h®(x) is trans-
formed through the evolution equation (1.1.1). Below, we consider this question
in a simplified context, by looking only on simple wave solutions.

Définition 1.4.1. Let ¢ €]0,1]. We say that u® € C}(Q7;R) is a simple wave if
it can be put in the following form
P(t,z)

u®(t,x) = H(t, T,
€

), Hec(Q" xT;RY), @ec'(Q";R).

The Theorem 3 explains how to associate with a well prepared couple (¢, W) a
simple wave u®(t, 2) which is a solution on Q7' of the Burger’s type system (1.1.1).
It remains to show this statement 3.

Proof of Theorem 3. Compose the first equation of (1.1.12) with D,V o H in
order to extract

HW + (W-V,)W =0,
(1.4.1) 0® + (W-V,)® =0, W = VoH.
W* . V,0 =0,

This must be associated with the initial data
(1.4.2) W(0,z,0) = W(x,0), ®(0,2) = p(z).

First, we discuss about (1.4.1)-(1.4.2). From Proposition 1.3.1 we can write
W(z,0) = Wy(p(z), ¢(z,0)) + Wi(e(2)).

Solve locally in time, say on Q7 for some T > 0, the scalar conservation law
(1.4.3) h® + W, () -V, P =0, ®(0,2) = ¢(x).

Recall that E(z) = E o ¢(z) is spanned by the J vectors e;j(x) = Z; o ¢(x) where
the Z; are defined at the end of the proof of Lemma 1.3.2. Now, fix any j € [1, J]
and compute

[0+ WL (D) Vg] (Zjo® V@) = — (Vo@ - W[ 0®) x (Zj0o®-V,P).
Combining (1.1.13) and (1.3.12), we can extract
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(Zjo®-V,®)(0,z) =0,  Y(j,z)€[1,J] x B(0,r].

In view of the preceding equation, this polarization identity is propagated in time
which means that

Zjo®(t,x) V,®(t,x) =0, Y (t,z) € [0,T] x B(0,r]

or equivalently that
(1.4.4) V.®(t,z) € Eod(t,z)t,  V(tz)el0,T] x B(0,r].

Now, introduce the function

W(t,s) == Wj(t,s) + WL(t), (t,s) € R?

and the scalar conservation law

(1.4.5) 80 + W (®(t,2), V) -V, ¥ = 0.

Complete (1.4.5) with the initial data

(1.4.6) U(0,2,0) = 1p(x,0), ¥ € CH(B(0,7] x T;R).

In (1.4.5), the variable # € T plays the part of a parameter. For 7' > 0 small
enough, the Cauchy problem (1.4.5)-(1.4.6) has a local solution on Q7. Finally,
define the profile W through

Wi(t,z,0) = W(@(t,x),\ll(t,m,ﬁ)), W(0,z,0) = W(z,0).
By construction, we have
W*(t,z,0) = W) (®(t,z), U(t,2,0))".
The informations (1.3.14) and (1.4.4) imply that
WH*(t,z,0) -V ®(t,z) = 0, V(t,x) e QT
Taking into account (1.3.14) and (1.4.3), we have also
P+ W -V, ® =9+ W, 00V, P =0.
Then, with (1.4.5), we can deduce that

(1.4.7) OGWAH+W.-V,W = d,W (9, 9+W-V,¥) =0,  W(0,z,0) = W(z,0).

To sum up, we have constructed functions ® and W satisfying (1.4.1).

Now, we concentrate on (1.1.12). First, solve separately (on some domain Q7 with
T > 0) the Cauchy problem

(148) 00 H+ VoH-V,H =0, H(0,z,0) = H(x,0).
Observe that the expression W:=VoHis by construction subjected to

(1.4.9) GW+W . -V,W=0,  W(0,z0) =W(x0).
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The Cauchy problems (1.4.7) and (1.4.9) are made of the same quasilinear con-
straints and the same initial data. Since the corresponding C' solutions must
coincide, we have necessarily W =V o H= W on Q7.

Briefly, the first equation of (1.1.12) is verified because this is precisely (1.4.8)
whereas the two other conditions of (1.1.12) are satisfied because they correspond
exactly to the two last conditions in (1.4.1). This explains why the apparently
overdetermined system (1.1.12)-(1.1.13) has a unique solution on Q7 x T for some
T>0.

D(t,x)
€

Finally, define the simple wave u®(t,z) := H(t, x, ) Compute

atl,lE + V(uf) 'qus = (8tH + VOvaH)(t,LU’ @)
+1[(2® + VoH.V,0) H](t,z,22)).

The fact that u®
equations inside

t,x) is a solution of (1.1.1) becomes a direct consequence of the
1.1.12). Moreover, the definition of W indicates clearly that the
structure (1.3.15) is conserved for t € [0,T]. Therefore (see the end of the proof of
Proposition 1.3.1), for all ¢ € [0, 7], the trace (®(¢,-), W(t,-)) is still well prepared.
This last remark concludes the proof of Theorem 3.

—_ o~ —~
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Chapter 2

Large amplitude

Oscillating solutions

For incompressible Euler
Equations in space dimension 3.

Abstract. In this article, we construct large amplitude oscillating waves (u®) c€]0,1]
which are local solutions on some open domain of the time-space R4 xR? of both the
three dimensional Burger equations (without source term) and the incompressible
Euler equations (without pressure). The functions u® (¢, x) are mainly characterized
by the fact that the corresponding Jacobian matrices D,u(t,z) are nilpotent of
rank one or two. Our purpose here is to describe the interesting geometrical
features of the expressions u®(t,x) obtained by this way.

36
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2.1 Detailed introduction.

2.1.1 Presentation of the framework.

Let (T,V,r) € (R%)? with TV < r. We work on a domain of determination having
the form of a truncated cone like

QF == {(t,x) € [0,T] xR*; || +tV <r}, 2| == /2% + 23 + 23.

We are looking at expressions u®(t,z), with £ €10, 1], which are special solutions
of three dimensional Burger equations without source term, namely

(2.1.1) ot + (uf-V)uf =0,  (t,z) € QF Cc R xR3.

We complete (2.1.1) with a family of oscillating initial data
e p@) :

(2.1.2) u(0,2) = h¥(x) = | h§(z) | = w(x, ?), (x,e) € Q,.x]0,1].
h3(z)

The function h¢(z) is defined on the closed ball Q¥ (having center zero and radius
r) by using a bounded profile w(z,6) € C} (2% x T; R3) satisfying

(2.1.3) 3(2,0) € xT;  dpw(z,0) #0, T:=R/Z.
We use also a phase ¢ € C}(QY;R) which is assumed to be not stationary
(2.1.4) Vo(z) == (p(x), O2p(x), D30(x)) #0, Vel

The equation (2.1.1) is the prototype of a quasilinear hyperbolic system. Thus, the
solution u® (¢, ) of (2.1.1) which is issued from the bounded initial data h®(z) inher-
its a finite speed of propagation V. In view of (2.1.2), noting w = (w1, ws, w3) €
R3, we can take

V = sup {(Z?:l wi(w,0)2)1/2; (2,0) € QY x ']I‘} < 00.

Example 1. Choose T =V = r = 1. Select any non constant function wg €
C>®(T;R) which is bounded by 1 and define

o(z) =21, w(x,0):= t(07 0,w5(0)), u(x):= t(O, 0, w§(¢°(x)/¢)) .
Observe that

(2.1.5) Ou® + (u” - Viu® =0, divu™ =0, (Dgcueg(alc))2 =0.
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The expression u®(z) is a very basic example of a contact discontinuity solution of
(2.1.1). More elaborated patterns are proposed in [5, 6, 7, 13, 14]. Extensions can
be obtained either by considering nonlinear phases ¢ or by adding some dependence
in other variables than ¢. In this article, we explain what can be done in these two
directions. More precisely, we construct and classify all functions p(z) and w(z, )
(if need be, the profile w can also depend in a smooth way on € € [0, 1]) allowing
to solve the oscillating Cauchy problem (2.1.1)-(2.1.2) in the class of C! —functions
on a domain of determination Q! with (7,7) € R%. x R* independent of € €]0, 1].
Note D h® the Jacobian matrix of h®, that is

Ohi(z) Oahi(z) Oshi(z)
D.he(z) = | Oihs(z) dahs(z) Os3hi(z) | € M3(R?).
O1h3(z) Oxh3(x) Oshs(x)

Our starting point is the Theorem 2.6 of [6]. To find on Q! a C!—solution of the
Cauchy problem (2.1.1)-(2.1.2), it suffices to look at what happens at the initial
time t = 0. A necessary and sufficient condition is to impose

(2.1.6) (Dohf(2))’ =0,  V(z,e) € 20x]0,1].

Then (see [6]), the solution of (2.1.1)-(2.1.2) satisfies divu® = 0 in Q. It means
that the solutions of (2.1.1) under study are also (local) solutions of the incom-
pressible Euler equations (with constant pressure) :

(2.1.7) ot + (u° - V)u® 4+ Vp. =0, divu® =0, Pe = C.

In what follows, we work with the conditions (2.1.1), (2.1.2) and (2.1.6). We seek
simple wave solutions meaning that we want to solve directly (2.1.1)-(2.1.6) through
a construction relying on the special form (2.1.2). Taking into account (2.1.7), this
can be viewed as a preliminary step towards a more general (large amplitude) WKB
calculus concerning incompressible or compressible Euler equations. The long-term
perspective is indeed to incorporate at the level of (2.1.1) the influence of extra
terms (like pressure, viscosity, ---) and the presence of complete expansions for
the profile such as

(2.1.8) we(z,0) = w(z,0) + 372, e"l wi(z,0), k€]0,1]1NQ.

Let us recall here what has yet been obtained concerning (2.1.7) when the initial
data are adjusted as in (2.1.2) and (2.1.8). The case x = 1 with a profile w(z, ) =
w(z) independent of the fast variable § € T is well-known. It is a variant of
standard results in weakly nonlinear geometric optics [17, 23]. The case k €
10,1] N Q with still w(z,0) = w(z) is fully discussed in [9]. The case Kk = 1
associated with (2.1.3) corresponds to a more singular situation. It is much more
delicate. It is what here holds our attention.

In the case k = 1 together with (2.1.3), the WKB analysis of incompressible Euler
equations is supposed to be not well-posed [24]. This is due to a strong coupling
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between the profile w(zx,#) and the phase ¢(x). In such a regime, many unstable
phenomena (see for instance [14, 21]) can occur. Therefore, any progress in this
direction requires to work in a very specific context, like here (2.1.1)-(2.1.2)-(2.1.6),
with adapted tools.

The study of (2.1.2)-(2.1.6) is not so easy to achieve. In [5, 6, 10], some very
special examples are proposed implying functions h®(x) which are adjusted such
that the matrix D,h®(x) is of rank 1. These preliminary advancements are partially
completed in [7] by exploring (without restriction on the space dimension d € N7)
some necessary condition on ¢(z) and w(z,f) giving rise to matrices D,h®(x)
which are nilpotent, as in (2.1.6).

2.1.2 The main results.

In this paper, we restrict our attention to the case d = 3 but, this time, we seek
necessary and sufficient conditions on (¢, w) to have (2.1.2)-(2.1.6). This approach
leads to the notion of compatible couple given below.

Définition 2.1.1. Let p € CH(QV;R) and w € CH(Q2 x T;R3) two functions satis-
fying the preliminary assumptions

(2.1.9) Opw(x,0) # 0, Vo(z) £ 0.

The couple (p,w) is said to be compatible on Q0 x T if the family {h%}. which is
associated to (@, w) through (2.1.2) satisfies (2.1.6).

It is possible to derive an exhaustive description of all compatible couples. In the
statement below, for the sake of brevity, we express this remarkable fact in a rather
imprecise form.

Théoréme 4. There is a whole class of compatible couples (p,w).

The interesting aspects will appear in the text when precising the structure of the
functions ¢ and w such involved, and especially when describing the geometrical
features of ¢ and how to get them.

Retain here that we can perform a complete WKB analysis of the constraints
(2.1.2), (2.1.6) and (2.1.9). Then, applying Theorem 2.6 of [6], we are sure to
recover by this way the existence of large amplitude high-frequency waves uf(t, )
which are special solutions of (2.1.7) on Q. Now, the structure of the expressions
u(t,z) can be precised as follows.

Théoréme 5. Let (p,w) be a couple which is compatible on QU x T. There are
functions W (gp,1,0) € CHR? x T;R) and ¢(x,0) € CH(QY x T;R) such that the
profile w(x,0) can be factorized through

(2.1.10) w(z,0) = W(p(z),(x,0),0), VoAV #£0.
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There is also some T > 0 such that the Cauchy problem

(2.1.11) { 0%+ (W(®,0,0)- V)& =0,  &(0,2) = p(z),

QYU+ (W(P,9,6)- V) =0, U(0,7,0) = (x,0),

has a solution (®,V)(t,x,0) on the domain QL x T. We have 9y® = 0 and, for
all € €10,1], the oscillation

(2.1.12) u(t,z) = W(®(t,2), ¥(t, z, ®(t,z)/e), ®(t,x) /), €€]0,1]

is a solution of (2.1.1) on the domain QL with initial data u®(0,-) as in (2.1.2).
Moreover, for all t € [0,T] the couple (®(t,-), W(t,-)) where

Wi(t,z,0) = W(@(t, x),¥(t,x,0), 9)

is still compatible on B(0,r — tV[xT. More precisely, for all t € [0,T], we must
have

(2.1.13) VO - 0yW + 0¥ VO -9gW = 0,
(2.1.14) (VO -0y W) (VU - W + 9p¥ VI -9y W) = 0,
(2.1.15) (VO -9,W)? + (VP -0y W) (V¥ -9,W) = 0,
(2.1.16) Vo -9,W +VVU.-9gW = 0.

In comparison with preceding works [5, 6, 7, 10, 14], this second result 5 includes
various situations which have not yet been studied. It allows to exhibit many new
phenomena with respect to both the propagation and the interaction of oscillations.

2.1.3 Plan of the article.

We present here the plan of the present article. We take this opportunity to make
some clarifications and to indicate ideas of proof.

e In Chapter 2.2, we discuss the notion of compatible couple. More precisely, the
Proposition 2.2.1 of Section 2.2.1 says that any compatible couple (¢, w) must
verify a list S, namely (2.2.1)-(2.2.2)-(2.2.3)-(2.2.4), of conditions which are inde-
pendent of the parameter ¢ €10, 1].

Then, in the Proposition 2.2.2 which is proved in Section 2.2.2, we observe that
there exists a scalar function ¥ € C1(22 x T;R) leading to a factorization of the
involved profiles w(z, #) in the form (2.1.10). It follows simplifications when dealing
with the system S. It remains (see the Proposition 2.2.3 proved in Section 2.2.3)
some necessary and sufficient conditions to impose on the three ingredients ¢, 1
and W. In fact, the matter is to work with the relations (2.1.13), (2.1.14), (2.1.15)
and (2.1.16) at the time ¢ = 0.

e Chapter 2.3 consider the simplest case, when Vg - 9y W = 0. Then, as it is
explained in Section 2.3.1, the level surfaces of the phase ¢ can be associated with
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some foliated structure of R? by planes. This information is a crucial key which,
in Section 2.3.2, enables progress leading to a complete description of (¢, ), W),
and therefore (¢, w).

e Chapter 2.4 is devoted to the case V-0, W # 0. Then, without loss of generality,
the profile w(x,#) can be assumed to be of the form

w(z,0) = t(v, W, £(1, v))(x, 0), v(z,0) = V((p(:v),¢(:n, 9),9)

where £(1,v) and V(p,1,0) are auxiliary functions. On the other hand, the
expression ¥ (z, ) can always be factorized according to

U(x,0) = u(x,v(m,&)), Oyu(x,v) # 0.

In Section 2.4.1, see the Proposition 2.4.1, the information Vg - 9yW # 0 is ex-
ploited in order to rephrase the conditions (2.1.13), (2.1.14), (2.1.15) and (2.1.16),
written at the time t = 0 on ¢ = ®(0,-), ¥ = ¥(0,-) and W, in terms of the more
convenient conditions (2.4.13), (2.4.14) and (2.4.15) which concern only ¢ and v
(as well as £ and V).

After eliminating the special case dsu = 0, we concentrate on the remaining sit-
uation dsu # 0. At this stage, the question becomes the following (see also the
remark 2.4.3.1 for a functional analysis viewpoint).

The intermediate problem under study. The question is to find smooth non
constant functions ®(z1, xo,u,v), locally defined in R*, satisfying the two transport
equations

(2.1.17) Xd=0, Y&=0, X:=0,+Rd, Y:=R0,+0,

and involving a variable coefficient R(x1,x2,u,v) which can be identified through
the implicit relation

(2.1.18) opu(x,v) = R(wl,:ng,u(m,v),v)
where the function u(x,v) must satisfy the two conservation laws

(2.1.19) o+ 0pL(u,v) Osu =0, Oou + 0y L(u,v) O3u=10.

At the level of (2.1.19), the variable v plays the part of a parameter. When
solving (2.1.19), there are degrees of freedom related to the choices of u(0,0,z3)
and £(u,v). Once the function v (and therefore R) is known, the difficulty is to
find solutions ® of (2.1.17) satisfying V® # 0. Let us say a few words about the
origin of the conditions (2.1.17) and V® # 0. In fact, the expression & is issued
from ¢ after a blowing-up procedure. Indeed, one has

o(r) = @(xl,xg,u(m,v),v) , R=0,u#0, v(z,0) .



CHAPTER 2. OSCILLATING SOLUTIONS 42

In this context, the condition Y ® = 0 means simply that ¢ does not depend on
v. Since the letter v is aimed to be replaced by a function v(z,6) of the variables
(7,0) € R3xT, this is equivalent to say that dyp = 0. This is a natural requirement.
Despite the strength of the nonlinearity, we do not want that the phase ¢ starts
to oscillate with respect to itself. The other restrictions X ® = 0, (2.1.18) and
(2.1.19) are coming from (2.1.6) after the reduction procedure.

Recall that the phase ¢ is supposed to be not stationary, see (2.1.4). This is pos-
sible if and only if the Poisson algebra A generated by the two vector fields X
and Y is of dimension strictly less than four (dim.4 < 4). The corresponding inte-
grability criterion (of Frobenius type) can be traducted in terms of conditions on
R. Actually, the Proposition 2.4.2 in Section 2.4.2 exhibits the relevant nonlinear
PDE’s to impose on R. In the case dim A = 2, we find (2.4.38). When dim A = 2,
we have to deal with (2.4.39)-(2.4.40).

Note that the construction of phases ¢ (through ®) is associated with the produc-
tion of special foliations of R*. The related subtle informations would be out of
reach when working with functions ¢ depending only on z € R3. Now, the diffi-
culty is that the coefficient R must also be issued from (2.1.18) after solving the
two conservation laws given line (2.1.19). It follows that the expresssion R inherits
some special structure described at the level of Proposition 2.4.3 in Section 2.4.3.
Given smooth functions K and £, introduce

(2.1.20) a(zy, z2,u,v) = R(u,v) + 0pL(u,v) 1+ 0, L(u,v) 2.
The function R must be in the form
(2.1.21) R(z1,x2,u,v) = — Opa(x1,x2,u,v)/0y0(z1, T2, u,v) .

In Section 2.4.4, we test the integrability conditions (2.4.39) and (2.4.40) in the
framework of (2.1.20) and (2.1.21). Surprisingly, all requirements are met for many
choices of the functions K and £ leading in Section 2.4.5 to a complete classification
of all compatible couples (¢, w).

To our knowledge, the preceding approach and the corresponding analysis is com-
pletely original and new. In the end, it furnishes a good description of the class of
functions ¢(x) and w(x, ) mentioned in the Theorem 4.

We conclude the chapter 2.4 by producing in the paragraph 2.4.6 illustrative ex-
amples of compatible couples (¢, w).

e In Section 2.5, we study the time evolution problem. We show Theorem 5.
This result is proved in the paragraph 2.5.1. It furnishes, in the context of the
equation (2.1.1), a complete description of what can happen in terms of smooth
large amplitude oscillations. The formula (2.1.12) generalizes previous examples
exhibited in [7, 10, 13, 24].

The families {u°}.cjo, exhibited in (2.1.12) belong to a regime which, in non
linear geometric optics, is called supercritical (because one order derivatives of u®
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explode when ¢ goes to 0). Expressions like u® are very unstable objects [10] unless
some small viscosity is added [4]. Their asymptotic behaviours (always as € — 0)
can involve interesting features.

For instance, in Section 2.5.2, we can exhibit a phenomenon of superposition of os-
cillations. It is obtained by selecting compatible couples (¢, w.) where, in contrast
to (2.1.2), the profiles w. depend on & €]0,1]. More precisely, the expression w,
is built with functions W and ¢ through the formula

we(x,0) = W(p(2),v(x)/e,0),  W(p,-,0) € C¥(T;R?).
At the time t = 0, we are faced with a large amplitude multiphase oscillation
(2.1.22) u® (0, ) = W (p(x), ¥ () /e, o(z)/e), Ve AV #£0.

On the other hand, at any time ¢ €]0,7], the function U(¢,-) starts to really
depend on 6 € T giving rise to

(2.1.23) W (t,w) = W(0(t,2), ‘I’(t’m’ql(t’x)/g) , q’(tg’ x)) .

Thus, the interaction of large amplitude waves oscillating in transversal directions
at the frequency ! can produce oscillations with frequency e~2. Such a turbulent
effect was already mentioned in [5] in the context of the system (2.1.1) when d = 2.
On the contrary, we were not able to prove the same effect in the case of (2.1.7)
when d = 2. It seems that, when adding the divergence free condition, it is a
specificity of the space dimension d = 3.

e The aim of Appendix 6 is to check that the list of situations enumerated at the
level of Proposition 2.4.4 is exhaustive. The corresponding work of verification is
quite long and technical. The difficulties are due to the fact that it is delicate to
interpret the integrability conditions to impose on R into convenient constraints
on the functions K and £ appearing at the level of (2.1.20). This will be done step
by step, from paragraph 2.6.1 up to 2.6.5.

2.2 Compatible couples.
From now on, we write f = 0 and f # 0 to mean respecively that f is identically

zero on its domain of definition or that it is a non-zero function.

2.2.1 The notion of compatible couples.
Given two vectors u = '(uy,ug,u3) € R and v = *(v1, v2,v3) € R3, we note

UV = up v+ uv2 + ug vy,
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uUivy uU1v2  U1v3 U2V3 — U3V2
URQ U= U2V1 ULV  UQV3 , UNv = U3V — ULV3
uU3v1y U3vV2 U3v3 U1V — UV1

We can interpret (2.1.6) in the form of conditions on (w, ¢).

Proposition 2.2.1. Let ¢ € CY(Q%R) and w € CHQV x T;R3) satisfying the
preliminary assumptions (2.1.9). The couple (¢, w) is compatible on QO x T if and
ony if it is a solution on Q0 x T of the system S made of

( ) V- Jpw = 0,
( ) Vo (Dyw Opw) = 0,
(2.2.3) (D,w)® = 0,
(2.2.4) M (Dyw)* + Dyw M Dyw + (Dpw)> M = 0, M := 0w ® V.
Proof of Proposition 2.2.1. We find
el _ p(z)y 1 p(z)
D.he(z) = (Dyw) (m £ ) +2 agw(x, £ ) ® V().
The constraint (2.1.6) can also be formulated as

3
Y e (;;: ‘P(gx)) =0, Z(x,0) € CO(Q0 x T, M3(R?))
j=0
where
Zo = (Dyw)? Z1 = (Dyw)?> M + Dyw M Dyw + M (Dyw)?,
Sy = M3 Z9 = M2 Dyw + Dyw M? + M Dyw M .

To guarantee (2.1.6) for all € €]0, 1], it is necessary and sufficient to impose
(2.2.5) ==0, V(r,0)exT, V;jec{0,1,2,3}.

Our aim is to solve (2.2.5) for some r € R%. The constraints Zg = 0 and Z; =0
are repetitions of respectively (2.2.3) and (2.2.4). Since

M3 = (V- 0yw)? dpw @ Vi = 0, Ow @V £0,

the examination of =3 leads to (2.2.1). In view of (2.2.1), we have also M? = 0.
Thus, the condition Zy = 0 reduces to M Dyw M = 0, that is (2.2.2). O
The system S, as presented above, is not yet exploitable. The purpose of this
chapter 2.2 is to put it in a suitable form. In view of (2.2.3), the rank of the matrix
D,w is either one or two (the zero case being trivial). The next paragraphs 2.2.1.1
and 2.2.1.2 deal separately with these two situations.
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2.2.1.1 The case of rank one.
In this paragraph, we suppose that
(2.2.6) rg(Dyw(z,0)) = dim(Im(Dyw)(z,0)) =1,  V(z,0) € Q) xT.

By the constant rank theorem [2] and due to the compacity of the torus T, by
restricting r € R* if necessary, we can find two functions ¢ € C1(Q2 x T;R) and
W € CHR x T; R3) with V¢ # 0 and 9, W # 0 such that

(2.2.7) w(z,d) = W(w(x,ﬁ),ﬁ), V(z,0) e Q0 xT.

Lemme 2.2.1. Assume (2.1.9) and (2.2.7). Then, the couple (p,w) is compatible
on the domain Q0 x T if and only if the following conditions are verified :

(2.2.8) Vp-0pw =0,
(2.2.9) (V- 0u W) (V- Opw) = 0,
(2.2.10) V- 0,W = 0.

Proof of Lemma 2.2.1. The condition (2.2.8) is the same as (2.2.1). Taking
into account (2.2.7), we find Dyw = 0y W ® V1) so that (2.2.3) becomes

(V) - 0, W)? 0,W @ Vo =0, Oy W ® Vi) # 0
which implies (2.2.10). Knowing (2.2.10), the constraint (2.2.4) reduces to
Dyw M Dyw = (Vo - 0y W) (Vi) - Opw) Oy W @ Vi) =0.

We recover here (2.2.9) which also allows to guarantee (2.2.2). 0

2.2.1.2 The case of rank two.
In this paragraph, we suppose that
(2.2.11) rg(Dyw(z,0)) = dim(Im(Dyw)(z,0)) = 2, V(z,0) € Q0 xT.

As before, we can apply the constant rank theorem [2] in order to find three
functions ¢ € C'(Q) x T;R), ¢ € C1(Q x T;R) and W € C'(R x T;R?) with
Vi #£0, Vi Z0, Vi A VY # 0 and 9y W # 0 such that

(2.2.12) w(z,0) = W(P(2,0),9(x,0),0),  V(r,0) €l xT.

In the Section 2.2.2, we will show that we can take ¢ = . The precise statement
is the following.

Proposition 2.2.2. Let (¢, w) be a compatible couple on the domain QO x T. By
restricting r € RY if necessary, we can find a function 1 € CHOY x T; R) satisfying
Vo AV #0 and a vector function W € CH(R? x T;R3) such as

(2.2.13) w(z,0) = W (p(z),9(z,0),0), Y (x,0) € Q0 x T,
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Assuming (2.2.13), we can compute
(2.2.14) Dyw(z,0) = 0,W @ Vo + 0y W @ Vi) .

In view of (2.2.11), the two vectors Vi and Vi, as well as 0, W and 9, W, must
be independent. In other words :

(2.2.15) Vo AVy £ 0, 0, W NOyW # 0.
On the other hand, the condition (2.1.9) amounts to the same thing as
(2.2.16) 09t Oy W + OpW # 0.

In the Section 2.2.3, we will further exploit the information (2.2.13) in order to
interpret the system S differently. Just retain here that :

Proposition 2.2.3. Assume (2.2.11) and (2.2.13) together with the preliminary
hypothesis (2.2.16). Then, the couple (p,w) is compatible on the domain QU x T
if and only if we have (2.2.15) and the following conditions :

(2.2.17) Vo -0gW 4 0pp V-0, W =
(2.2.18) (V- 0uW) (V) - 0gW + 0gtp Vb - 0y, W)
)
)

(2.2.19 (V- 0,W)?+ (Vo -0y W) (Vi) - O, W)
(2.2.20 V- 0,W + Vi) - 0, W

o O©oO O O

Comparing the two Propositions 2.2.1 and 2.2.3, we see that (2.2.8)-(2.2.9)-(2.2.10)
can be handled as a special case of (2.2.17)-(2.2.18)-(2.2.19)-(2.2.20). It suffices
to work with 9,W = 0. Thus, in the chapters 2.3 and 2.4, we can concentrate
on the system (2.2.17)-(2.2.18)-(2.2.19)-(2.2.20). We will examine separately what
happens when respectively Vi - 9y W =0 and V- 9y W # 0.

2.2.2 Factorization of compatible couples.

Suppose (2.2.11). To obtain (2.2.13), we proceed in two steps. First, in the
paragraph 2.2.2.1, we produce a local version of the Proposition 2.2.2. Then, in
the paragraph 2.2.2.2, we complete the proof of the Proposition 2.2.2.

2.2.2.1 The local version of the Proposition 2.2.2.

0 = (0,0,0) € Q0 ¢ R3. In this paragraph, we work locally, near a point
€ Q2 x T. We select some open connected neighbourhood T' satisfying
eI c Q% x T. Typically, we can take

r=r% :=0x)§—76+7, (r76)cRix]0,1[xT.
(¢, w) be a couple which is compatible on ng' By exchanging w(z,6) into

w(z,0 — ), we can always suppose that 6 = 0. In what follows, we will argue on
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I‘gf. Note 4, j and k three distinct elements chosen among the set {1,2,3}. The
constraint (2.2.11) means that there is k giving rise to
(2.2.21) Vwg(z,0) € Vec(Vw;(z,0), Vwj(x,0)) V (z,0) € ng,

(2.2.22) Vwi(z,0) AVw;(z,0) #0 ,  V(x,0) €T);.

The direction Vp(0) cannot be simultaneously colinear to the two vectors Vw; (0, 0)
and Vw;(0,0). Pick the indice I € {4, j} in such a way that Vi (0) A Vay (0,0) # 0.
Then, do a permutation on the three directions x1, x2 and x3 (with the corre-
sponding permutation on the components w1, we and ws) in order to have | = 1
and k = 3. Then, by restricting » € R* and 7 €0, 1[, we can obtain

(2.2.23) VoAVwy #0,  V(x,0)€l};
while the conditions (2.2.21) and (2.2.22) become

(2.2.24) Vws(z,0) € Vec(Vw(z,0), Vw(x,0)) ,  V(x,0) €T

T

(2.2.25) Vwi(z,0) A Vws(z,0) #0 , ¥V (z,0) €I},

The constraint (2.2.24) allows to deduce the existence of a scalar function W3 in
CH(R?x] — 7, 7[;R) such that

(2.2.26) ws(z,0) = W3 (wl(m, 0), wa(z,0), 9), Y (x,0) € F,‘?y;.
Then, using the convention
Wl(w17w279) w1
W(wi,ws,0) = | Wa(wi,w2,0) | := wo ;
W3 (wq, w2, 0) W3 (w1, w2, 0)
we can get
(2.2.27) w(z,0) = W(wi(z,0), wa(x,0),0), V(z,0)¢ I‘gf.

Lemme 2.2.2. Select a couple (¢, w) which is compatible on ng and which
satisfies (2.2.24) together with (2.2.25). Then, there exists a scalar function
Wy € CYH(R2x ] — 7, 7[;R) such that the component ws can be put in the form

(2.2.28) wo(z,0) = Wa(p(z),wi(z,0),0), V(z,0)¢c qui'
Proof of Lemma 2.2.2. To obtain (2.2.28), it suffices to show that
(2.2.29) Vws(z,0) € Vec(Vp(x), Vwi(z,0)), V (z,0)€ I‘gi.
The proof is by contradiction. Suppose that (2.2.29) is not verified :

(2.2.30) 3 (o, bp) € ng, Vwa(zg,00) & Vec(Vp(zo), Vwi(xo, b)) -
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Combining (2.2.23) and (2.2.30), we see that the vectors V(z), Vwi (29, 00) and
Vws (o, 0g) give rise to a basis of R?. In addition, by using the definition of the
E; and the restrictions (2.2.1), (2.2.2), (2.2.3) and (2.2.4), we can get
3 =
(Dyw + Opw ® V)~ = Z?:o E;=0.

Thus, the matrice
Vwy + Opwy 'tV
Dyw+ 0pw @ Vo = | Vwsy + Opws IV
'Vws + Opws 'V

is at most of rank two. In view of (2.2.26), the third row vector is

Vws + dgws Vo = 0y, W3 (Vwi + dpwy Vi)
+ 8w2W3 (VU)Q + Opws VQO) + Og W3 V.

It must be a linear combination of the two first row vectors so that
(2.2.31) (89W3) (w1 (20, 00), w2 (w0, o), 60) = 0.
In what follows, the functions will be (unless stated otherwise) computed at the
point (x,0) = (xo,6p). The information (2.2.31) implies that
Opws = Oy, W3 (w1, w2, 0p) Opwi + Owy, W3 (w1, wa,0y) dgws .

Looking at (2.1.9), we note that either dgwi(xg,0y) # 0 or Jpwa(zo,by) # O.
We will below consider the case Gpwa(zo,00) # 0. The other situation (that is
Opwi # 0) can be dealt in a similar way.

The constraint (2.2.31) allows simplifications when writing (2.2.1), (2.2.2), (2.2.3)
and (2.2.4). For example, the condition (2.2.1) reduces to

(2.2.32) Voo - O, W = — 201

Bt V- Oy W.

The condition (2.2.3) is nothing other than
(Dyw)? = [(Dyw)? 0y W] ® Vwy + [(Dyw)? 04, W] @ Vg = 0.

Taking into account (2.2.25), this identity is possible only if
(2.2.33) (Dyw)? 9, W = 0, (Dpw)? 8, W = 0.
Defining a := 'Vw; Dyw 0y, W and 3 := *Vws Dyw Oy, W, we find

(Dew)? 0, W = & *(1,0, 00, W3) + 8 (0,1, 0, W3) .
The first constraint of (2.2.33) means that the two coefficients « and [ are zero,
yielding
(2.2.34) (Vwy - Dy W)% 4+ (Vwy - 0, W) (Vws - 0, W) = 0,
(2.2.35) (Vws - 0y, W) (Vwy - O, W + Vg - 0,5, W) =
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By the same method followed this time at the level of the second condition, we
can extract the necessary and sufficient conditions

(2.2.36) (le . anW) (Vw1 . 8w1W + ng . anW) =0 y
(2.2.37) (Vwy - Oy W)? + (Vwy - 0, W) (Vws - 0, W) =

We claim that it is not possible to have
(2.2.38) Vwy - 81U1W + Vws - 8W2W #0.

Indeed, suppose that (2.2.38) is true. Then, the relations (2.2.35) and (2.2.36)
imply that Vws - 9,,, W = 0 and that Vw; - 0,,, W = 0. Using these informations,
the relations (2.2.34) and (2.2.37) lead to Vw; - 0, W = 0 and Vws - 9, W = 0.
Now, these two last informations are in contradiction with (2.2.38). Therefore, we
are sure that

(2.2.39) Vwy - 8W1W + Vws - 8W2W =0.

The condition (2.2.39) induces (2.2.35) and (2.2.36). It is also adjusted in such a
way that (2.2.37) is equivalent to (2.2.34). Thus, the analysis of (2.2.3) is the same
as the one of (2.2.34) and (2.2.39). These two constraints (2.2.34) and (2.2.39) say
in particular that the two vectors

(Vwy - 0, W, Vs - 0y, W) € R?, (Vwy - 0w, W, Vws - 0, W) € R?
are colinear. In other words, we can find (&, () € R?\(0,0) such that
(2.2.40)  Vwp - (@ 0y, W + 00, W) =0,  Vwy - (& Oy W + 0y, W) = 0.

Now, we consider (2.2.2) computed at (g, 6p). Exploiting the informations (2.2.31),
(2.2.32) and (2.2.39), we can formulate (2.2.2) according to

2 Jpw1 (le . 8W1W) + Opws (le . anW)

(2.2.41) 2
O Gy 0, W) (Vi - 00 W) =0
ag'wg

Multiply (2.2.41) by Opwa (Vws - Oy, W). Then, use (2.2.34) and (2.2.39) to obtain
(2.2.42) (V- 0y W) (Vs - Qgw)? = 0.

In the same way, multiply (2.2.41) by Jpwa (Vwy - Oy W). Then, use (2.2.34) in
order to extract

(2.2.43) (V- 0, W) (Vwy - dpw)* = 0.

Two situations can happen :
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>1< The case V- 0y W # 0. The equations (2.2.1), (2.2.42) and (2.2.43) imply
that V¢, Vw; and Vwsy belong to the same plane (Jpw™). It follows that
these vectors are linearly dependent, in contradiction with (2.2.30).

>2< The case Vg - 0y, W = 0. From (2.2.32), we deduce that Vi - 9,,, W = 0. It
follows that

(2.2.44) Vo (o 0y, W+ 8 0,W)=0, V(a,3)eR2

We choose a' = & and g = 3. According to the definition of the function
W and since (&, 3) # (0,0), we have
& O, W + 3 8,0, W = t(a, B, %) # (0,0,0).

The informations (2.2.40) and (2.2.44) (where o' = & and 8 = f3) indi-
cate that the vectors Vi, Vw; and Vwsy belong to the same plane, namely
(& Dy W+ B Dy, W), Tt follows that these three vectors are linearly depen-
dent. This is in contradiction with (2.2.30).

In conclusion, we have (2.2.29), as expected. 0

Proposition 2.2.4 (local version of the Proposition 2.2.2). Assume (2.2.11) and

select any 6 €T. Let (¢, w) be a couple which is compatible on Ffﬂ:. Then, by
selecting v € R and 7 €]0, 1] conveniently and by permuting the directions x1, z2
and x3 (with accordingly the components wy, we and ws of w), it is possible to
obtain (2.2.23) and to write the profile w(z,0) in the form

(2.2.45) w(z,0) = W(p(@), wi(x,0),0),  (x,0)T?,

with a function W = (W1, Wa, W3) € CH(R?x | — 7, 7[; R?) whose two first compo-
nents Wi and Wy satisfy

(2246) Wl (807 wi, 0) = wq, v (907 wi, 6) € R2X ] - ":7 ’F[a
(2.2.47) O, Wa(p,w1,0) # 0, ¥V (p,w1,0) € REx] —7,7[.

Proof of proposition 2.2.4. Without loss of generality, we can suppose that
= 0. Taking into account (2.2.28), the function w3 can be put in the form

w3($70) = W3(‘P($)’w1(337 9)70)7 v (1"7‘9) € FS,F
with Ws(p, w1, 60) := W3 (wl, Wa(p,wy, ), 9). In addition, we can define
Wi(p,wi,0) = wy, Y (p,wi,0) € R2x ] — 7 7[.

With these conventions, we recover both (2.2.45) and (2.2.46). Recalling (2.2.23),
to have (2.2.11), the vector ,W A 9y, W must not vanish on R?x ] — 7,7[. This
amounts to saying that the function 9,W> does not vanish on R*x | — 7, 7[. This
is exactly what requires the condition (2.2.47). -



CHAPTER 2. OSCILLATING SOLUTIONS 51

2.2.2.2 The proof of the Proposition 2.2.2.

Select a compatible couple (¢, w). The condition (2.2.11) implies that
(2.2.48) dim Vec(Vwy, Vws, Vws) = 2, V(z,0) € Q2 xT.

Locally, by permuting the directions 1, x2 and z3 as it is made in the Proposition
2.2.4, we can get Vi € Vec(Vwy, Vws). It follows that the direction V¢ belongs
to the vector space Vec(Vwi, Vws, Vws). Observe that this property does not
depend on the choice of the coordinates. Thus, it remains to be true in all the
domain under study. We must have

(2.2.49) Ve € Vec(Vwi, Vwy, Vws) , V(x,0) € Q2 xT.

Fix § € T. Given a function ¥y € C}(R3;R) and ry €]0, 7], introduce
bo(x,0) = Wo(wr, wy,ws)(w,0),  V(x,0) € Q2 x]0 —rg,0 + 1]

We can deduce from (2.2.48) and (2.2.49) the existence of ¥y € C}(R3;R) and
rg €]0,7[ such that Vi is not colinear to Vi, namely that the first component
of Vi A Vg is positive

(Vo AVig)1 > 0, VY (z,0) € Q2 x]0 — 1o, 0 + 1]
whereas

Vec(Vo,Vipg) = Vec(Vwy, Vwe, Vws), V(x,0) € QQG X160 — 19,0 + 1] .
The family of intervals |6 — rg, 8 + rg| with # € T is an open cover of T. Since T
is compact, there is a finite subcover T C Uf\;l 10; — ro,,0; + 19,[ . Now, consider
some associated partition of unity {x;}X, where the functions x; € C*(T;R)
are adjusted such that suppx; C0; — ry,,0; + rg,[ and vazl xi = 1. We replace
r € R by the minimum of the numbers ry, (with ¢ € {1,--- ,N}). Then, we
can introduce ¥(x,0) := Zf\i 1 Yo, (x,0) xi(0). The preceding construction yields
(2.2.15) as well as

(2.2.50) Vec(Vp, Vi) = Vec (Vwy, Vwe, Vws),  V(x,0) € Q2 x T.
The restriction (2.2.50) means that the three components w; can be expressed as

functions of ¢, ¥ and 6. At this level, we recover (2.2.13).

2.2.3 Necessary and sufficient constraints on (p, 19, W).

In this Section 2.2.3, we first show the Proposition 2.2.3, see the paragraph 2.2.3.1.
Then, in the paragraph 2.2.3.2, we exclude the situations already examined in [7]
and we precise the assumptions on (¢, 1, W) to be retained.
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2.2.3.1 The proof of the Proposition 2.2.3.

The restriction (2.2.17) is just a repetition of (2.2.1). Concerning (2.2.18), it comes
from the constraint (2.2.2) in which the matrix D,w(z, ) is replaced as in (2.2.14).
The relation (2.2.1) induces simplifications leading to (2.2.18). With (2.2.14), we
can formulate (2.2.3) according to

(Dw)? 9,W ® Vo + (Dyw)? 0y W @ Vi = 0.

Recall (2.2.15). The two vectors Vi and V4 being independent, the above identity
is equivalent to

(2.2.51) (D;w)* 0,W = 0,

(2.2.52) (Dyw)? Oy W =

Plug (2.2.14) into (2.2.51). Then, exploit (2.2.15) in order to extract
(2.2.53) (V- 0,W)?+ (V- 0,W) (Vp-0yW) = 0,
(2.2.54) (V- 0,W) (V1) - 0y W + V- 0, W) = 0.

We do the same with (2.2.52). This time, we get

(2.2.55) (Vi) - 0y W) + (Vip - 0,W) (V- 9yW) = 0,
(2.2.56) (V- 0y W) (Vi) - 0y W 4+ V-0, W) = 0.

The relations (2.2.19) and (2.2.53) are similar. Observe that we cannot have
V- 0y W +Ve-0,W # 0. Indeed, in such a case, (2.2.53), (2.2.54), (2.2.55) and
(2.2.56) would provide
O,W € Vec(Vo, Vi)t | 9yW € Vee(Vp, Vi) .

In other words, because of (2.2.15), the two vectors 9, W and 9, W of R? would
be colinear. This is clearly not coherent with (2.2.15). Therefore, we are sure to
have (2.2.20).

Now, we have to show the opposite implication, that is the “only if” part of the
Proposition 2.2.3. Using (2.2.13) and (2.2.15), the relations (2.2.1), (2.2.2), (2.2.11)
and (2.1.9) are respectively equivalent to (2.2.17), (2.2.18), (2.2.15) and (2.2.16).

In addition, we have seen that looking at (2.2.3) is the same as imposing (2.2.53),
(2.2.54), (2.2.55) and (2.2.56). The three conditions (2.2.53), (2.2.54) and (2.2.56)
are taken into account at the level of (2.2.19) and (2.2.20). In view of (2.2.20), the
remaining condition (2.2.55) reduces to (2.2.53).

It remains to check that the relation (2.2.4) is indeed a consequence of the con-
straints of the Proposition 2.2.3. To this end, use (2.2.14) in order to identify
the different terms of (2.2.4). With (2.2.19) et (2.2.20), we can easily recover
M (D,w)? = 0. Then, we can exploit (2.2.17) and (2.2.18) to obtain

Dyw M Dyw + (Dyw)? M = (Vi - gw) (Vo - 0, W + Vb - 9y W) 0y W @ Vo .
In view of (2.2.20), we have (2.2.4). The proof of the Proposition 2.2.3 is finished.
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2.2.3.2 Further adjustments.

Before going further in the analysis, we must take care to deal with situations which
are not considered in [7]. Noting W (z, ) := W (p(z),1(z,0),6), the article [7] is
based on the following condition, see (35) of [7] :

(2257) HQQWL DxW HV@J_ = H(aew Oy W+ W)L (8¢W ® V¢) HV@J_ =0.
Therefore, in order not to repeat what is made in [7], we have to work with W, ¢
and 1) adjusted such that 9y W A 9gW # 0 and Vi) A Vo # 0.

There are different ways to factorize the profile w(z, #) as it is proposed in (2.2.13).
Indeed, if x(¢,9,0) € C*(R? x T;R) is any function such that d,x # 0, not-

ing ¥ := x(,,0), we find w = W(p,¢,0) = W(p,,0) with W(p,1,0) =
W (¢, x(0,9,0),0). Then, we find Oy W = Oy x 9; W # 0 together with
W = 0, W + d,x Oy W /yx,  Opth = Bpt Dyx + Do -

In this transformation, the conditions dyW # 0 and J,W # 0 are preserved. On
the other hand, we have some freedom concerning dptp. By adjusting y conve-
niently, we can make sure that dyp1p Z 0 or dypip = 0. According to circumstances,
we will use one or other of these two conditions. In preparation for what follows,
we put aside the framework (2.2.58) given below

(2.2.58) b 20, W20, 0,WARWZ0, VIAVeZ0.

2.3 Compatible couples when Vg - 0,W = 0.

We discuss here the system (2.2.17)-(2.2.18)-(2.2.19)-(2.2.20) under the restriction

(2.2.58) and when Ve - 9, W = 0. In other words, we have to deal with (2.2.13),
(2.2.15) and (2.2.58) combined with

(2.3.1) Vo -0gW = 0,

(2.3.2) Ve -0,W = 0,

(2.3.3) Vip-0,W = 0,

(2.3.4) Veo-0uyW = 0.

2.3.1 The foliated structure associated to the phase ¢.

The phase ¢ must here inherit some special structure.

Lemme 2.3.1. Assume (2.1.9), (2.2.15) and (2.2.58) as well as (2.3.1), (2.3.2),
(2.3.3) and (2.3.4). By restricting r € R% and by permuting the coordinates
x1, T2, T3 and the components 01, Doy, O3, we can find two scalar functions
f €CYR;R) and g € C*(R;R) adjusted such that

(2.3.5) Vo(z) = (fop(x),1,g0¢(x)) dp(z), Vel
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Proof of the Lemma 2.3.1. The conditions (2.3.1) and (2.3.4) say that the
direction V is parallel to dgW A 9y, W # 0. It follows that the direction V¢ can
be viewed as a function of only (¢, ), 6). By restricting r € R and by permuting
the coordinates 1, w2, T3 and the components 01, dap, J3p, we can always
recover

Vo = E(p,0,0) dap,  E(p,9,0) :="(f(p,,0),1,9(p,1,0)).

Since the function ¢ does not depend on 0, we must have 9ptp OpE + 0pFE = 0.
When 0y, E = 0, we find also g E = 0 so that (2.3.5) is verified. From now on, we
supppose that 0, E # 0.

The application 9yt can be represented as a function of only the variables (¢, 1, 0),
say Opp = k(p,1,0) with k& € C(R? x T;R). Consider any function (¢, ,8)
satisfying 9y x # 0 and k 9y x+9px = 0. Define 9 := x(¢, 1, 0). We can change the
set of independent variables (p,v,0) into (¢, 1, 0) to find E(yp,1,0) = E(p, ¥, 0).
Observe that

06 [E(p,,0)] = 090 Oy E + 0gE = 0= 9 [E(p, 1), 0)] = 09 O3 + O

By construction, we have 891/; = 0. It follows that the function E does not depend
on #. Retain that

(236) Vo = E‘((pa ,(;) 62907 E(<p> J}) = t(f(gpa @Zj)a 1, f](go, 'J))) .

Since 0y FE = 0, we must have %E # 0. Writing W(p,v,0) = W(gp,z[?,@), we
still have to deal with (2.3.1)-(2.3.2)-(2.3.3)-(2.3.4) but this time with W and ¥

in place of W and . We decompose W into
(2.3.7) W(p,d,0) =a'(0,~3.1) +'(1,~f,0)+7'(f,1.9)

where the three functions «, 8 and v depend on ¢, ¥ and 6. The condition (2.3.1)
yields dpy = 0. On the other hand, the restriction (2.3.4) leads to

(2.3.8) Oy (P +1+43%) —adyg—BO;f+v(fO;f+30;9) = 0.
Taking the derivative of (2.3.8) with respect to 6, we find
(2.3.9) 39a8¢§+89ﬁ81;f =0.

The symmetry of second derivatives expressed in the form 9730 = 93¢ can be
traducted according to

(2.3.10) (=033, F 059 — GO5F,05F) - (914, 009, 039) = 0.
Combining (2.3.9) and (2.3.10) with 31;]3 # 0, we can deduce that

(2.3.11) Vi - OgW = 0930110 — (f 993 + § 0pr) Batp + Opv D3th = 0.
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Recall that Vo A Vi) # 0. Thus, the relations (2.3.1), (2.3.3), (2.3.4) and (2.3.11)
indicate that the two vectors pW and 81/7W are colinear. It follows that g W A

Oy W = Oyx W A D J)W = 0. This last information is clearly in contradiction

with (2.2.58). -

Recall here a basic result (see also [5, 7]) concerning (2.3.5).

Lemme 2.3.2. Select three functions f(¢), g(¢) and @oo(w2) in C*(R;R). Then,
for r € R%. small enough, there is a unique expression p(z) € C1(QY;R) satisfying
(2.3.5), that is

(2.3.12) Op— fop dap=0, J3p —gop(x) Dap =0, Vae QY
together with the initial data ¢(0,x2,0) = @oo(z2) for all xa €] —r,7].

Proof of the Lemma 2.3.2. The Cauchy problem for the first conservation law
involved at the level of (2.3.12), namely

(2.3.13) O1p0 — f oy Doy = 0, ©0(0, r2) = poo(z2)

has a local C! solution g(x1,22) near the point (0,0) € R%2. Then, consider the
local C! solution ¢(z) of

(2.3.14) O30 —gop(x) Oap = 0, o(x1,22,0) = @o(1,22) .

To verify (2.3.5), it suffices now to check that = := d1¢p — f o p(x) d2p = 0 also
when x3 # 0. This property is in fact a consequence of the preceding construction
which implies that

BE—gop(z) HE =g opdpE,  E(r1,22,0)=0.

2.3.2 The description of (¢, w).

In this paragraph 2.3.2, the starting point is the description (2.3.7) which is based
on some auxiliary function ¥ (x) (not depending on 6). At this stage, we know
that w can be put in the form

0
w(x,@) = W(g@(l‘),?/)(:l?),@) = 0(80(1‘)7@&(-70)’9) ( —gop(z)
(2.3.15) X 1fw(x)
+5(90(‘T)71/)(x)79)( —fop(z) ) +7(¢($)7¢($)79)< 1 )
0 gop(x)

with a phase ¢ satisfying (2.3.12). It remains to adjust the ingredients ¢, 1) and
W according to (2.3.1)-----(2.3.4). We have already observed that the constraint
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(2.3.1) is the same as dpy = 0. In the same way, using again (2.3.12), the condition
(2.3.4) is equivalent to dyy = 0. Thus, the function v depends only on the variable

©. Retain that v(p, 9, 0) = v(¢).

Now, we can interpret the two remaining restrictions (2.3.2) and (2.3.3) into

(2.3.16) —ag =B +A (PH1+)+y(f f+99) = O,
(2.3.17) Opa Vi - 1(0,—g,1) + 9B Vo - {(1,—f,0) = 0.

From (2.3.16), it is easy to extract
(2.3.18) O g + 0B f =0, Opa g + OB ff = 0.

The discussion about (2.3.16)-(2.3.17) is separated in two cases.

2.3.2.1 The case f'=¢4 =
By hypothesis, we have f = a and g = b with (a,b) € R?. It follows that
(2.3.19) o(x) = poolaxs +x2 +bxs), w00 € CH(R;R).

In view of (2.3.16), we have also v = ¢ for some ¢ € R. On the other hand, the
function ¢ (z) can always be put in the form

(2.3.20) Y(x) = U(ry, 23,021 +29 +ba3),  U(X,Y,Z) € C'(R%R).

Then, the condition (2.3.17) becomes the following scalar conservation law (im-
plying Z and 6 as parameters)

At the level of (2.3.21), the variables Z and 6 play the part of parameters. Since
U(X,Y,Z) does not depend on # € T, we must have (when dya # 0)

(2:3.22) 0y = x(¢,¥) dpa,  x € CHR%:R).
The equation (2.3.21) reduces to
(2.3.23) x(po0(2),¥) Ox¥ + Oy ¥ = 0.

We can sum up the situation when Ve - 9,W = 0 and f’ = ¢’ = 0 through the
following result.

Proposition 2.3.1. Select any constants (a,b,c) € R3. Select any smooth func-
tions poo(Z), x(¢,¥) and a(p,,0), any solutions 3(p, 1, 0) and ¥(X,Y, Z) satis-
fying respectively (2.3.22) and (2.5.23). Define p(x) and (x) according to (2.3.19)
and (2.3.20). Consider the function w(z,8) given by

0 1 a
(2.3.24) wza(%w,9)<—b)+ﬁ(<p7¢,9)(—a)+c (1)
1 0 b

Then, the couple (p,w) is compatible.
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Take ¢ as indicated in (2.3.19). Given any function m € C!(R x T;R), define

()
B(p,¥,0) == m(p,0) + ¢ /0 s (Opa)(p,s,0) ds.

Then, we recover (2.3.21) with ¢(z) = 21/(1 4 z3¢(z)). The vectors Vi and Vi)
are not colinear. By choosing m and « conveniently, we can obtain

Oy W N OpW = (Oypa 0pB — Oy3 Bgar) (a,1,b)
= Oypor (Opm — cpfow dpalp,s,0) ds) H(a,1,b) # 0.

The relation (2.2.57) is not satisfied. This example shows that the situations
considered in Proposition 2.3.1 may not fall under the scope of [7].

Note that the support in (X,Y’) of any non trivial solution ¥ # 0 of (2.3.23)
cannot be compact. Moreover, when x depends in a non linear way on v, due to
the formation of singularities, the construction is valid only locally.

2.3.2.2 The case f'#0 or ¢ Z0.

In view of (2.3.18), we must have OyW A 0, W = 0 that implies (2.2.57). This
situation is excluded at the level of (2.2.58) because it has been treated in [7].

Still, for the sake of completeness, we explain below what happens. We deal with
the case f’ # 0, the other situation (¢’ # 0) being similar. This time, seek the
function ¢ (x) in the form

(2.3.25) P(z) = U(z,23,0(2)),  U(X,Y,Z)eC(R%R).

From (2.3.18), extract 0y in function of dyc. Plug the result into (2.3.17). Due
to (2.2.58), we must have dya # 0. Thus, it remains

(2.3.26) (XY, 0) = Wo(d' (@)Y + f'(9) X),  WoeC'(R;R).

Thus, the variable ¢ being fixed, the function ¥ is constant on lines. Again, its
support cannot be compact.

Proposition 2.3.2. Select functions f, g, v and o in C*(R;R) with f' # 0.
By applying the Lemma 2.5.2, we can construct a phase p(x) which is solution
of (2.3.12). Define the function (x) as it is indicated in (2.5.25) and (2.3.26).
Given any o € C1(R? x T;R) with Oy % 0, define 3 € CH(R? x T;R) through
the relation (2.3.16). Finally, consider the expression w(x,0) which is given by
(2.3.15) where v(p,1,0) = v(p).

Then, the couple (p,w) is compatible.

To illustrate the situation under study, we produce some example. Just take
(o) =, g(p) = o~ and v(p) = 0. As a solution of (2.3.5), we can choose

_1—.2132 1—.%'2)2 X3
ple) = 21 +\/< 211 T
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Concerning 1, given any function Z € C*(R?;R), we can take

U(@) = Y(z,0) = E(p(z), 22 +20(x) 21,23 — () 21) .

2.4 Compatible couples when V¢ - 9,W % 0.

We discuss here the system (2.2.17)-(2.2.18)-(2.2.19)-(2.2.20) under the restriction
(2.2.58) and when Vg - 0, W # 0.

Lemme 2.4.1. Assume V-0, W % 0. The couple (¢, w) with w given by (2.2.13)
is compatible if and only if there exists a function k(x,0) such that

(2.4.1) Vo-0pw = 0,
(2.4.2) Vi -Opw = 0,
(2.4.3) Vo (0,W —kdyW) = 0,
(2.4.4) VY- (0,W —k W) = 0,
(2.4.5) (kVo+ Vi) -0,W = 0,
(2.4.6) (kVo+Vy)-0,W = 0.

Proof of the Lemma 2.4.1. The relation (2.4.1) is a repetition of (2.2.17).
When Vg -0y, W # 0, the condition (2.2.18) amounts to the same thing as (2.4.2).
On the other hand, from (2.2.19) and (2.2.20), we can extract

(V- 9yW) (V- 0,W) = (VY - 9y W) (Ve - 9,W) = 0

meaning that the vectors {(Vip - 9, W, Vi) - 9y W) and (Ve - 9, W, V¢ - 9,W)
are colinear. The second one can be obtained by multiplying the first one (which
by hypothesis is not equal to zero) by a factor k. This is precisely (2.4.3) and
(2.4.4). From (2.2.19) or (2.2.20) with (2.4.3) and (2.4.4), we can extract (2.4.5)
and (2.4.6). Reciprocally, from the informations (2.4.3), (2.4.4), (2.4.5) and (2.4.6),

it is easy to deduce (2.2.19) and (2.2.20). 0

2.4.1 Reduction of the problem : preliminaries.

The system (2.4.1)-----(2.4.6) is not yet in a suitable form.

2.4.1.1 Restatement of the problem.

Since 9y, W # 0, by permuting the coordinates, we can always suppose that
OyWa # 0, allowing to exchange the variable ¢ into Wa(p,v,0). After this
modification, we have to deal with

(247) W((va79) = t(V(%w,@),w,W:s(%%Q)) ) V.=W;.
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Recall (2.2.58) which says in paticular that d,W # 0. After permuting the two
indices 1 and 3 (if necessary), we can suppose that d,W; = 9,V # 0. It follows

that we can regard W3 as a function of (¢, V,0). In other words, we can find
some function £(3, V,0) € C}(R? x T;R) such that

(24.8) W(p,1,0) =" (V(g,1,0), ¥, £(¢, V(¢,,0),0)) .

Using (2.2.58) together with (2.4.1), (2.4.2), (2.4.3) and (2.4.4), we can see that the
two vectors pw and 9, W — k 9y, W are colinear meaning that there is a function
B(z,0) which is adjusted such that

(2.4.9) O,W —k Oy W =3 0,W,  k:=k+ (0.
Knowing (2.4.8), this information (2.4.9) becomes
(2.4.10) 8 0L =0, 0,V = B0V, k= —00p.

Since 0,V # 0, we must have 3 # 0 and 9V # 0, this last condition being also a
consequence of (2.2.58). Necessarily, we must have 9p£ = 0. Introduce

(2.4.11) v(z,0) = V(p(z),9(2,0),0), vecl(QxT;R).
Note simply
L, v) = LY, v)(z,0) = £(w($> 0),v(z, 9>)a

8¢£(wav) = 8w£(¢($,0),’0($,9)),
8U£(¢,U) = 6\/2(’(/1(13,‘9),’[1(13,‘9))
Observe that Vi - 1(1,0,0,£) 9V = Vi - dyw — Vi - Oy W ptp. In view of the

restriction (2.4.1), the condition dptp # 0 of (2.2.58) and the hypothesis V-0y W #
0, we are sure that dp'V # 0. Retain that

(2.4.12) 0,V #0, 0yV #£ 0, Optp £ 0, = — Oy 8¢V/89V.

Proposition 2.4.1. Assume (2.2.58), (2.4.8) and Vy - Oy W # 0. Then, the
function £ does not depend on the variable € T and we have (2.4.12). Moreover,
the system (2.4.1)-----(2.4.6) is equivalent to

(2.4.13) Ogv (D10 + 0uL(1, v) D3] + Dy [Dap + Dy L(1h,v) D3] = 0,
(2.4.14) Ogv [811,/) + avﬂ(w, ’U) 83w} ~+ Oy1p [82w + 6¢£(w, 1}) 831/)] =0,
(2.4.15) 01+ 0,E(0,0) By — O ST (019 + 0,E(0, ) D] = 0,

where v is given by (2.4.11) whereas 0,V and 0gV are computed at (p,,0).



CHAPTER 2. OSCILLATING SOLUTIONS 60

In view of (2.4.11), from (2.4.13) and (2.4.14), we can easily deduce that
(2.4.16) Dgv [01v + 0pL(1h, v) 3v] + Dt [Oav + By L(¥,v) Dgv] = 0.

Proof of the Proposition 2.4.1. We have already seen that the function £
does not depend on the variable § € T and that the conditions inside (2.4.12) are
verified. By construction, we know also that

(2.4.17) w(z,0) = "(v(z,0),9(z,0), £y, v)(x,0)), Opw # 0.

Taking into account (2.2.58) and (2.4.8), the two constraints (2.4.1) and (2.4.2)
are equivalent to the existence of some (nonzero) function a(z,f) such that

1 0
(2.4.18) Opv 0 + Ogp 1 =a VoAV
0,8 0,8

Since 9,V # 0, we have I, W A 9y W = 9,V {(—=9,8, —0£,1) # 0. Combining
this with (2.4.5), (2.4.6) and (2.4.12) yields the existence of some (nonzero) scalar
function vy(x, @) such that

Op L
2.0.19) B { LR CR)N) N ( e )

39V(30(a:),1/1(95, 0), 0) ]

Plug the expression V4 given by (2.4.19) into (2.4.18) in order to extract

(2.4.20) pv = —ay (Oap + 0yL O39),
(2.4.21) Iy = +ay (e + 0,2 dsp),
(2.4.22) Ogv OpL + Oy OpL = +ay (81/,3 O1p — 0, L Do) .

Since ay # 0 (because 9ptp # 0), from (2.4.20) and (2.4.21), we can deduce
(2.4.13). On the other hand, the relation (2.4.22) provides no new information
because it is a linear combination of (2.4.20) and (2.4.21). Observe that

(17 0, 6’02) : t(avsaawg’ _1) = 07 (07 1, a¢£) : t(av£7 8¢£, _1) =0.

Using these identities and (2.4.13), coming back to (2.4.19) multiplied by the non
zero vector valued function dypw, we can obtain (2.4.14). The last condition (2.4.15)
is just the product of (2.4.19) with the vector (1,0, 9,2).

Conversely, suppose that ¢(x) and ¥ (z,0) are such that Vo A Vi) # 0 and sat-
isfy (locally) the system (2.4.13)-(2.4.14)-(2.4.15) for some functions £(¢,v) and
V(¢p,1,0). Define v and w as in (2.4.11) and (2.4.17).

Both (2.4.1) and (2.4.2) become a direct consequence of (2.4.13) and (2.4.14).
We can obtain (2.4.9), that is (2.4.3) and (2.4.4), through (2.4.10) by adjusting
the coefficient § (and then k) conveniently. At this stage, the interpretation of
(2.4.13)-(2.4.14)-(2.4.15) is that the vector on the left of (2.4.19) is orthogonal to
the direction (1,0,9,£) and *(0,1,9,£). Thus, we must have (2.4.19) for some
coefficient . This is exactly (2.4.5) and (2.4.6).
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g

Since dpw # 0, by a small rotation in the space variable € R3, we can always
obtain that dgv # 0. All the restrictions in (2.4.12) are stable under such a
modification (if it is small enough). In what follows, we work locally in (x,6)
under the assumptions dypv # 0 and (2.4.12). We will exploit these informations in
order to perform different changes of variables which are crucial when discussing
the content of (2.4.13)-(2.4.14)-(2.4.15).

2.4.1.2 Various changes of variables.

Subtract (2.4.15) from (2.4.14), use (2.4.13) to replace d1¢ + 9,£(¢,v) D3¢, and
then exploit (2.2.58) to make simplifications in order to extract the identity

(2.4.23) (Dt + 048 050) )0t = D,V (Ousp + 4L D) [05V .

The identity a/b = ¢/d implies that a/b = (¢ +ya)/(d + vb) for all v € R. This
implication applied to (2.4.23) with v = 9,V furnishes

021 + &pﬂ 03 _ &)OV (82(,0 + 6w£ 83(,0) + 8¢V ((927# + &pﬂ 83¢)
O OV + (9¢V Og)

Recalling (2.4.11), this is the same as
(2.4.24) (BQT,Z) + 81/)2 83¢)/891ZJ = (821) + 81/,2 831))/891; .

Since Jgv # 0, we can work (locally) with the variables (x,v) in place of (z,6).
The function ¢ does not depend on 0 € T and therefore it does not depend on v.
On the contrary, the function 1 can be put in the form

(2.4.25) Y(z,0) = u(z,v(z,0)), Ovu # 0.

Formulating (2.4.24) at the level of u(z,v) yields

(2.4.26) Oou + 0yL(u,v) d3u = 0.

Recalling (2.4.16) and exploiting (2.4.26), the constraint (2.4.14) becomes
(2.4.27) ou + 0yL(u,v) Ozu = 0.

Knowing what is the function u(z,v), it is not complicated to obtain v(zx,#). To
this end, it suffices to consider the scalar conservation law

O + 0, L(u(x,v),v) d3v

(2.4.28) + dpu(z,v) [D2v + 0uL(u(z,v),v) d3v] = 0.
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To sum up, the system (2.4.13)-(2.4.14)-(2.4.15) amounts to the same thing as to
identify the two expressions u(z,v) and v(z,#) as it is explained above and then
to focus on the remaining constraint, namely

o1 + 8U£(u(3:, v), v) O3

(2.4.29) + dpu(z,v) [D2p + 0uL(u(x,v),v) O3¢] = 0.

Recall that v € K C R must be seen here, at the level of (2.4.29), as a parame-
ter. Thus, all the difficulty is to solve (2.4.29) with a phase ¢(x) which does not
depend on v. We first explain what happens when d3u = 0. Then, we present the
problematic when dsu # 0.

e The case . In view of (2.4.26) and (2.4.27), we have Vou = 0. It
follows that u(z,v) = U(v) with a function U € C!'(K;R) such that U’ # 0.
Necessarily, the function V depends only on the variable 1. This is a contradiction
with (2.4.12). For the sake of completeness, we still describe below what happens
when d3u = 0 and U’ # 0. Noting £(v) := £(U(v),v), we can see that (2.4.29)
becomes

(2.4.30) dro(x) + U'(v) dagp(z) + £ (v) Bz3(z) = 0.

Recall that the variables z and v are independent. Thus, the relation (2.4.30)
implies that £(v) = £(U(v),v) = av+bU(v) + ¢ for some (a,b,c) € R?. We have
to deal with

(2.4.31) O1p+a O3p+U'(v) (Oep+bD3p) = 0.
This is possible only if U’ = ¢ € R and
o(x) = ®(ca1 — z2, (a+bc)zg — cag), ®cC'(RxR;R).
On the other hand, the function v can be obtained through
(2.4.32) O1v+a d3v + U'(v) (Oov + b d3v) = 0, v(0,-) =vg.

By varying the ingredients a, b, U, ® and vg, we can obtain a whole class of
solutions to the system (2.4.13)-(2.4.14)-(2.4.15).

e The case . Since dsu # 0, we can exchange the variables (x,v) into

(z1,x2,u,v). In particular, the applications ¢, d,u and dsu can be regarded as
functions of (x1,z2,u,v) instead of (x,v). Taking this point of view into account,
we adopt the following conventions

(2.4.33) o(x) = (1,22, u(z,v),0), Y (z,v),

(2.4.34) dvu(z,v) = R(21, 22, u(z,v),0), Y (z,v),
(2.4.35) du(z,v) = S (21, 32, u(z,v),v), Y (z,v).



CHAPTER 2. OSCILLATING SOLUTIONS 63

Recall that R # 0 and S # 0. The constraint (2.4.29) becomes

(2.4.36) Xd=0, X:=0+RO0,

whereas the fact that ¢ does not depend on v amounts to the same thing as
(2.4.37) Y& =0, Y:=RO0,+0,.

The rest of this chapter 2.4 is devoted to the case O3u # 0. Thus, it should be
clearly noted here what the current matter is.

Remaining work. When Osu # 0, the problem is to find a non constant func-
tion ®(x1,x9,u,v) satisfying the transport equations (2.4.36) and (2.4.37) with a
coefficient R(x1,x2,u,v) issued from (2.4.26), (2.4.27) and (2.4.534).

Forcing the presence of u and v at the level of ¢ and passing through (2.4.37) to
express that Jg¢ = 0 may seem unnatural. However, this process allows to simplify
the equation (2.4.29). It leads to the above problem which, to our knowledge, is
original. The strategy to solve it is the following.

In the Section 2.4.2, we extract from (2.4.36)-(2.4.37) the necessary and sufficient
conditions (2.4.39) and (2.4.40) to impose on R. In the Section 2.4.3, we exhibit the
special form (2.4.51) of a coefficient R coming from (2.4.26), (2.4.27) and (2.4.34).
In the Section 2.4.4, we test our criteria (2.4.39) and (2.4.40) on the functions
R which conform to (2.4.51). All requirements are met in different cases leading
to a classification of all compatible couples (when Vo - 0y W # 0 and dsu # 0).
Illustrative examples are proposed in the Section 2.4.6.

2.4.2 Reduction of the problem : geometrical step.

The existence of a non constant solution to (2.4.36)-(2.4.37) relies deeply on the
geometrical properties of the two vector fields X and Y. Introduce the Lie algebra
A generated by the successive Poisson brackets of X and Y. The dimension being
4, we find here

A= (XY, [X;Y], [X;[X;Y]], [Y3[X;Y])).

Proposition 2.4.2. The system (2.4.36)-(2.4.37) has a non constant solution ®
if and only if the dimension of A is strictly less than 4. Two different situations
may occur :

i) dim A = 2. The function ®(x1,x2,u,v) depends on two independent variables.
Then, the coefficient R must satisfy :

(2.4.38) OR+R»MR=XR =0, ROR+O,R=YR=0.

ii) dim A = 3. The function ®(z1,x2,u,v) depends on one variable. The coeffi-
cient R must satisfy XR #£ 0 or Y R # 0 together with

(2.4.39) (XR)YXR—-2 (XR) XYR+ (YR) X’R = 0,
(2.4.40) (YR) XYR—-2 (YR) YXR+ (XR) Y’R =
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Proof of Proposition 2.4.2. Recall that the Poisson bracket of the vector fields
X and Y is the vector field [X; Y] which is adjusted such that

(X;Y]f=-YROf+XRO,f=XYf-YXFf, V f € C®RYR).
From (2.4.36) and (2.4.37), it is easy to infer that Z® = 0 for all Z € A. Thus,

when dim A = 4, the function ® is constant. It means that the phase ¢ is station-
ary, in contradiction with (2.1.4). We examine the other situations.

i) dim A = 2. This situation can occur if and only if [X; Y] is a linear combination
of X and Y, giving rise to (2.4.38). By applying the Frobenius Theorem [2], we
see that the field of planes Vec(X,Y) is associated with a foliated structure of
R* by submanifolds of dimension 2 along which ® must be constant. Clearly, the
function ® inherits two degrees of freedom. In particular, it can be a non constant
solution of the system (2.4.36)-(2.4.37).

i) dim A = 3. To avoid (2.4.38), we have to require XR # 0 or YR # 0. Then,
to obtain dim A = 3, it is necessary to impose

(2.4.41) [X;[X;Y]] € Vec(X,Y,[X;Y]),
(2.4.42) [V;[X;Y]] € Vec (X, Y, [X;Y]).

Under the conditions (2.4.41) and (2.4.42), we find that dim A = 3. By apply-
ing again the Frobenius Theorem [2], we can see that the field of hyperplanes
Vec <X VYL [XG Y]> is associated with a foliated structure of the space R* by hy-
persurfaces along which ® must be constant. On the other hand, the function ®
can actually vary in the directions which are transversal to these hypersurfaces.
Now, it remains to convert (2.4.41)-(2.4.42) in the form of constraints implying
the coefficient R. To this end, compute

[(X;[X;Y]] f = (—2XYR+YXR) &of + X’R 0.f,
V[ X;YV]]f = ~Y2R 8sf + (2YXR— XYR) O,f.

Taking into acount these informations combined with the specific forms of X, Y
and [X;Y], we can deduce that the two constraints (2.4.41) and (2.4.42) can be
verified on condition that [X;Y] is colinear to both [X;[X;Y]] and [Y;[X;Y]].

This remark, leads directly to (2.4.39) and (2.4.40). 0

Given some initial data R(0,z2,u,0) := Roo(x2,u), we can solve the system of
two conservation laws (2.4.38) in the same way as in the Lemma 2.3.2. Then, to
recover @, it suffices to fix any function ®gg(z2,u) satisfying Vg, ,Poo # 0 and to
integrate the two equations

(2.4.43) HP+RHP =0, ROIP+0,P=0.

The discussion about (2.4.39)-(2.4.40) is delicate. We explain below how to con-
struct R and ® in the more general situation (when XR Y R # 0).
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Lemme 2.4.2. Fiz any (non zero) function Q(y, R, ®) € C3(R3;R*). Select any
couple of functions Roo(z1,72) € CH(R%R) and ®go(z1,72) € CL(R%R) satisfying
Vai,2oPo0 Z 0 as well as

(2.4.44) O1Roo + Roo 02Rp0 # 0, 01®oo + Rop 02Ppo = 0.

Then, the system (2.4.39)-(2.4.40) has a solution R(x1,x2,u,v) such that
(2.4.45) R(z1,22,0,0) = Roo(x1,72), XR#0, YRZO0.
Moreover, there exists a non constant solution ® of (2.4.36)-(2.4.37) such that

YR
(2.4.46) (I)({I,‘l, 9, 0, 0) = (I)OO(Z'I, 1‘2) y X7R = Q(R T, — X2, R, (I)) .

Proof of Lemma 2.4.2. We start by studying a little more the structure of
the system (2.4.39)-(2.4.40). Since X R # 0, we can introduce the quantity @ :=
YR/XR. In fact, the restrictions (2.4.39) and (2.4.40) are equivalent to

(2.4.47) YQ-Q XQ =0,
(2.4.48) —[YV;X]R+ (XQ) (XR) = 0.

Since YR # 0 whereas X® = 0, we can always consider that ) is a function of
the variables (z1, z2, R, ®), namely

Q(mlu T2, U, ’U) - Q(.Tl, T2, R(xlu T2, U, U)7 ®($17 T2, U, U)) .
In view of the definition of @) and knowing that X® = 0 and Y® = 0, the equation
(2.4.47) reduces to X = 0, meaning that Q = Q(Rz; — z2, R, ®) for some
function Q(T, R, ®) € C*(R3; R).
The conditions (2.4.47) and (2.4.48) become the two scalar conservation laws
OyR + R O,R— Q(R:El — 29, R, ‘I’) O R

- Q(RJA - :UQ,R,(I)) R BQR = 0,

OuR— Q(Rz1 — 22, R, ®) O2R
+ (21 0rQ+ 0rQ)(Rx1 — x9, R, ®) (1R+ RO:2R) = 0.

(2.4.49)
(2.4.50)

Consider the equation (2.4.50) written for Ry(x1,x2,u) and associated with the
initial data Ro(x1,22,0) = Roo(z1,x2). At first sight, the access to Ry (and R)
requires the knowledge of ®y(x1, z2,u) := ®(z1,x2,u,0) (and ). Nevertheless, by
construction, the function ® is constant along the characteristics associated with
(2.4.49) and (2.4.50). Thus, in doing so, it suffices to know who is ®gg(z1,x2) :=
@0(1‘1, 9, 0).

Look at (2.4.49) as an evolution equation in v associated with the initial data Ry.
For the same reasons as above, we can solve this Cauchy problem knowing only who
is ®gg. There is still a difficulty coming from a problem of compatibility between
(2.4.49) and (2.4.50). We must check that the expression R thus obtained is still
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a solution of (2.4.50). To this end, it suffices to show that (2.4.50) is propagated
(in the direction v). This is due to the identity

2 {—[V;X]R+ (XQ)(XR)}”
XR '

Note that Y R # 0 as a consequence of (2.4.49) and Q # 0. The function ® can be
obtained by the same procedure, by first integrating (2.4.50) and then by looking
at (2.4.49). Geometrically, we have

(Y —aX){-[V;X]R+ (XQ) (XR)} =

Vd = A\ (~-RXR,XR,YR,—RYR), A#£0

implying that the level surfaces of @ intersect the plane {u = v = 0} C R*

transversally. Thus, there is a unique function ® satisfying (2.4.46). O

2.4.3 Reduction of the problem : analytical step.

In the preceding paragraph 2.4.2, we have developped only the aspects of R related
to (2.4.38) or (2.4.39) and (2.4.40). However, the coefficient R(z1,x2,u,v) is also
linked through the implicit relation (2.4.34) to the selection of a function u(z,v)
satisfying (2.4.26) and (2.4.27).

At the level of (2.4.26) and (2.4.27), the variable v plays the part of a parameter.
The situation is the same as in the Lemma 2.3.2. It suffices to select some data
ugo(3,v) = u(0,0,23,v) such that dzugy # 0 in order to obtain (locally in R*)
some solution u of (2.4.26) and (2.4.27) satisfying dsu # 0.

Proposition 2.4.3. Let u(xz,v) be any (local) solution of (2.4.26) and (2.4.27)
satisfying Osu # 0. Define R(x1,x2,u,v) through (2.4.34). Then, there is a func-
tion & € C1(R%;R) such that R can be put in the form

(2.4.51) R(x1, 2, u,v) = — Oya(x1,x2,u,v) [ Oya(x1, T2, U, V)
where the scalar function « is given by
(2.4.52) a1, 2, u,v) = K(u,v) + 0pL(u,v) x1 + 0 L(u,v) x2.

In this context, the two restrictions R # 0 and S # 0 which are prerequisites in
the analysis, see after (2.4.35), become 9,8 # 0 and 9,8 # 0.

Proof of Proposition 2.4.3. From (2.4.26) and (2.4.27), it is easy to deduce

( ) O (0pu) 4 0, £ D3(Dpu) + (02,8 + 92,L dyu) d3u = 0,
( ) O1(03u) + 0y L D3(d3u) + 02,L (O3u)? = 0,
(2.4.55) Do (Oput) + 0L 03(0yu) 4 (02, + 92,L dyu) O3u = 0,
( ) Do (D3u) + 0, L 03(d3u) 4+ 92,L (O3u)? = 0.
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Since 0su # 0, these equations can be interpreted in the variables x1, xs, u and v.
Then, it remains the following ODEs (with respect to z1 and x3) :

(2.4.57) O(R/S) = —02,L,  91(1/S) = 92,8,
(2.4.58) X(R/S) = —02,L,  Du(1/S) = 92,8.

Observe that uw and v play the part of parameters. It is easy to integrate (2.4.57)
and (2.4.58). There are functions k(u,v) and h(u,v) such that

(2.4.59) R/S = k(u,v) — 02,£(u,v) 21 — 02,&(u,v) 2,
(2.4.60) 1/S = h(u,v) + 02,£(u,v) 21 + 02,L(u,v) x3.

In fact, the two functions k and h are linked together. This is due to the equality
of the mixed partials derivatives 9, (03u) and 95(dyu) :

Oy [8311(3:,1))] = 0, [S(ml,xg,u,v)] = 0SS R+ 0,5

= 05|0pu(z,v)] = 03[R(z1,32,u,v)] = R S.

In other words, we must have

(R 0,5 — S 0,R)/S? = —0,(R/S) = —0,5/58% = 0,(1/9).
Apply this at the level of (2.4.59) and (2.4.60) to obtain —d,k = Oyh. There
is R(u,v) such that k = —0,R and h = 0,R. Dividing (2.4.59) by (2.4.60) and
replacing k& and h as indicated previously, we get (2.4.51) and (2.4.52). 0

The explicit formulas (2.4.51) and (2.4.52) indicate that R = —0,5/02 with
B(x1, m2,u,v) == OpR 21 + O R w2 + 1 02, L 22 + 92, £ 11 w2 + 1 92,8 23.

Combining the informations obtained in this paragraph 2.4.3 with (2.4.36) and
(2.4.37), we can observe that

81 q) @ 81)05 81)(1)

2.4. 1 = - - = — f— —
(24.61) R O ® o3’ R

O 0,9

Now, we can produce another interpretation of the intermediate problem under
study which is emphasized in the introduction.

Remark 2.4.3.1. The question is to know if we can find two functions R(u,v)
and £(u,v) allowing a simultaneous factorization of some ® in the form

d = A(wl,xg,a(ml,xg,u,v)) = B(u,v,ﬂ(wl,xg,u,v)) , Vo £0.

Since V& # 0, the two functions A and B cannot be constant. This is the source
of the difficulty.
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2.4.4 Test of the integrability conditions.

At this stage, we have to plug the coefficient R given by (2.4.51)-(2.4.52) into the
integrability conditions (2.4.38) or (2.4.39)-(2.4.40). In this procedure, we have a
little freedom coming from the choice of £ and K. The matter is to check that the
related constraints on £ and £ can indeed be realized for non trivials choices of £
and R.

In the paragraph 2.4.4.1, we examine the case dim A = 2, that is (2.4.38). Then,
in the paragraph 2.4.4.2, we consider the case dim A = 3, that is (2.4.39)-(2.4.40).

2.4.4.1 The two-dimensional criterion.

This is when dim A = 2. We have to deal with (2.4.38).

Lemme 2.4.3. A function R given by (2.4.51) with « as in (2.4.52) satisfies
(2.4.38) if and only if one of the two distinct following conditions is verified :

i.1. We have 9%2,£ = 0. The function £ is linear, say £(u,v) = a + bu + cv with
(a,b,c) € R3. Moreover, we can find R € C*(R;R) such that

(2.4.62) R(u,v) = R(K(u,v)), R(R) OuR+ 0,8 =0.

i.2. We have 0%2,£ 0. We can find $ € C*(R;R) such that
(2.4.63) DuL(u,v) = H(0L(u,v)) , OuR — 9(0,£) 0,8 =0.

In the first case (2.4.62), we are faced with a scalar conservation law. In the second
case (2.4.63), we have to solve some Hamilton-Jacobi equation. In those cases, the
determination of & and £ can be achieved once two functions in C!(R;R) are given,
namely R(-) and R(u,0) or H(-) and K(u,0).
Proof of Lemma 2.4.3. The calculation of X R gives rise to a polynomial fraction
in x. More precisely, we find XR = —(d,a)~3 P(x) with

P(JL‘) = 4(0,0) + E(s) Z ag xﬁa E’(E’) = agug’ agvs - (81211)2)2 :
The sum runs over all multi-indices 3 € N? such that 1 < |3] < 2. We find

a(0,0) = (0uR)? 02,8 — 2 0,8 0,8 02,L + (0,8)% 92,8, a0 = 20,8,

a(071) = 28%@, a(270) = 831}/8, a(l,l) =2 83“]2, a(072) = 873“2
Suppose that Z(£) # 0. Then, the condition X R = 0 requires that all the coeffi-
cients ag with |3| < 2 are equal to zero. In particular, it follows that 0,8 = 0 and

0y = 0. This is not possible because this situation was excluded. Necessarily, we
must impose Z(£) = 0.

i.1. When 0%,£ = 0, the condition Z(£) = 0 becomes 92,£ = 0. It remains
a(0,0) = (0sR)? 82,£ = 0. The function £ must be linear in v and v, say £(u,v) =
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a+bu+cv. It follows that R = —0,8/9, K. The other constraint YR = 0 amounts
to the same thing as

OuR (R OyR+ 0yR) = —0,R O,R+ 0, R O,R = 0
implying that R = R(RK) for some R € C!(R;R). We have (2.4.62).

i.2. When 02,£ # 0, the relation Z(£) = 0 is equivalent to 9,£ = $(9,£)
for some $§ € C!'(R;R). Then, the condition a(,0) = 0 leads to the condition
02,L [0.8—9'(0,£) 0,8] ® = 0. We recognize here the second part of (2.4.63). We
find R = —$/(9,£)~! and, combining the preceding informations, it becomes easy
to check that the relation YR = 0 is sure to be satisfied. 0O

2.4.4.2 The three-dimensional criterion.

This is when dim A = 3. We have to deal with (2.4.39) and (2.4.40), knowing that
XR #0 or YR £ 0. We consider separately the different situations which can
happen concerning XR or Y R.

Lemme 2.4.4. [Case XR = 0 and YR # 0]. A function R given by (2.4.51)
with o as in (2.4.52) satisfies XR =0, (2.4.39) and (2.4.40) without (2.4.38) if
and only if the function £ is linear, say £(u,v) = a + bu + cv with (a,b,c) € R3,
whereas R = —0,R/0, R with & such that

(2.4.64) (0,8)% 02,8 — 2 0,8 0,8 02, R+ (0,8)* 2,8 Z 0.

Proof of Lemma 2.4.4. The discussion is the same as in the proof of Lemma
2.4.3. The option i.2 must be excluded because it leads to YR = 0. Just go back
to 1.1 where (2.4.62) must be exchanged with (2.4.64). O

Lemme 2.4.5. [Case XR # 0 and YR = 0/. A function R given by (2.4.51) with
a as in (2.4.52) satisfies YR =0, (2.4.39) and (2.4.40) without (2.4.38) if and
only if the function R is linear in u and v, say R(u,v) = au+ v+ v with o # 0
and 3 # 0, whereas the function £(u,v) is polynomial in u and v with degree less
or equal to 2. Moreover, the involved coefficients must be adjusted in order to have

XR#0.

Proof of Lemma 2.4.5. We have (2.4.40) and the condition (2.4.39) reduces
to YXR = 0 yielding [X;Y]R = XYR—-YXR =0 = XR0O,R. It means that
OuR = 0 and therefore 9,R = 0. The function R does not depend on (u,v). In
particular, for (z1,z2) = (0,0), we find that 9,8/0, K is constant. Since 0,8 Z 0
and 9,K # 0, we must have

A(u,v) = K(u—av), a € R, K € C*(R;R), K' #0.

Either K” = 0 and all derivatives D’£ with |3| = 2 are constant, leading to the
description of Lemma 2.4.5. Or K" # 0 and £(u,v) = F(u — av) + Sv for some
function F' € C%(R;R) and some constant 3 € R. Nevertheless, this last case must
be excluded. Indeed, it yields R = —a so that X R = 0 (in contradiction with the
hypothesis X R # 0).
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The remaining case is when XR # 0 and YR # 0.

Proposition 2.4.4. [Case XR # 0 and YR # 0/. A function R which is such
that (XR) (YR) # 0 and which is given by (2.4.51) with « as in (2.4.52) satisfies
(2.4.39) and (2.4.40) when the expressions K and £ are adjusted according to one
of the two following (distinct) situations :

ii.1. Both functions £(u,v) and K(u,v) are polynomial in u and v with degree less
or equal to 2. More precisely, we have

(2.4.65) L(u,v) = ag u? 4+ 2a11uv + apev® + aju + agv +ag, a, €R,
(2.4.66) R(u,v) = koo u? + 2k uv + kog v? + kru+ kov + ko, ke € R,

with coeffecients asg, a1 and agz (not all equal to zero) and coeffecients kag, ki1
and ko2 (not all equal to zero) adjusted such that

(2.4.67) k11 ao2 — ko2 a11 = koo ao2 — ko2 a0 = k2o a11 — ki1 ago = 0.

ii.2. The functions £(u,v) can be put in the form

(2.4.68) Lu,v) = au+ Flbu+wv), (a,b) € R?

where the auziliary function F € C3(R;R) satisfies F®) 20 and the ODE

(2.4.69) (v +28s+06) FO(s) + 3(ys+B) FP(s) =0, seR

with constants «y, 5 and 6 not all equal to zero. The gradient of K(u,v) is adjusted
as indicated at the level of (2.4.75) (with polynomial functions A and B which are
defined in the proof).

ii.3. The function £(u,v) can be put in the form

(2.4.70) L(u,v) = u F(u” Y+ @) + G(u), aeR
where the auziliary functions F € C2(R;R) and G € C*(R;R) satisfy
(2.4.71) FA@w) £0, §FPw) =4’ GPw), wuweR
with 6 € R*. Moreover R(u,v) = 0,£(u,v).

Proof of Proposition 2.4.4. Below, we check that the different choices described
in the paragraphs ii.1, ii.2 and ii.3 are convenient. Showing that there are no other
possible situations is delicate. This aspect of the discussion is postponed to the
Appendix 2.6. Recall that (2.4.39)-(2.4.40) is equivalent to (2.4.47)-(2.4.48) or to
(2.4.49)-(2.4.50). We start by looking at the equation (2.4.49) which is the same
as Z R = 0 where Z is the vector field
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Z::Y—Q(Rxl—arg,R,qJ)X, X=01+RO3Dy, Y =RO,+0,.

By construction, we have also
(2.4.72) Z(Rxy —122) =0, Zd=0, Z [Q(Rxy — x9, R, ®)] =0.

Select © € R near 0. Given f € C}(R%;R), note f3(z1, 22, u) := f(21,22,u,?). For
instance, we have R;(x1,x2,u) := R(z1,z2,u,?) and

Q@(.%l, 9, u) = Q(xl, o, U, 17) = Q(R{, 1 — T2, R@, ‘I’f,) .
We also adopt the following conventions

dof := 8U[f(:u1,:c2,u+R@v,z7+v)]
= (Rﬁauf+8Uf)($1,$2,U+R51},17+U),

d%f = 0y(dyf) = (R%@Zuf+2R5812wf+33vf)(x1,:c2,u—|—Rﬁv,@+v).

To avoid confusions, retain that, in general, we have d> # d, o d,. In view of
(2.4.72), the characteristic associated with (2.4.49) and starting from the point
(z1,22,u,?) is a straight line given by

(2.4.73) (Xl,XQ,U,V)(’U) = (:c1 —Q@U, JIQ—Q{)R{,’U, u—l—R;,v, 1~)—|—2)).

The function R must be constant along the characteristics. Expressing this prin-
ciple in connection with the definitions (2.4.51)-(2.4.52) yields

2.4.74 doR + dy (0 £) 1 4+ dy(0uL) 2o — Q3 v d>L = 0.
( v

e The situation ii.1. Observe that, due to (2.4.65), the three quantities d,(9,L£),
dy(9,£) and d2€ are constant functions. Thus, applying the second order deriva-
tive 92, to the identity (2.4.74), we can extract

W ARU V)R +302 , RU,V)R2 +303,,&(U, V) R; + 03,,8(U,V) = 0.
Since the three variables Rz, U and V are independent, we must have (2.4.66).
Then, observe that

R = =2 (0ue) ™! (k11 + ko R),  Oy,R = =2 (9ua)™* (ko2 + k11 R),

R = -2 (aua)*l (ap2 + a11 R) bR = -2 (&La)*l (a11 + az R) .

It follows that
YR koo + 2 k11 R+ koo R?
= 9O(R) = = .

Qe w2,u,0) A ) XR age + 2 a1 R+ asg R?
We can work at the level of (2.4.47)-(2.4.48). By construction, the condition
(2.4.47) is satisfied. On the other hand, (2.4.48) becomes

OyR — Q(R) 2R + Q'(R) (R+ R 02R) = 0.
This relation amounts to the same thing as

(k11 ao2 — ko2 a11) + (k2o a2 — ko2 azo) R+ (koo a11 — k11 ago) R? = 0.
This polynomial function of R is identically zero if and only if the restriction
(2.4.67) is verified.
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e The situation ii.2. Since F(®) £ 0, we can introduce

OuR(u, v) OpR(u,v)
2.4.75 A = B =
( ) (u,0) F@(bu+v)’ (u,0) F@ (b u + v)
With these conventions, the function R can be put in the form
R = — (B(u,v) + z1 + bxa) (A(u,v) +baxy + b :152)_1
whereas

Q = Q(R,u,v) = (0,AR*>+ (0,A+0,B) R+9,B) (Rb+1)"2.

The condition (2.4.47) reduces to 9,Q + R 9,Q = 0. Taking into account the
above specific form of ), we find a fraction in R whose coefficients must be zero.
This criterion leads to

(2.4.76) O2A =202 A+02,B =0°A+20°,B=0B=0.

Exploiting (2.4.76), we can obtain

Alu,v) = +auv —yv:+afu+atv+a®,

B(u,v) = —au? +~yuv+blu+bjv+b0.
Look at (2.4.48) which can also be formulated as 9, R — Q 2R+ X@Q = 0. Noting
D= A+ bz +b% o, we find that

DRL+1)XQ =2b0yB—0,A—0,B+ (bd,A+b0d,B—20,A) R.
Again, the condition (2.4.48) becomes a fraction in R whose coefficients must be
zero. It follows that

(2.4.77) —30,A+200,A+b0,B =0,
(2.4.78) —20,B+3b3,B—0,A=0.
It remains o = —b~y and
A(u,v) = —byuv —y0? +b(=bh +2bb})u+ (=2b5 +3bbi) v +a°.

Coming back to (2.4.75), we have to test the existence of & through Clairaut’s
Theorem. This is guaranteed by (2.4.69) if we choose 3 := b —bbi and § = b°—a®.
The remaining restriction on v, 8 and § comes from the two conditions X R # 0
and YR # 0.

e The situation ii.3. In this context, the definition of R gives rise to

(2.4.79) R- _Blnmuwy)  ltoita@v)zm
Ry(z1,x2,u,v) a(u,v) (1 + 1) + b(u,v) z2

where we have introduced

(2.4.80) a(u,v) == —u ! (v+a), b(u,v) = w2 [(v+a)? +4].

We can use the formula given for R in (2.4.79) to compute
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Qa1 29,0, 0) = YR _ (YR1) Ry — (YR2) Ry
DI XR T (XR) Ry — (XRo) Ry
From (2.4.79), we can also extract
L — _M y i — a(u,v) + Rb(u,v)
ha(u, v, R) 1+ Ra(u,v)
Then, replacing 1 + 1 accordingly in the expression of (), we can derive
Q(z1,72,u,v) = Q(R, x2,u,v) = Q1(R,u,v) Qo(R,u,v)" ! x9
where 27 and Q9 are only functions of R, u and v. We find
Q= (bYa—aYb) h3 + Yb hy hy — Ya hi,
QQ = (b - a2) h2 (hg + Rhl) .
Many simplifications occur. It remains @Q = —zou~! allowing to check (2.4.47)
directly. On the other hand, the condition (2.4.48) reduces to

R, (u8u+x282)R2 — Ry (u8u+a:282)R1 + R1 Ry = 0.

I .

Taking into account the definitions of Ry, Ro, a and b, this last relation becomes

obvious to verify. 0

2.4.5 Discussion summary.

Up to now, we have described which conditions are needed in order to progress.
Our aim here is to explain how to proceed concretely in order to build compatible
couples (p,w) in the case Vi - 0y W # 0. Select two functions £ and R as it
is indicated in the paragraphs 2.4.4.1 or 2.4.4.2. In particular, we have 0,8 # 0
and 0,8 # 0. Define the coefficient R(x1,x2,u,v) through (2.4.51) and (2.4.52).
Knowing R, we have access to ®. More precisely, when dim A = 2, the function
® is entirely determined by prescribing

(2.4.81) Dog(29,u) := ®(0,22,u,0) € C'(R%;R), Vi u®Poo Z0.

On the other hand, when dim A = 3 (implying that XR # 0 and YR # 0), the
situation is more restricted. Then the function ®go(x2, u) must in fact depend only
on one variable, say u. Indeed, it can be obtained by solving

(2.4.82) — YR 0;P00 + XR 0,P00 =0, Ppo(0,u) = Pogo(u) € CL(R;R).

Once the function ®oo(x2,u) is fixed as it is indicated above, we can recover a non
stationnary phase ®(x1,z2,u,v). Now, select any function y € C!(R;R) such that
X # 0 and consider the solution ugg(z3,v) of the following ordinary differential
equation (in the variable v)

(2.4.83) OuR(upp, v) Oyugo + OpR(ugp,v) = 0, uoo(z3,0) = x(z3) .
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By construction, the expression wugy(xs,v) satisfy (2.4.34). The resolution of the
equations (2.4.26) and (2.4.27), where v belongs to some compact set K C R and
plays the part of a parameter, has already been discussed.

Given £ and wuqg, there is a unique expression u(z,v) € C}(Q¥ x K;R) satisfying
(2.4.26)-(2.4.27) together with the inital data

(2.4.84) u(0,0,x3,v) = ugo(x3,v) € CL(R%R).

Moreover, as a consequence of the proof of Proposition 2.4.3, we have the relation
(2.4.34) for all (x,v). Deducing the expression ¢ from ®(z1,x2,u,v) and u(z,v)
through the formula (2.4.33), we obtain a function ¢(z) which does not depend
on the variable v.

The determination of the function v(x,#) is delicate. Combining (2.4.11) and
(2.4.25), we can extract the functional identity
(2.4.85) v(z,0) = V(p(x),u(z,v(z,0)),0), V(x,0) € Q2 xT.

In particular, for x = 0 and for all 8 € T, we are faced with

v(0,6) = V(¢(0), uo(0,v(0,6)),6) , ©(0) = P00 (0, x(0)) .

To simplify, we can seek a function v(z, ) such that v(0,-) = 0. It means that the
function V (g, 1, 0) must be such that

(2.4.86) V(¢(0),x(0),0) =0, VOeT.

In what follows, we select a function V satisfying (2.4.86). We suppose also that
0pV is not the zero function and that

(2.4.87) IwR(x(0),0) 8,V ((0), x(0),0) + 9,8(x(0),0) # 0, VOeT.

For each 0 € T, the informations (2.4.86) and (2.4.87) allow to apply the implicit
Theorem at the point (0,6,0) to the application

R3xTxR — R
(1&9,“) I U—V(QD(ZL‘),’UJ(JT,U),Q).

It yields locally, near (0,8) € R3*xT, a unique function v(z, #) satisfying the relation
of (2.4.85). Due to the compactness of the torus T, by adjusting the number 7 € R}
sufficiently small, we can recover (2.4.85). Note that the expression v(x,0) is (by
construction) necessarily a solution of (2.4.28). Moreover, we do not have dypv = 0.

Define the function 1 (z, §) through (2.4.25). All the ingredients ¢(z), ¢ (x, d) and
V(p,1,0) are determined. It means that the profile w(x,#) is known. Just use
(2.2.13) and (2.4.8). By construction, the couple (¢, w) is compatible. Below, we
sum up the preceding discussion by clearly precising the degrees of freedom at
disposal in the construction of compatible couples (p, w).
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Proposition 2.4.5. In the case Vo - 0y W # 0, the class of compatible couples
(p,w) is entirely determined by giving locally

e functions £(u,v) and R(u,v) coming from the paragraphs 2.4.4.1 or 2.4.4.2 ;

o a function ®oo(x2,u) which must satisfy (2.4.82) when dim A =3 ;

e a function x(z3) ;

o a function V(p,1,0) which is adjusted as in (2.4.86) and (2.4.87).

2.4.6 Illustrative examples.

The purpose here is to illustrate the various situations which can occur through
corresponding examples. In practice, we select functions £ and R resulting from
the different cases classified in Section 2.4.4. In each case, we produce the cor-
responding phases ¢(z), and also the ingredients u and v allowing to recover the
profile w(z, §) through (2.4.17) and (2.4.25).

To facilitate the presentation, we recall below the equations to deal with. Once £
and R are fixed, the expression R is given by (2.4.51) and (2.4.52). By construction,
there exist adequate functions ® such that

(2.4.88) 0h® + R P =0, 0py® + RO,® = 0.
The function v must satisfy (2.4.26), (2.4.27) and (2.4.34), that is :

o + 0yL(u,v) dsu = 0,
(2.4.89) Oou + 0y L(u,v) Osu = 0,
Ou(x,v) = R(azl,xg,u(a:,v),v).

The function v(z, 6) is obtained through (2.4.28), that is

v + 0,L(u(z,v),v) d3v

(2.4.90) + dpu(z,v) [D2v + 0, L(u(z,v),v) d3v] = 0.

Then, it becomes possible to determine ¢ through (2.4.33). By construction, the
function ¢ does not depend on 6 and it satisfies (2.4.29).

2.4.6.1 Example in the case i.1 of Lemma 2.4.3.

By assumption, the function £ is linear, say £(u,v) = a u+b v+ ¢ with (a,b,¢) €
R3. The function R = —08,8/0,& must be as indicated at the level of (2.4.62).
To simplify, just take R = 1 so that ® = ®gp(ze — x1,u — v). From (2.4.89), we
deduce that u(x,v) = x(z3 —a x2 — b 1) + v. On the other hand, the function v
can be written

v(z,0) = Uo(:cl —x9,x3 — (a+b) xg,e), Oy # 0.
It remains to compute ¢(z) = Pgo (:c2 —xz1,x(x3 —axy—0 xl))
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2.4.6.2 Example in the case i.2 of Lemma 2.4.3.

To simplify the discussion, we work with the choice $(¢) = ¢ implying that both
£ and R are functions of u + v. For instance, we have £(u,v) = L(u + v) for
some function L satisfying L(2) £ 0. On the other hand, we find R = —1 and
& = Pgp(x1 + x2,u+ v). Looking at (2.4.89), we can infer that u(z,v) can be put
in the form @(x1 4 x2, x3) —v where 4(z, x3) is obtained by solving the conservation
law

d.u(z, x3) + L' (a(z,x3)) dsu(z,x3) = 0, (0, z3) = x(x3) .
From (2.4.90), we deduce that v(x,0) = v(z1 + x2,x3,6). Observe also that
p(z) = Poo(z1 + z2, a(21 + 32, 23)) .

2.4.6.3 Example in the case of Lemma 2.4.4.

The function £ is here linear, say £(u,v) = a u+ b v + ¢ with (a,b,c) € R3. The
function 8 must satisfy (2.4.64). We choose &(u,v) = —% v? 4+ u in order to deal
with R = v. From (2.4.88), we can extract that ® = ®g(2u — v?). As expected,
we see that ® depends this time on only one variable. Moreover

u(z,v) = 271 0?2 4 (23 —a xo — b 1), XM #£0.

From (2.4.90), we obtain that
v(z,0) = 0(bxy — x3, a9 — x3,0), 9(y, 2) € CH{R%R)

where 9(y, z) must satisfy the Burger’s law 40,0 + a ¥ 9,0 = 0. Finally :
o(z) = (CIDOO o X)(l’g —axyg—buxy).

2.4.6.4 Example in the case of Lemma 2.4.5.

The context is as in Lemma 2.4.5 with £ = au + Bv + 7. Choose £ = 27102 so
that R=—a ' (B+z1) and ® = p = <I>00($2 +atBr+ (2a)7! x%) Note that
u(z,v) = —a~ ' [(B+ 21) v — 23] 4 ¢ with ¢ € R. On the other hand, the function
v is obtained through

01w + v 030 — a~t (x1 4+ B) dv = 0.

2.4.6.5 Example in the case ii.1 of Proposition 2.4.4.
In agreement with (2.4.65) and (2.4.66), we can select &(u,v) = £(u,v) = v +u
so that R = —2 (v + 1) and ® = ®go(v? + u + 22 + 2 21 v + x3). Moreover
u(z,v) = —2vx — 32 + 23 — V2, o(z) = Poo(z? + x3),
whereas v(z, ) is any solution of
v — 2 (x14+v) v — 2 x1 d3v = 0.
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2.4.6.6 Example in the case ii.2 of Proposition 2.4.4.
Choose f(u,v) = uv~! and £(u,v) = (2v)~! so that R = uv™! — 27 v72. We can
take
2
O(x1,x9,u,v) = CIJOO(% T — 23% — xg) , u(r,v) = z3v+ 5~ +av.
The function v is again solution of a suitable conservation law. On the other

hand, we have again to deal with a phase ¢ which is some function of a quadratic
expression in z, namely ¢(x) = ®go(z1 23 + @z — T2).

2.4.6.7 Example in the case ii.3 of Proposition 2.4.4.

In accordance with (2.4.71), select
t2 1 v? 41

F(t)z;, (G(t)zﬂ, 0=1, a=0, L(u,v) = 7
From (2.4.27), we can deduce the implicit relation
(2.4.91) u(z,v) =U(v o1 — u(z,v) x3,29,0),  U(X,22,0) € CHR*%R).
From (2.4.26) together with (2.4.91), we can also derive
(2.4.92) U(X,22,0) =U(2X U — (v* +1) 22,v), U(Y,v) € C*(R%;R).

Use (2.4.91) and (2.4.92) in order to extract respectively d,u and dxU. Replace
xrg as indicated by a function of x1, x9, Y, v and U. By this way, we obtain a

first expression for 0,u. It is compared below with the one coming directly from
(2.4.51)-(2.4.52). We find :

O U v
R—aui 2Q8yg+x1_ﬂx2 . ].‘I’xl*%.fl?Q
pr— v _— —_ 2 .
U-2Y 0yU 2 v _ v+l
b |t o] - St e pllbm] - e

It follows that U(Y,v) = v £ VY + v2. The function u(x,v) can now be deduced
by just imposing u(0,0) = 0 together with the implicit relation :

u(z,v) = U(2vz1 u(z,v) — 2 23 u(z,v)? — (v + 1) 32,0) .

On the other hand, we seek ®(x1,x2,u,v) in the form

¢ = @(u (1+z)—v xg,:cg,u,v) , (Y, z2,u,v) € CH{RY;R) .
Taking into account the preceding definition of R, the condition (2.4.36) gives
rise to the equation — z9 dyP® +Y 0,9 = 0. Thus, there is some function
D0(X,u,v) € CHR3;R) such that ®(Y, zo,u,v) = @4 (Y2423, u,v). From (2.4.37),
we can then deduce that 0,2, = 0 and 2 X Ox®y + v 0,2, = 0. In conclusion,
the following choice is suitable :

1 _ 2 2
D(x1,x9,u,v) = (I)O()([u (14 x1) — v a2 +x2) |
U

3 (o1 Ecl(R;R).
With u(z,v) and ®(z1, 22, u,v) as above, we can deduce ¢(z) through (2.4.33).




CHAPTER 2. OSCILLATING SOLUTIONS 78

2.5 The time evolution problem.

Let (¢, w) be a compatible couple. We recall that the profile w(zx, ) can be put
in the form (2.2.13) with a triplet (¢, %, W) which is adjusted as it is indicated in
(2.2.17)-(2.2.18)-(2.2.19)-(2.2.20) and which satisfies (2.2.15). The purpose of this
last chapter is to explain what happens as time evolves.

2.5.1 Propagation of compatible datas.

The purpose of this paragraph 2.5.1 is to show the Theorem 5. Consider the system
(2.1.11). Standard results (see for instance [25]) guarantee the existence locally
in time, say on the domain Q' x T with T € R*, of a C'—solution to (2.1.11).
Introduce U(t,z,0) := W(@(t,x,@),@(t,m,ﬁ),@). From (2.1.11), we can easily
deduce that

(2.5.1) U+ (U-V)U=0, U(@0,z,0) =W(p(x),¢(z,0),0) =w(z,0).

By integrating (2.1.11) along the associated characteristics (which are straight
lines), we can exhibit the identities

(2.5.2) O(t,z,0) = go(x - tU(t,x,G)) , V(t,z,0) € Ql x T,
(2.5.3) U(t,z,0) = ¢(xz—tU(t,0),0), V(t,z,0) € Ql xT.
Lemme 2.5.1. Assume that the three ingredients ¢, ¥ and W are adjusted ac-
cording to (2.2.17)-(2.2.18)-(2.2.19)-(2.2.20). Then, the function ®(t,x,0) issued
from (2.1.11) is such that 09® = 0. Moreover, noting

y=y(tz) =z —tUt2,0),  E(y,0):=(o(y),9(y,0),0) e R*x T,
the expression Y(t,z,0) coming from (2.1.11) satisfies
aG\Il(ta x, (9) = 891#(:% 0)

Proof of the Lemma 2.5.1. Use the relations (2.5.2) and (2.5.3) with the
formula given for U to compute 9yP and 0y¥ according to

M < 89‘1)(t,$, 9) ) — < - tth(y) : 89W(E(y7 9)) )
with a matrix M given by
M(t,y,0) = 14+t Ve(y) - 0,W t Vo(y) - 0y W
SRR tVi(y,0) - 0,W 1+t Vi(y,0) 0uW )’
In the preceding formula for the matrix M, the functions 0, W are evaluated

at the point Z(y,6). A consequence of (2.2.19) and (2.2.20) is the information:
det M(t,y,0) = 1. It follows that

D®@(t,2,0) = —t V- (0gW + 0gtp Oy W)
+2 [(Vp - W) (Vo - 9p W) — (Vo - W) (Vi - 9y W)] .

(2.5.4)
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Note that the right hand term can be regarded as a function of (y, #). The condition
(2.2.17) is the same as

(2.5.5) Veo(y) - [0s(y.0) 0, W (E(y,0)) + 9y W (E(y,0))] = 0.
Therefore, it remains
D ®(t,2,0) = t* (Vo - 0pyW) (Vi - W + Optp Vb - Oy W)..
Due to (2.2.18), this is 9p® = 0. Proceeding as above, we can obtain
DV (t,z,0) = Opp + t (gt Vip- 0, W — V) - O W)
+12 [(Vo - 0gW) (Vip - 0,W) = (Vo - 9, W) (Vi) - g W)] .
Exploiting again (2.2.19), (2.2.20) and (2.5.5), this is equivalent to

0¥ (t,x,0) = Optp —1t (V¢ - OgW + Ogtp V) - 8¢W)
—t2 (V- 0,W) Vi) - (0gW + Ogtp Oy W) .

Due to (2.2.18) and (2.2.19), the term in factor of #? is necessarily equal to zero.

By this way, we can see how (2.5.4) appears. 0

Consider the expression u® which is defined on the domain QI through

uf(t,x) = U(t,x, M)

£

— W<<I>(t, ), U (t, z, 2Ly, M) . e€lo1].

3 3

(2.5.6)

By construction, we have u*(0,-) = h®(-) with h® given by (2.1.2). A direct com-
putation based on (2.1.11) indicates that u®(¢,x) is indeed a solution of (2.1.1)
on QF. By applying the Theorem 2.6 of [6], we obtain that (Dg[;ue(t,gr))3 =0 on
B(0,r —tV) for all t € [0,T]. Repeating at the time ¢ €]0,T] the procedure of
the Section 2.2, we can deduce that the constraints (2.2.17), (2.2.18), (2.2.19) and
(2.2.20) are propagated. In other words :

Lemme 2.5.2. For allt € [0,T], the solutions ®(t,x) and V(t,z,0) of (2.1.11)
satisfy (2.1.18), (2.1.14), (2.1.15) and (2.1.16).

These identities can also be derived by using (2.2.17)-(2.2.18)-(2.2.19)-(2.2.20) as
well as (2.5.2), (2.5.3) and the Lemma 2.5.1. The Theorem 5 is proved.

For the sake of completeness, we can also remark that the rank of the solution is
a preserved quantity. In the case of rank 1, this is obvious. In the case of rank 2,
this is a consequence of what follows.

Lemme 2.5.3. The solutions ®(t,x) and Y(t,x,0) of (2.1.11) satisfy

(2.5.7) (VO AVY)(t,z,0) = (Vo AVY)(y,0), V(t,z,0) € Ql xT.
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Thus, the volume measure V® A VU is constant along the characteristics. This is
in fact a by-product of the divergence free relation.

Proof of the Lemma 2.5.3. By differentiating (2.5.2) and (2.5.3) with respect
to x;, we can extract

0;®(t,z,0) \ [ Oi0(y) .
M(t, Y, 9) < 8;‘1’(75,1‘,9) ) = < ajw(y) > ) Vje€ {17273}.
It follows that

(2.5.8) Vo = (1+tVY-0pyW) Ve —t(Ve-0uyW) Vi,
(2.5.9) VU = —t(V¢-0,W)Veo+ (1+tVe-0,W) V.

Now, we can use (2.5.8) and (2.5.9) in order to compute the cross product of V&
and VW¥. Due to (2.2.19) and (2.2.20), it remains (2.5.7). O

2.5.2 Asymptotic phenomena.

Families like {u®}. give many informations on the complex phenomena which may
occur at the level of (2.1.7) when passing to the limit (as ¢ — 0).

Noting S(t) with ¢t € R* the semi-group operator which is associated with incom-
pressible Euler equations, we can for instance use {u®}. to study the well-posedness
(or not) of S(t) in functional spaces (thus arising the delicate problem of the local-
ization of the solutions, see [4]). We can also investigate the weak L?—continuity
(or not) of S(t) (in the spirit of [5, 21]). These applications of our current approach
will not be developed in these pages. Nevertheless, we will point out some related
very specific aspect.

We want here to show that the phenomenon of superposition of oscillations already
noted in [5] (only when d = 2 and in the absence of the divergence free constraint)
can indeed occur at the level of (2.1.7) when d = 3.

The idea is to start at the initial time ¢ = 0 with a function +(x) which does not
see the variable § € T and with a function W,(-) which depends on the parameter
e €]0,1] and contains oscillations in the variable 1, as it is indicated in (2.1.22).
Then, in order to prove the mechanism (2.1.23), it suffices to exhibit some ¢ €]0, T']
such that dpW¥ # 0.

In view of (2.5.1) and because 0y = 0, it suffices to test if
(2.5.10) I(z,0) € QO xT; 0gW (0,10,0) - Vb = Ogw - Vi) £ 0.

In the framework Vi - 0, W # 0 of the Section 2.4.1, because of (2.4.2), it is not
possible to obtain (2.5.10). When V¢ - 9, W = 0, in the case f’ # 0 and ¢’ # 0,
we can see with (2.3.15), (2.3.23) and (2.3.24) that

()l S ()
Opw -V = < Oga| —g |+ 0B| —f . \I’6 0 + 899\1/ o
1 0 9'(¢) Iz



CHAPTER 2. OSCILLATING SOLUTIONS 81

Taking into account (2.3.12) and (2.3.18), we must necessarily have dpw - Vi) = 0.
It remains to examine the situation of the paragraph 2.3.2.1. The context is the
one of Proposition 2.3.1. Choose (a,b) € (R*)2, ¢ = 0 and g € C}(R;R). Define
@(x) as in (2.3.19). Select some function . which is such that

ac(p,0,0) = A(p,¥,p/e,0),  0pA#0,  AeC®R*xT%R).

Choose two auxiliary functions ¢() € C>®(T;R) and Vo (T, Z) € C*(R?;R) satis-
fying ¢’ # 0 and 97 # 0. Take

x=1,  Be(p,9,0) = ac(p,¥,0) = 0(0),  V(X,Y,2) = V(Y - X, Z).

Obviously, we have (2.3.22) and (2.3.23). With w(z,6) defined according to
(2.3.24), compute

0 1 -1 a
Opw - Vi = 8904(—())4-89,3( —a) . 8T\I/0( 0 >+8Z\IJQ(1)
1 0 1 b

= 0r¥y ¢ £ 0.
In fact, the corresponging solution of (2.1.7) can be produced explicitly. It is

u(t,z) = A:(t, x) ( —al—b ) _ ¢(¢($))< —1a )
1 c 0

with
T3 — T — #(2) T
) A, 2ram = 1OE) gty

2.6 Appendix.

This appendix is concerned with the three-dimensional criterion which is studied
at the level of Section 2.4.4.2. The matter is to consider the more complicated case,
when XR # 0 and YR # 0. The Proposition 2.4.4 gives sufficient conditions on &
and £ in order to solve the system (2.4.39)-(2.4.40). The aim of this Appendix is
to explain (under suitable assumptions that will be precised later) why there are
no other possible choices.

Thus, in all this Section 2.6, we deal with (2.4.39)-(2.4.40) or (2.4.47)-(2.4.48),
in the case XR # 0 and YR # 0. The starting point of our analysis is the
equation (2.4.74). In a first approach, we assume that 92,£€ # 0. We will see in
the paragraph 2.6.5 that the case 92,£ = 0 can be dealt separately and that it
does not produce other cases than (2.4.65).
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2.6.1 Preliminary informations.

In what follows, we assume that 92,£ # 0. In doing so, as seen below, no infor-
mation is forgotten.

Lemme 2.6.1. The assumption 02,£ = 0 is not compatible with solving the system
(2.4.39)-(2.4.40) in the case (XR) (YR) # 0.

Proof of Lemma 2.6.1. First, consider the case when 92,£ = 0 and also 92, £ #
0. To this end, introduce c(u,v) := 92,£/02,£. The notations are as in (2.4.73).
The starting point of the discussion is the identity (2.4.74) which can here be
reduced to
dy,R
02,8
Since 02,£ = 0 and 92,£ # 0, we are sure that 9, R5 # 0. Thus, we can work with
R3, ©9, u, v, ¥ instead of x1, z9, u, v, ¥. In particular, for Rz = 0, it remains

+ Ry 1+ [c(U,V)Rs + 1] 20 — Qg v [c(U,V)R3 + 2 R;] =

OuR(u,V) 02,Lu,V) '+ 22 =0,  V(auV), V=v+10.

This is not possible since the three variables x2, w and V are independent. Thus,
we have necessarily 92,£ = 0. Knowing that 92,£ = 92,£ = 0 and that XR # 0,
the function £ can be put in the form F ( ) + bv for some constant b € R and
some function F' € C2(R;R) satisfying F(?) # 0. This time, the identity (2.4.74)
becomes

(2.6.1) doR(U, V) + 29 FOWU) Ry —v Qs FO(U) R2 = 0.

In particular, for R; = 0, we find 9,8 = 0, that is &(u,v) = ( ). Then, dividing
(2.6.1) by Ry and taking v = 0, we obtain & (u) 4+ 23 F® (u) = 0. Since F(?) 0,
this furnishes the expected contradiction. 0O

From now on, assume that 92, £ # 0. Introduce the two auxiliary functions

(2.6.2) a(u,v) = 92,£/02,&, b(u,v) = 92,L/02,L

From the informations (2.4.51)-(2.4.52) written with v = ¥, we obtain that

(2.6.3) la(u,?) Ry + 1] &Ry — [b(u,?) Ry + a(u,?)] 01Rs = 0.

Now, the idea is to manipulate (2.4.74) in order to eliminate the contribution
dyR = Ry 0uR(u+ Ryv, 04+ v) + 0,R&(u+ Ryv, 0+ v).

To this end, it suffices to apply the vector field 05 R; 9y — 01 Ry J2 to the equation
(2.4.74). Then, use (2.6.3) in order to extract

E(u,v,9, Ry) = [a(u,?) — a(U, V)]
(2.6.4) + [a(U, V) b(u,?) — a(u,?) b(U,
—v x(z1,z2,u,?) [1 +2a(U,V) Ry +
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with
X(21, 29, u,0) := [b(u,0) Ry + a(u,?)] Qs — [a(u,?) Ry + 1] 8:2Q5 .
By definition, the function ¥ does not depend on v. On the other hand, in view

of (2.6.4), it is an expression of the four variables u, v, ¥ and Ry (which are
independent because X R # 0). It means that

(2.6.5) JIx € C®(R3R); X(x1,z2,u,0) = x(u,0, Ry) .

Lemme 2.6.2. There erist functions f, g, k and [ in C*(R;R) such that

(2.6.6) a(u,v) = flu)v+g(u), blu,v) = (2% — f)(u)v? + k(u)v +1(u)
where the expression Z(u) = 2 f(u)? — f'(u) must satisfy

(2.6.7) Z'(u) = 2 f(u) Z(w).

Proof of Lemma 2.6.2. As indicated line (2.6.5), we can replace x by x at the
level of (2.6.4). Then, compute

02,Z(u,v,,0) = —0%,a(u,v+v) = 0.
Thus, we can find functions f and g such that a(u,v) = f(u)v + g(u). On the
other hand 0,Z(u,v,?,0) = —0ya(u,? + v) — x(u,9,0) = 0 which implies that
X (u,0,0) = —f(u). It follows that

0 = Jr,E(u,v,0,0) = b(u,v) — b(u, v+ v)
(2.6.8) +o (0 +0) [2f(w)? — f'(u)]
0 [2 () g(w) — ¢'(u)] — v Oy x(u,5.0).

In particular, we must have
a?%mwa(uvvvﬁv O) = *812mb(u’6 + v) +4 f(u)2 -2 f,(u) =0

In other words, there are two functions k£ and [ such that the second part of (2.6.6)
is verified. Coming back to (2.6.8), we can see that

Or;X(u,0,0) = —Z(u) O — k(u) + 2 f(u) g(u) — ¢'(u).
Then look at the condition
= (0r,)* Z(u,v,0,0) = —v? 92,a(u,V) — 2 v d,b(u, V)
(2.6.9) +2 [a(u,V b(u a(u, ) b(u V)} — v (0r,)?* x(u,v,0)

(u, V) +2v f(u) [2v0ua(u, V) + b(u, V)] .

Taking into account the preceding informations on a and b, then the expression
(Or,)? Z(u,v,9,0) is a polynomial function with respect to v. In particular, the

coefficient in factor of v® must be zero. This criterion yields (2.6.7). 0
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From (2.6.4), we can extract a formula for x, namely
X(u, ¥, Rg) = P1(u, 3,v, Rg) Pa(u, ,v, Ry) ™"
where ‘131 and if32 are polynomial functions in R;. Work in a neighbourhood of R?
where v # 0. Since x does not depend on v, we must have
(2.6.10) [(0* 0 F1) (v Pa) — (V¥ B1) (v? 0 P2)] vt Py * = 0.

Replace Ry by (U — u)/v. Then, change the point of view by adopting u, U, ¥
and v as being the new (independant) variables. Noting simply @ and a* when
the function a is evaluated at the points (u,?) and (U, ), the condition (2.6.10)
becomes

Q(uvﬁa U7U) = (931 PBa — Ps q34)(u7@a U?”) = 0.
More precisely
P = 0 [-f(U) = (U —u) Z(U)]
+ fa—a"—2U—-wZU)o— (U —-u) kU)— (U —-u)?azZ)]+
+ o [(U—u) (b—b") + (U —w? (b f(U)—2a Z(U) & —ak(U))] +
+

(U~ w)? (ba" —ab")],

Po = v [1+4 (U —u) f(U)+2 (U —u)? fOU)+3 U —u)? ZU)
+H(U —w)* ZM(U))]

+ v [(U —u)? (kD) +220(U) )
(U —u)? (20,0" + 4 Z(U) 5+ 2 k(U)) +2 (U — u) a*}
+ [0ub™(U — u)® 4+ b*(U — u)Q} ,
Ps = 0 [14+2 (U —w) fU) + (U — ) Z(V)]

v [2(U—-u)a*+2 (U -u)?ZU) 5+ (U —u)? kU)]
(U —w)? b,

P = 0* | = F(U) = U —w) (JO0) +22(0) - (U —w? 2V(0)]
[(U — ) (= dua” — 2 Z(U) & — k(U))

+(U —u)? (- 2Z(1)(U)f) KY(U) -2aZ(U))
+(U —u)® (—azM(U))

—i—vg

+ v [(U—u)2 (= 0ub* +b f(U)—2a Z(U) o — a k(U))
(U —u) (—a k@) +b fOW) —2a 2D(W) @)]
+ [bdya* —a 8] (U —u)®.
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All expressions 3; are polynomial functions in v and v, with degree at most 5 in
v and 3 in v. It follows that © can be put in the form

5 3
D(u,0,U,0) = > D(u,5,U) v/ =0, Dj(u,0,U) = D(u,U)o".
k=0

Of course, the condition ® = 0 amounts to the same thing as
(2.6.11) D=0, V(jk) e{0,-,5}x{0,---,3}.

Lemme 2.6.3. Concerning the structures of the functions Z and f, there are three
possible situations:

a) Z=0and f=0;
b) There exists a constant § € R such that Z =0 and f(u) = (6 —2u)~!;

¢) There exist two constants (81,02) € R? such that Z(u) = (u? — 251 u + d2) 7!
and f(u) = (—u+01) (u? — 26 u+ 57)~ L

Proof of Lemma 2.6.3. When Z = 0, the function f must satisfy 2 f2 — f' =0
and we are faced with situations a) or b).

From now on, suppose that Z # 0. First, look at the coefficient D which is
D} = (U—w)' x {[Z() f(U) ~ f(u) Z(U)] Z(V)
+ (U~ w) Z(w) [Z2OO) f(U) - 2(U) [OO)] }.
Since Z # 0, dividing the expression ©f by Z(u) Z(U)?, the condition Df =
pecomes ) s FU) O
20z~ VY [W} ~0.

It means that the function fZ~! is linear with respect to U. Combining this
information with (2.6.7), it first remains

fU)
2.6.12 =-U+9 0 €R
( 6 ) Z(U) + 01, 1€
and then, replacing f by Z'/(2Z), we have access to c). O

2.6.2 Discussion of the case Z # 0.

This paragraph 2.6.2 is aimed to be the source of the situation ii.3 described in
Proposition 2.4.4. First, by changing u into u — 6; and defining vy := Jo — 0%, we
can always assume that

(2.6.13) Fw) = —w/@® )" Zw) = (@)

The functions a and b are given by (2.6.6). We have to determine g, k and [.
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Lemme 2.6.4. Assume that Z # 0. Then, there are constants a € R, 8 € R and
0 € R such that
— 2 0
au=B ) = 22 ) = .
u? +y u? 47y u? +y

(2.6.14) g(u) = —

Proof of Lemma 2.6.4. Complete (2.6.2) with the introduction of
(2.6.15) &(u,v) == 0,R/O2,L,  d(u,v) = 0,8/, L.

‘We have here to work with

R dwv) a1 +a(u,v) 22
Ry d(u,v) + a(u,v) z1 + b(u,v) o

(2.6.16) R =

It is easy to check that 1+ a R # 0. Otherwise R = a(u,v)~! so that XR =0
which is in contradiction with the assumptions of Proposition 2.4.4. From (2.6.16),
we can extract

Ty = — {R CZ(u,v) + ¢(u,v) + 22 [R b(u,v) + a(u,v)] }/[R a(u,v) + 1] )

Use the relation (2.6.16) to compute Q(x1,z2,u,v) = YR/XR. Then replace x;
as it is indicated above in order to obtain

QO(Ra U, U) Ql(Ra u, U)

Q(xl,xg,u,v) = Q(R,.I‘Q,U,U) = QQ(R,U,U) + QQ(R,U,’U) T2

with
3 . .
Qi(R,u,v) = > Ql(uv) R, ie€{0,1,2}
j=0

and

Q?z@ubafauab, Q%za@vbJraubf&,ab,

Q% = 6”Ub~+ 8ua7 B Q[l) = 81)0':7

Q= duda—dyad, Q% = 0ud+ a® 9,(2) +a® 0u(%),

O = a 0,¢+ 0yd + 9,¢ — Opa €, QY =09,¢é.

Q3 =ab, 02 =>b+2a?,

Nl =3a, 0 =1.
The condition (2.4.48) is the same as 0, R — Q 0o R + X@Q = 0. Compute

5R — Pu OyC+ Oya 2 + R [&Jd—l—@uawl%-aubxg]

h Po . d+ax+bx ’

QR — P2 . _atbR

Po d+axi+0bxy
2
XR — _ Da o 1jL2aR+bR '
Po d+axi+bxsy

With these conventions, the condition (2.4.48) becomes

(2.6.17) — Py +Qp2—0rQA pr — Ry 3Q = 0.
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Observe that (2.6.17) is linear with respect to the variable 5. In particular, the
term in factor of zo must be zero implying that

— Qs (Bya+9bR) — 9 (R2b+2a R+1)

(2.6.18) +0aR(Rb+a) (R2b+2aR+1)+49, (Rb+a)=0.

Since 1R # 0 (because 1 + a R # 0), the four variables R, x2, v and v are
independent. The left hand side of (2.6.18) is a polynomial function in R of degree
4 whose four coeflicients must all be zero.

Applying this criterion, we can derive the two following conditions :
(2.6.19) 2b0,0a—2a0,b+b0,b=0, —Ob+2b0,a=0.

From (2.6.6), (2.6.13) and (2.6.19), we can derive the expressions of k and [ given
n (2.6.14). Then, it suffices to exploit (2.6.19) to obtain g. O

At this stage, the functions a and b are determined. From the first part of (2.6.2),
we can deduce the existence of functions F, G and g such that

(2.6.20) Lu,v) = (u? +)"? F((v+a) (u? +7)~ 124 g(u)) + G(u)

where F(®) £ 0 and g is some primitive of the function v — (u? + )~ 3/2,

Then, testing the second part of (2.6.2) with the formula (2.6.20), we can see that
necessarily # = v = 0, yielding the form (2.4.70) for £. As already observed at
the level of the proof of Proposition 2.4.4, once £ is given by (2.4.70) with F and
G as in (2.4.71), the choice R = 0, £ is suitable. The existence of other convenient
functions K will not be discussed.

2.6.3 Exclusion of the case Z =0 and f # 0.

In this paragraph, we consider the situation b) of Lemma 2.6.3. When Z = 0, we
can compute the quantities ’D;“ of (2.6.11) to find the following list :

DY =2 (U —u) [fOU) -2 fA(U)],
Dj = ( )= f(U) + (U —u) [4 f(U) f(u) —4 f2(U) + fOU)]
+(U —u)? 2 fOU) (u)],
DY = g(u >fg<U> + (U =u) [=4 f(U) g(U) + gV (U) +4 f(U) g(w)]
+(U —u)? [2 fDU) g(u) + kD(U) =3 f(U) k(U)]
+(U —u)? [kV(W) f(U) - k(U) fOU)],
D% =2 (U —) [f(u) fU) — f2(U) + (U —u) fOU) f(u)],
D% = (U —w) [2 f(u) g(U) =4 g(U) f(U)+2 f(U) g(u) + k(u) — k(U)]
+(U —u)? [2 g k(U>+2k<U> f(u)
+2g(uw) fOU) +4 k(u) f(U)+ U}
+ (U =u)? 2kDU) f(u)+2k0(0) f<U>—2f (U) k(U)
+2 f2(U) k(u) — 2 f(u) f(U) k(U) + FOU) k(w)]

+(U = [2 f(U) f(u) kD (O) =2 fOU) f(u) k)],
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D = (U —u)® [k(uw) L(U) =2 k(U) LU) +1(u) kU) + 2 k(u) g>(U)
+4 f(U) g(U) l(u) =2 f(u) I(U) g(U)
=2 f(U) g(u) (U) =2 g(u) g(U) kU)]
+ (U —w)* [k(w) IU) =2 f(u) k(U) (U) + 1(u) EDU) + 2 1(u) k(U) f(U)
—2k2(U) g(u) + 2 k(u) k(U) g(U) =2 f(u) 1(U) gD(U)
—2gW(U) g(u) k(U) =2 g(u) L(U) fOW) +2 f(U) IDU) g(u)
+2g(U) f(u) ID(U) +2 g(U) g(u) kM (V)]
+ (U = u)® [k(u) f(U) 1DO) + kD(U) k(u) g(U) = k(U) k(u) gV (U)
=2 k(U) l(u) fOU) = 1U) k(u) fOU) +21(u) fF(U) KU,
93 = (U —w)? [k(w) f(U) U(U) =2 f(u) k(U) I(U) + k(u) k(U) g(U)
+l(u) k(U) f(U) = g(u) K*(U)]
+ (U —w)® [k(u) f(U)IDU) + k(u) KD (U) g(U) + 1(w) fU) EDU)
—k(u) k(U)gW(U) = U(u) k(U) fOU) = k(u) L({U) fOU)]
D) = (U —u)* [k(u) g(U) IU) + I(u) fU) IU) = f(u) *(U)
—2g(u) k(U) I(U) +1(u) g(U) kU)]
+ (U = u)® [k(uw) (D(U) g(U) + L(u) VW) f(U) + l(u) gU) kD (U)
—1(u) (U) fOU) = k(uw) (U) gO(U) = U(u) k(U) gD (U)]
9f = (U —u)* [I(u) g)(U) WU) = g(u) *(U)]

We start by obtaining preliminary informations on g, k and {.

Lemme 2.6.5. In the case Z =0 and f(u) = (6 — 2u)~!, we can find a constant
B €R and a function Q € C*(R;R) such that

(2.6.21) glw) = Q) f@?,  AOw) =28,
(2.6.22) k) = B f(u),
(2.6.23) l(uw) = Bg(u).

Proof of Lemma 2.6.5. Since f # 0, the condition ®3 = 0 amounts to the same
thing as
k(u) — k(U)
— = —— + (U —u) | =
w50 O G
In other words k(u) = (au + B) f(u) with (o, 3) € R%. On the other hand, the
restriction @% = 0 is equivalent to
k(u) k(U) k(U)? kE(u) k(U)\O)
F Fo ~ gop * U0 e (o)
This is possible only if « = 0, yielding (2.6.22).

k(U))(l) 0.

Knowing (2.6.22), the constraint ) = 0 allows to extract

glu) [ gU) g9(U) gV (U)
ot [f(U)2+4UTU)—U O +U2ﬁ}+
gU) . gV(U)
- el ~2U 8| ut Bud.
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Since the left hand side of this identity does not depend on the variable U, the
coefficients of the right hand side must be constants. We recognize here what is
said at the level (2.6.21). In view of of the informations (2.6.21) and (2.6.22), the
condition ®? = 0 becomes

21(u) f(U)?

= =3 f(u) f(U) + 8% f(U)?
—28QU) f(u) f(U)’ I
+

r +2 8 9(u) f(u)? f(U)?

(2.6.24) +2 f(u) fFU)WU) + (U —u) {=2 B2 f(u) f(U)?
+2 QW) f(u) F(U)? +4B8Q(U) flu) fF(U)?

+4UU) fu) fF(U)2 =2 f(u) fU)IDU)}.

Dividing this identity by 2 f(u)? f(U)?, the left hand side is simply I(u) f(u) >
whereas the right hand side is some polynomial function in u of degree 2. To
better visualize the content of (2.6.24), we can work with the auxiliary variables
X:=0—-2uand Y :=9§ —2U. Observe that

QM) = AX) = D x? 8, x + 4,

() f(u) 2 = A(X) = ’32 X248, X + 9.

The relation (2.6.24) is the same as

29(X)Y? = - XY+ X2Y2-28Q) XY +289(X)Y
F2AV) XY+ (X -Y) [- B2 XY+ 8V XY
+26Q) X - QYY) XY -29(Y) X].

For X =0 and Y # 0, we obtain Qo =4 9. Examining the coefficients in factor
of X2Y? and X Y2, we get respectively Qy = (% and Q; = 39,;. In other words
we have Q = 39, that is (2.6.23). -
The above study does not exploit all the informations which are contained in the
coefficients ©;. We can go further

Lemme 2.6.6. In the case Z = 0 and f(u) = (§ —2u)~!, we must have k = 0
and I = 0. On the other hand, we must have g(u) = d f(u) with d € R.

Proof of Lemma 2.6.6. Knowing (2.6.22) and (2.6.23), the coefficient 9 can
be simplified into 52 [g(u) g(U) — ¢*>(U) + (U — u) g(u) ¢V(U)] = 0. If B # 0,
exploiting (2.6.21), this is possible only if
29(X) QYY) Y2 - 2Q(Y)? X2
+(X -Y)QX) [QW(Y)Y2+49(Y) Y] = 0.

For X # 0 and Y = 0, we obtain £ = 0. Then, dividing by Y? and taking again
X #0and Y = 0, we can see that 27 = 0 and also § = 0. It means that £k =0
and [ = 0. Then, look at the condition ®9 = 0 which is
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9(u) g(U) = g(U)? + (U = u) g'(U) g(u) = 0.
Necessarily, we must have g(u) = d (e — 2u)~! for some (d,e) € R?. Taking into
account (2.6.21), the only possible choice for the constant e is e = § giving rise to
the expected result. O

Lemme 2.6.7. The case Z =0 and f(u) = (§ — 2u)~ must be excluded.

Proof of Lemma 2.6.7. If F’ = 0, we have G = (0 and £ is linear in u and
v. This is in contradiction with the assumptions X R # 0 and YR # 0. Therefore
F'#0, F'(v) = c(v+d)~2 and GP(v) = §c(v+ d)~3 for some ¢ € R*. Now,
consider the relation (2.4.74) which can be simplified into

dyR+ a1 [FOV) Ry + FA(V) U + GA (V)] + 22 FO(V)

(2:6.25) —v Qs [2 Ry FO(V) + FOV) U + GO(V)]

0.

Multiply this expression by (V + d)3 and then take V = —d. It remains
c(6-2U) (#1+(d+70)Qz) =0, ceR*.

It means that Q3 = —x1 (d+0)~!. Replace Q5 accordingly at the level of (2.6.25).

Multiply the expression thus obtained by (d + @) F'(V)~! and then take & = —d

in order to obtain 2 Rzv —2U + 6 = —2u + 6 = 0 which cannot be satisfied for

all w. This is again a contradiction showing finally that the case Z =0 and f £ 0

must indeed be excluded. O

2.6.4 Discussion of the case f = 0.

When f = 0, the structure of the coefficients D} is simplified. It becomes easier
to understand what contains the system (2.6.11).

Lemme 2.6.8. In the case f = 0, the functions k, I, and g must satisfy one of
the two distinct following restrictions:

a) We have k=0, gV =0 and IV = 0;
b) There exists a constant © € R* such that k= -2 0, ¢ =0 and | = 0.

Proof of Lemma 2.6.8. We start by looking at the condition
Di(u,U) = g(w) = g(U) + (U —u) gV(U) + (U~ w)* K (U) = 0.

Apply 92, to see that g = —2 k() = § with § € R. Then, consider the restriction
©5 = 0 which can be rewritten
=3 k(U) g(U) + 3 k(u) g(U)
+(U =) [~2kU)* +2 kD (U) g(u) + ED(U) g(U)
+ k(u) gM(U) + 2 k(u
+(U —u)? [k(w) k@) = 0.
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Apply 92, and replace U by u to deduce that g? = 6 = 0. The next step is to
look at the relation @g = 0 which becomes

2 g(u) g(U) =2 g(U)* +1(u) — (V)

+ (U =) [29DW) g(w) + 2 k(U) g(w) =2 k(U) 9(U) +1D(U)]
+(U —w? [~ gM(U) k(U) —k(U)?] = 0.
Apply again 92, and replace U by u. Since 6 = 0, we obtain by this way that

| is a polynomial function of degree at most 2, say l(u) = lau? + Iy u + lp with
(lo, 11,12) € R3. Now, the condition D) = 0 says that

l(u) g(U) UU) = g(u) *(U)
(2.6.26) + (U =) L) (D) g(U) = 1(U) gV(U)] = 0.

Composing (2.6.26) on the left with 93

uuU

1@ 1M g—14M] = o0.

and replacing U by u gives rise to

At this stage, we claim that (2 = 21, = 0. To see why this is true, first assume
that Is # 0. Due to the above relation, we must have g = ¢l with ¢ € R. We
cannot have ¢ € R* because then 0 = ¢® = ¢1®? and therefore [(?) = 0 which is a
contradiction. Retain that ¢ = 0 so that g = 0. Looking at the condition DY = 0,
we get

Iw) (U) = 12(U) + (U —w) l(u) IDU) =0, l(u)=ku®>+Lut+ly
which is not possible when Iy # 0. We must have lo = 0 and I(u) = I; u + lo.

Now, we can come back to (2.6.26). Apply 92, to (2.6.26) and replace U by u. It
remains [() [l(l)g — lg(l)] = 0. We claim that (V) = [; = 0. Indeed, if ; # 0, we
must have g = ¢l with ¢ € R and the condition DY = 0 becomes

Hu) [(U) = L({U)? 4+ (U — ) 1(u) ID(U)
— (U =w)? ck(U) I(u) ID(U)

Il
o

Since [(?) = 0, applying 02, and replacing U by u gives rise to
1D (w) 1D (u) + ck(uw)l(u)] = 0.
Recalling that k() = 0, we can see that this is not possible when I() # 0. In other

words, the functions k and [ are constants, say k = k € Rand [ =1 € R. The
condition D1 = 0 can be rewritten

2k g(U)* -2k g(u) g(U)
+ (U —w) [~ sz (u)+2k2 g(U) =2k gM(U) g(u)]
(U -uw?® K gVU)] =
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Apply 02, and replace U by u in order to extract
(2.6.27) k gM(u) [k+2g¢W@)] = 0.
Now look at the restriction @g = 0 which amounts to the same thing as

(2 9(u) g(U) = 2 g(U)?]
+ (U =) [26(U) gu) + 2k glu) = 2k g(U)]
— (U —u)? [kg(l)(U)—{—kﬂ =0.
Combining this information with (2.6.27), we obtain that either ¢(') = 0 and
k=0, or that k = —2 ¢ = —20 with ® € R*. We recover here the two

situations a) and b) described in Lemma 2.6.8. In the case b), we can even obtain
more informations about /. Indeed, the condition ®Y = 0 says that

I{MUV—QWMNﬂ+%U—U)%9@?—kﬂw—9WMNNUﬂ
+24a7—m2w¢ﬂwﬂ};o.
Apply 02, and replace U by u to get 1 [2 gV (u)? +3%k g (u)] =-410%2=0. It

follows that [ = 0 as expected. 0

Solving the system (2.6.11) is necessary but not sufficient in order to get solutions
of (2.4.39)-(2.4.40). A direct study is still required. We start by examining the
case b) of Lemma 2.6.8.

Lemme 2.6.9. The case k= —20, ¢) =0, | =0 with © € R* is excluded.

Proof of Lemma 2.6.9. Taking into account (2.6.2), we have
D2, L=(0Ou+06y) 2L, 8,L=-200v0,L, ©O£0, ©OjeckR.

To simplify the presentation, we will adopt in this paragraph the following con-
ventions A := 0,8/9%,£ and B := 9,8/9%,£. We have to deal with

q0__ A+I1+(@U+@0){E2
o  B+Ou+6y)z,—20vzy

We can compute

D2 _@u—l—@o—QGUR

BR =2 = ,
DPo Pbo
8R__j@__@ﬁ+@$rH%B+@xﬂR
‘ Do Po ’

and similar expressions for 91 R and 9, R. Briefly, the quantity @ is given by

Py _ OA+[0uA+8,B -0 x) R+ [9,B+06 x] R?

Q:p:C 142[Ou+ 6 R—2060 v R?
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Now, we can write XQ = —pg Pyt pal with

pQ = [6UA+8UB—@x2+2(3uB+@«T1) R] Pz
—[20u+6y) —40vR]p,.

In this context, the condition (2.4.48) becomes p, p, — pyp2 + pg = 0. Now, the
idea is to multiply this quantity by pg and to replace everywhere pgR by —qq
in order to obtain that some polynomial function in x; and xo with coefficients
depending on u and v must be zero. In particular, the coefficient in factor of z}
must be zero. This criterion yields © [(© u + ©9)* +20v] = 0. This is not

possible due to the assumption © € R*. 0

2.6.5 Necessary conditions.

We can summarize what has been obtained above and in the preceding Sections
2.6.1, 2.6.3 and 2.6.4 through the following statement.

Proposition 2.6.1. When (XR) (Y R) # 0, the system (2.4.39)-(2.4.40) can be
solved if and only if 02,£ # 0. Then, there are two functions f and g in C*(R;R)
such that 82,&(u,v) = [f(u)v + g(u)] 02,£. Defining Z := 2 f* — f', we have
either Z =0 or Z(u) = (u? — 261 u + d2) =1 with (61,92) € R?. In the case Z = 0,
the function £ is necessarily of the form (2.4.65) or (2.4.68).

Proof of Proposition 2.6.1. The first part is a repetition of Lemma 2.6.3. When
Z = 0, due to Lemmas 2.6.7, 2.6.8 and 2.6.9, there are two constants b € R and
c € R such that 92,€ — b 92,£ =0 and 92,£ — c 92,£ = 0.
The first relation indicates that

£(u,v) = G(u) +F(bu+v), (F,G) € C3((R;R)?, F® #£0.
Plugging this expression of £ in the second relation, we obtain

GO(u) + (1? —¢) FA(bu+v) = 0.
When b? — ¢ # 0, since the variables u and b u + v are independent, both functions
F?) and G® must be constants and we recover (2.4.65). On the contrary, when
b?> — ¢ = 0, there is no restriction on F (apart from F(®) # 0) but the function G

must be linear in u. It follows that £(u,v) can be put in the form (2.4.68). 0



Bibliography

1]

Andrei Biryuk. On multidimensional Burgers type equations with small vis-
cosity. In Contributions to current challenges in mathematical fluid mechan-
ics, Adv. Math. Fluid Mech., pages 1-30. Birkhauser, Basel, 2004.

William M. Boothby. An introduction to differentiable manifolds and Rieman-
nian geometry. Academic Press [A subsidiary of Harcourt Brace Jovanovich,
Publishers], New York-London, 1975. Pure and Applied Mathematics, No.
63.

Jean-Yves Chemin. Perfect incompressible fluids, volume 14 of Oxford Lecture
Series in Mathematics and its Applications. The Clarendon Press Oxford
University Press, New York, 1998. Translated from the 1995 French original
by Isabelle Gallagher and Dragos Iftimie.

C. Cheverry. A deterministic model for the propagation of turbulent oscilla-
tions. J. Differ. Equations, 247(9):2637-2679, 2009.

C. Cheverry and O. Gues. Counter-examples to concentration-cancellation.
Arch. Ration. Mech. Anal., 189(3):363-424, 2008.

C. Cheverry, O. Gues, and G. Métivier. Large-amplitude high-frequency waves
for quasilinear hyperbolic systems. Adv. Differential Equations, 9(7-8):829—
890, 2004.

C. Cheverry and M. Houbad. Compatibility conditions to allow some large
amplitude WKB analysis for Burger’s type systems. Phys. D, 237(10-
12):1429-1443, 2008.

Christophe Cheverry. Sur la propagation de quasi-singularitiés. In Séminaire:
Equations aur Dérivées Partielles. 2004-2005, pages Exp. No. VIII, 20. Ecole
Polytech., Palaiseau, 2005.

Christophe Cheverry. Cascade of phases in turbulent flows. Bull. Soc. Math.
France, 134(1):33-82, 2006.

Christophe Cheverry. Recent results in large amplitude monophase nonlin-
ear geometric optics. In Instability in models connected with fluid flows. I,

95



BIBLIOGRAPHY 96

[14]

[15]

[16]

[19]

volume 6 of Int. Math. Ser. (N. Y.), pages 267-288. Springer, New York,
2008.

Christophe Cheverry, Olivier Gues, and Guy Métivier. Oscillations fortes sur
un champ linéairement dégénéré. Ann. Sci. Ecole Norm. Sup. (4), 36(5):691—
745, 2003.

Jean-Francois Coulombel. From gas dynamics to pressureless gas dynamics.
Proc. Amer. Math. Soc., 134(3):683-688 (electronic), 2006.

Ronald J. DiPerna and Andrew J. Majda. Oscillations and concentrations
in weak solutions of the incompressible fluid equations. Comm. Math. Phys.,
108(4):667—689, 1987.

Isabelle Gallagher and Laure Saint-Raymond. On pressureless gases driven
by a strong inhomogeneous magnetic field. STAM J. Math. Anal., 36(4):1159—
1176 (electronic), 2005.

Emmanuel Grenier. On the nonlinear instability of Euler and Prandtl equa-
tions. Comm. Pure Appl. Math., 53(9):1067-1091, 2000.

Olivier Gueés. Ondes multidimensionnelles e-stratifiées et oscillations. Duke
Math. J., 68(3):401-446, 1992.

J.-L. Joly, G. Métivier, and J. Rauch. Generic rigorous asymptotic expan-
sions for weakly nonlinear multidimensional oscillatory waves. Duke Math.
J., 70(2):373-404, 1993.

Jean-Luc Joly, Guy Métivier, and Jeffrey Rauch. Several recent results in
nonlinear geometric optics. In Partial differential equations and mathemati-
cal physics (Copenhagen, 1995; Lund, 1995), volume 21 of Progr. Nonlinear
Differential Equations Appl., pages 181-206. Birkhauser Boston, Boston, MA,
1996.

Pierre-Louis Lions. Mathematical topics in fluid mechanics. Vol. 1, volume 3
of Oxford Lecture Series in Mathematics and its Applications. The Claren-
don Press Oxford University Press, New York, 1996. Incompressible models,
Oxford Science Publications.

A. Majda. Compressible fluid flow and systems of conservation laws in several
space variables, volume 53 of Applied Mathematical Sciences. Springer-Verlag,
New York, 1984.

Andrew J. Majda and Andrea L. Bertozzi. Vorticity and incompressible flow,
volume 27 of Cambridge Texts in Applied Mathematics. Cambridge University
Press, Cambridge, 2002.



BIBLIOGRAPHY 97

[22]

23]

[24]

[25]

F. Poupaud. Global smooth solutions of some quasi-linear hyperbolic systems
with large data. Ann. Fac. Sci. Toulouse Math. (6), 8(4):649-659, 1999.

Steven Schochet. Fast singular limits of hyperbolic PDEs. J. Differential
Equations, 114(2):476-512, 1994.

D. Serre. Oscillations non-linéaires hyperboliques de grande amplitude; dim >
2. In Nonlinear variational problems and partial differential equations (Isola
d’Elba, 1990), volume 320 of Pitman Res. Notes Math. Ser., pages 245-294.
Longman Sci. Tech., Harlow, 1995.

Denis Serre. Systems of conservation laws. 1. Cambridge University Press,
Cambridge, 1999. Hyperbolicity, entropies, shock waves, Translated from the
1996 French original by I. N. Sneddon.



