Licence MASS 2 Algèbre

Orthogonalité

Exercice 1

Considérons \mathbb{R}^3 muni de sa base canonique.

- 1. Vérifier que les vecteurs $\vec{v}_1 = (1, 1, 1)'$, $\vec{v}_2 = (-1, 1, 0)'$ et $\vec{v}_3 = (1, 1, -2)'$ forment une base orthogonale de \mathbb{R}^3 muni du produit scalaire usuel.
- 2. Soient $\vec{u}_1 = \frac{\vec{v}_1}{\|\vec{v}_1\|}$, $\vec{u}_2 = \frac{\vec{v}_2}{\|\vec{v}_2\|}$, et $\vec{u}_3 = \frac{\vec{v}_3}{\|\vec{v}_3\|}$, montrer que $\{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$ forme une base orthonormée de \mathbb{R}^3 .
- 3. Trouver les coordonnées dans la base $\{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$ des vecteurs suivants $\vec{x}_1 = (3, -1, 1)', \quad \vec{x}_2 = (-1, 1, 1)', \quad \vec{x}_3 = (2, 1, -2)', \quad \vec{x}_4 = (2, -3, 1)', \quad \vec{x}_5 = (1, 0, 0)' \text{ et } \quad \vec{x}_6 = (0, 1, -2)'.$

Exercice 2

Considérons \mathbb{R}^3 muni de sa base canonique et F le sous-espace de \mathbb{R}^3 engendré par $\vec{f_1} = (1, 1, 1)'$ et $\vec{f_2} = (1, 2, -1)'$. Construisez un base orthonormée de F.

Exercice 3

Considérons E engendré par $\vec{e}_1 = (1, 1, 1)'$ et $\vec{e}_2 = (-1, 2, -1)'$ et $\vec{e}_3 = (0, 1, 2)'$. Construisez un base orthonormée de E.

Exercice 4

Soit can la base canonique de \mathbb{R}^n (espace euclidien muni du produit scalaire euclidien standard), on note u_{can} et v_{can} les coordonnées de deux vecteurs \vec{u} et \vec{v} de E dans \mathcal{B} . Soit f tel que $A = M_{\mathsf{can},\mathsf{can}}(f)$ soit symétrique.

- 1. Ecrire $\langle \vec{u}, \vec{v} \rangle$ en fonction de $u_{\sf can}$ et $v_{\sf can}$.
- 2. Ecrire $\langle f(\vec{u}), \vec{v} \rangle$ en fonction de u_{can} , A et v_{can} .
- 3. En déduire

$$< f(\vec{u}), \vec{v} > = < \vec{u}, f(\vec{v}) > .$$

4. Déduire de la question précédente que 2 vecteurs propres associés à 2 valeurs propres distinctes de A symétrique sont orthogonaux.

Exercice 5

Considérons $\{\vec{e}_1, \dots, \vec{e}_p\}$ une base orthonormée d'un espace euclidien E, considérons un élément \vec{u} de E. Montrer que si $\vec{u} = \sum_{i=1}^p \alpha_i \vec{e}_i$ alors

$$\|\vec{u}\|^2 = \sum_{i=1}^p \alpha_i^2.$$

Exercice 6

Considérons \mathbb{R}^3 muni de sa base canonique et F le sous-espace de \mathbb{R}^3 engendré par $\vec{f_1} = (1, 1, 1)'$ et $\vec{f_2} = (1, 2, -1)'$. Donnez la matrice de la projection orthogonale sur F et la matrice de la projection orthogonale sur F^{\perp} .

Exercice 7

Considérons \mathbb{R}^3 muni de sa base canonique, donnez la matrice de la projection orthogonale sur la droite engendrée par le vecteur (1,1,1)', notée $\pi_{\mathbb{I}}^{\perp}$ et la matrice de la projection orthogonale sur son complément notée $\pi_{\mathbb{I}^{\perp}}^{\perp}$. Soit \vec{u} un élément de \mathbb{R}^3 , que faites vous quand vous calculez $\pi_{\mathbb{I}}^{\perp}(\vec{u})$ et $\pi_{\mathbb{I}^{\perp}}^{\perp}(\vec{u})$?

Exercice 8

Nous avons n individus. Pour chaque individu, nous mesurons p valeurs représentant des valeurs de variables différentes, par exemple, l'âge, le poids, la taille, temps de travail, assiduité au cours d'algèbre ... (notées de X_1 à X_p). Nous mesurons ensuite une dernière variable comme par exemple la note en analyse notée Y, dont nous pensons qu'elle est liée aux autres variables de manière linéaire. Considérons $E = \mathbb{R}^n$ et F le sous-espace engendré par X_1, \ldots, X_p . Donnez la matrice de projection sur F.

Exercice 9

Soit $n \ge 1$ un entier fixé, considérons l'espace vectoriel $\mathbb{R}_n[X]$ des polynômes à coefficients réels de degré inférieur ou égal à n. Soient $t_0, t_1, \ldots, t_n, n+1$ nombres réels distincts fixés. Pour P et Q deux éléments quelconques de $\mathbb{R}_n[X]$, posons

$$\langle P, Q \rangle = P(t_0)Q(t_0) + \cdots + P(t_n)Q(t_n).$$

- 1. Avec $n=2, t_0=0, t_1=1/2, t_2=1$, calculer < P, Q>, ||P||, ||Q||, et d(P,Q), où $P(X)=12X^2$ et Q(X)=2X-1.
- 2. Dans le cadre général, montrez que nous avons ainsi défini un produit scalaire sur $\mathbb{R}_n[X]$.
- 3. Soit n = 4, $t_0 = -2$, $t_1 = -1$, $t_2 = 0$, $t_3 = 1$ et $t_4 = 2$. Considérons $\mathbb{R}_2[X]$ comme sous-espace de $\mathbb{R}_4[X]$, de base $\{1, X, X^2\}$.
 - (a) Construisez une base orthogonale de $\mathbb{R}_2[X]$.
 - (b) Exprimez les polynômes 1, X et X^2 dans cette base.
 - (c) Déterminez la meilleure approximation de $P(X) = 5 \frac{1}{2}X^4$ par des polynômes de $\mathbb{R}_2[X]$.

Exercice 10 (Réflexion)

1. Soit \vec{u} un vecteur non nul de \mathbb{R}^2 . Soit la symétrie orthogonale dans \mathbb{R}^2 (pour le produit scalaire euclidien classique) par rapport à \vec{u}^{\perp} (et parallèlement à \vec{u} .) Le vecteur \vec{u} à pour coordonnées u (vecteur colonne) dans la base canonique. Cette symétrie orthogonale est aussi appelée réflexion d'un vecteur par rapport au sous espace vectoriel engendrée par \vec{u}^{\perp} .

Montrer que la matrice Q ci dessous est la matrice de cette réflexion;

$$Q = I_2 - 2\frac{uu'}{u'u}.$$

2. Soit la matrice $n \times n$ suivante

$$Q = I_n - 2\frac{uu'}{u'u}$$

avec u vecteur colonne de \mathbb{R}^n . Montrer que Qu = -u et que quelque soit $v \perp u$ Qv = v. Il s'agit donc de la réflexion par rapport au sous espace vectoriel engendrée par \vec{u}^{\perp} (et parallèlement à \vec{u}).

Exercice 11

On ne se servira pas de la décomposition $E = F \oplus F^{\perp}$ dans cet exercice (dont le but est de le démontrer). Soit F un sous espace vectoriel de E espace euclidien de dimension finie n. Nous nous intéressons aux vecteurs \vec{u} qui soient orthogonaux à un sous-espace F et à son complément orthogonal.

- 1. Ecrire la définition de \vec{u} est orthogonal à au sous-espace F et remarquer que, par définition, \vec{u} est élément de F^{\perp} .
- 2. Ecrire la définition de \vec{u} est orthogonal à au sous-espace F^{\perp} et remarquer que, par définition, \vec{u} est élément de F.
- 3. Déduire des deux questions précédentes que $F \cap F^{\perp}$ si le vecteur \vec{u} est orthogonal à un sous-espace F et à son complément orthogonal alors $\vec{u} \in F \cap F^{\perp}$.
- 4. Comme $\vec{u} \in F \cap F^{\perp}$ déduire que $\langle \vec{u}, \vec{u} \rangle = 0$ et donc que $F \cap F^{\perp} = \{\vec{0}\}$ puis que $E = F \oplus F^{\perp}$.

Exercice 12

Soit F un sous-espace de dimension finie d'un espace euclidien E. Soient \vec{u} et \vec{v} deux vecteurs de E. Etablissez l'équivalence entre les propositions suivantes :

- 1. $\vec{v} = \pi_F^{\perp}(\vec{u})$
- 2. $\vec{v} \in F$ et $\|\vec{u} \vec{v}\| = \inf\{\|\vec{t} \vec{u}\| : \vec{t} \in F\}$
- 3. $\vec{v} \in F$ et $\|\vec{u}\|^2 = \|\vec{v}\|^2 + \|\vec{u} \vec{v}\|^2$.

Exercice 13 (Réflexion et triangularisation)

soit la matrice A suivante

$$A = \begin{pmatrix} 0 & -20 & -75 \\ 3 & 27 & -25 \\ 4 & 11 & 50 \end{pmatrix}$$

- 1. Calculer la norme euclidienne du premier vecteur colonne (ie la colonne 1) de A, norme notée $||a_{.1}||$.
- 2. Notons $a_{.1}$ la première colonne de A. Soit le vecteur $u = a_{.1} + ||a_{.1}||e_1$ où $e_1 = {}^t(1,0,0)$. Nous allons calculer la reflexion de $a_{.1}$ par rapport au sous espace vectoriel engendrée par u^{\perp} (et parallèlement à u); cette réflexion a pour matrice Q (cf exercice 10):
 - (a) Montrer que $Qa_{.1} = -\|a_{.1}\|e_1$ (on peut répondre à cette question sans calculer $\|a_{.1}\|$ ni même effectuer numériquement $^ta_{.1}e_1$ ou autre)
 - (b) En déduire que

$$B = QA = \begin{pmatrix} -5 & \times & \times \\ 0 & \times & \times \\ 0 & \times & \times \end{pmatrix}$$

où × figure un nombre (qui peut être nul par hasard) et que l'on ne calculera pas.

3. Sachant que B vaut

$$\left(\begin{array}{ccc}
-5 & -25 & -55 \\
0 & 24 & 37 \\
0 & 7 & 66
\end{array}\right)$$

(a) soit B_{22} la matrice suivante

$$\begin{pmatrix} 24 & 37 \\ 7 & 66 \end{pmatrix}.$$

Montrer en utilisant Notons $b_{.1}$ la première colonne de B_{22} . Soit le vecteur $u = b_{.1} + ||b_{.1}||e_1$ où $e_1 = {}^t(1,0)$. Nous allons calculer la reflexion de $b_{.1}$ par rapport au sous espace vectoriel engendrée par u^{\perp} (et parallèlement à u); cette réflexion a pour matrice Q_{22} (cf exercice 10):

- i. Se rappeler que $Q_{22}b_{.1} = -\|b_{.1}\|e_1$
- ii. Déduire que

$$Q_{22}B_{22} = \begin{pmatrix} -25 & \times \\ 0 & \times \end{pmatrix}$$

où x figure un nombre (qui peut être nul par hasard) et que l'on ne calculera pas.

(b) En déduire que

$$C = Q_2 B = \begin{pmatrix} I_1 & \mathbf{0}_{1 \times 2} \\ \mathbf{0}_{2 \times 1} & Q_{22} \end{pmatrix} \begin{pmatrix} -6 & -25 & -25 \\ 0 & 24 & 5 \\ 0 & 7 & 90 \end{pmatrix} = \begin{pmatrix} -6 & -25 & -55 \\ 0 & -25 & \times \\ 0 & 0 & \times \end{pmatrix}$$

où × figure un nombre (qui peut être nul par hasard) et que l'on ne calculera pas.