

Fonctions de la variable réelle

2014 - 2015

Corrigé du premier contrôle continu

Nom: Prénom:

QCM : Répondez par OUI ou NON aux questions en entourant la bonne réponse.

Barème:

- 2,5 points par réponse correcte;
- - 1 point pour une mauvaise réponse;
- 0 point en l'absence de réponse.
- 1) Le nombre $\ln 3 / \ln 2$ est irrationnel.

OUI

Sinon, on a $3^q = 2^p$ avec $(p,q) \in (\mathbb{N}^*)^2$. Or ceci est impossible puisque les nombres 2 et 3 sont premiers entre eux.

2) Soient A et B deux parties bornées de \mathbb{R} . On pose $A+B:=\{a+b; a\in A, b\in B\}$. On a : $\sup A+\inf B\leq \sup (A+B)$.

OUI

D'une part :

$$\forall (a, b) \in A \times B : a + \inf B \le a + b.$$

D'autre part :

$$\forall (a, b) \in A \times B : a + b \le \sup(A + B).$$

 $Il\ s$ 'ensuit que :

$$\forall a \in A : a + \inf B \le \sup(A + B),$$

puis l'inégalité souhaitée en passant au sup sur A.

3) Soit $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$. Etant donné $y \in \mathbb{R}$, on note E(y) la partie entière de y. On a : $E\Big(E(nx)/n\Big) = E(x).$

Soit $x \in \mathbb{R}$. On note $k := E(x) \in \mathbb{Z}$. On a $k \le x < k+1$ de sorte que $k \, n \le n \, x < k \, n+n$. Puisque $k \, n \in \mathbb{Z}$, on récupère alors $k \, n \le E(n \, x) < k \, n+n$. En divisant ces deux inégalités par n, on obtient $k \le E(n \, x)/n < k+1$. Le nombre $E(n \, x)/n$ apparaît ainsi comme appartenant à l'intervalle [k, k+1] avec $k \in \mathbb{N}$. Sa partie entière vaut donc k.

4) Soit $a \in \mathbb{R}$. Si $a > 1 - \varepsilon$ pour tout $\varepsilon > 0$, alors $a > 1 - \varepsilon^2$ pour tout $\varepsilon \ge 0$.

NON

La condition à gauche autorise la valeur a = 1 tandis que celle de droite l'exclut.

5) Soit $(u_n)_{n\in\mathbb{N}}$ une suite de nombres réels telle que les suites extraites $(u_{2n})_{n\in\mathbb{N}}$, $(u_{2n+1})_{n\in\mathbb{N}}$ et $(u_{3n})_{n\in\mathbb{N}}$ convergent. Alors, la suite $(u_n)_{n\in\mathbb{N}}$ converge.

OUI

Soient l_1 , l_2 et l_3 les limites respectives des suites $(u_{2n})_{n\in\mathbb{N}}$, $(u_{2n+1})_{n\in\mathbb{N}}$ et $(u_{3n})_{n\in\mathbb{N}}$. Comme la sous-suite $(u_{6n})_{n\in\mathbb{N}}$ est extraite à la fois de $(u_{2n})_{n\in\mathbb{N}}$ et de $(u_{3n})_{n\in\mathbb{N}}$, elle converge, et on doit avoir $l_1 = l_3$. Comme la sous-suite $(u_{6n+3})_{n\in\mathbb{N}}$ est extraite à la fois de $(u_{2n+1})_{n\in\mathbb{N}}$ et de $(u_{3n})_{n\in\mathbb{N}}$, elle converge, et on doit avoir $l_2 = l_3$. Finalement, on a nécessairement $l = l_1 = l_2 = l_3$.

Il reste à prouver que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers l. On raisonne par l'absurde. On commence par remarquer que la suite $(u_n)_{n\in\mathbb{N}}$ est bornée. Par conséquent, sa non convergence implique l'existence d'une suite extraite $(u_{\sigma(n)})_{n\in\mathbb{N}}$ qui converge vers $\tilde{l}\neq l$. On considère alors :

$$\mathcal{P}_1 := \{n; \sigma(n) \ est \ pair\}, \qquad \mathcal{P}_2 := \{n; \sigma(n) \ est \ impair\}.$$

On a $\mathcal{P}_1 \cup \mathcal{P}_2 = \mathbb{N}$ et $\mathcal{P}_1 \cap \mathcal{P}_2 = \emptyset$. Comme le cardinal de \mathbb{N} est infini, l'un ou l'autre des ensembles \mathcal{P}_1 ou \mathcal{P}_2 est de cardinal infini. Disons que c'est \mathcal{P}_1 . On peut donc trouver une suite qui est extraite de $(u_{\sigma(n)})_{n\in\mathbb{N}}$ et de $(u_{2n})_{n\in\mathbb{N}}$ qui converge vers \tilde{l} et l, avec $l \neq \tilde{l}$. Cela contredit l'unicité de la limite.

6) Une suite $(u_n)_{n\in\mathbb{N}}\in(\mathbb{R}_+)^{\mathbb{N}}$, à termes réels positifs, qui ne tend pas vers $+\infty$ possède une suite extraite convergente.

OUI

Dire que la suite $(u_n)_{n\in\mathbb{N}}$ tend vers $+\infty$ équivaut à :

$$\forall M \in \mathbb{R}_+, \quad \exists N \in \mathbb{N}; \quad \forall n \ge N, \quad u_n \ge M.$$

La négation de cette affirmation s'écrit :

$$\exists M \in \mathbb{R}_+; \quad \forall N \in \mathbb{N}; \quad \exists n \geq N \quad tel \ que \quad u_n \leq M.$$

Comme par hypothèse $u_n \in \mathbb{R}_+$, cela implique l'existence d'une suite extraite de $(u_n)_{n \in \mathbb{N}}$ qui est bornée. Le théorème de Bolzano-Weierstrass permet alors d'en extraire une soussuite convergente.

7) Soit A une partie non vide de \mathbb{R} . On note $|A| := \{|x|; x \in A\}$. Si A est un intervalle ouvert, alors |A| est un intervalle ouvert.

NON

Prendre A =]-1,1[ce qui donne |A| = [0,1[.

8) Il existe une suite non stationnaire qui est à la fois arithmétique et géométrique.

NON

Dire que la suite $(u_n)_{n\in\mathbb{N}}$ est non stationnaire et qu'elle est à la fois arithmétique et géométrique signifie l'existence de deux nombres réels non nuls $a \in \mathbb{R}^*$ et $b \in \mathbb{R}^*$, qui sont ajustés de façon à ce que :

$$u_n = u_0 + a n = u_0 b^n$$
, $\forall n \in \mathbb{N}$.

Les cas $u_0 = 0$ ou $\pm b = 1$ sont clairement impossibles puisque a $n \neq 0$ pour tout $n \in \mathbb{N}^*$. Reste à considérer le cas $u_0 \neq 0$ et $b \neq \pm 1$. On passe à la valeur absolue puis on prend le logarithme dans l'identité précédente, ce qui conduit à :

$$\ln n + \ln |a + (u_0/n)| = n \ln |b| + \ln |u_0|, \quad \forall n \in \mathbb{N}.$$

On divise par n puis on fait tendre n vers $+\infty$. Le terme de gauche tend vers 0; celui de droite tend vers $\ln |b|$. On doit donc avoir $\ln |b| = 0$, c'est à dire $b = \pm 1$. Contradiction.

Exercice Bonus (3 points) Soit $f: \mathbb{R}_+^* \longrightarrow \mathbb{R}$ une fonction croissante. On suppose que la fonction $g: \mathbb{R}_+^* \longrightarrow \mathbb{R}$ qui est définie par g(x) := f(x)/x est décroissante. Montrer que la fonction f est continue.

Par l'absurde. On suppose que f n'est pas continue, disons au point $a \in \mathbb{R}_+^*$. Comme la fonction f est croissante, elle admet une limite à gauche f(a-) et à droite f(a+) en a, et on doit avoir f(a-) < f(a+). Mais alors :

$$\lim_{x\to a-}g(x)=\frac{f(a-)}{a}\,<\,\lim_{x\to a+}g(x)=\frac{f(a+)}{a}\,,$$

ce qui contredit la décroissance de q.