

Distribution et ANalyse de Fourier

Corrigé de l'examen du 25/04/2019 (durée 2h)

Les documents ne sont pas autorisés

Exercice I. On considère l'application

$$T: \mathcal{D}(\mathbb{R}) \longrightarrow \mathbb{R}$$

$$\varphi \longmapsto \langle T, \varphi \rangle := \lim_{n \to +\infty} \left\{ n\varphi(0) - \sum_{j=1}^{n} \varphi\left(\frac{1}{j^2}\right) \right\}.$$

1) Montrer que T définit une distribution d'ordre inférieur à un.

On a

$$\langle T_n, \varphi \rangle := n\varphi(0) - \sum_{j=1}^n \varphi\left(\frac{1}{j^2}\right) = \sum_{j=1}^n u_j, \qquad u_j := \varphi(0) - \varphi\left(\frac{1}{j^2}\right).$$

La formule des accroissements finis fournit

$$\exists c_j \in \left] 0, \frac{1}{j^2} \right[, \qquad u_j = -\varphi'(c_j) \times \frac{1}{j^2}, \qquad |\varphi'(c_j)| \le \sup_{0 \le x \le 1} |\varphi'(x)|.$$

La série de terme général u_j est donc majorée par une somme de Riemann convergente (puisque d'indice 2). Elle est donc convergente de limite $\langle T, \varphi \rangle$. Comme chaque T_n est linéaire en φ , il en va de même pour la limite

$$\langle T, \varphi \rangle = \lim_{n \to +\infty} \sum_{j=1}^{n} u_j$$

qui est ainsi une forme linéaire sur $\mathcal{D}(\mathbb{R})$. De plus, pour tout compact $K \subset \mathbb{R}$ et toute fonction test $\varphi \in \mathcal{D}(\mathbb{R})$ dont le support est contenu dans K, on a

$$|\langle T, \varphi \rangle| \le C \sup_{x \in K} |\varphi'(x)|, \qquad C := \sum_{j=1}^{\infty} \frac{1}{j^2},$$

ce qui indique que T est d'ordre inférieur à un.

2) Déterminer le support de T.

Soit $\varphi_j \in \mathcal{D}(\mathbb{R})$ vérifiant (pour $j \geq 2$)

$$\varphi_j\left(\frac{1}{j^2}\right) = 1, \qquad supp\,\varphi_j \subset \left]\frac{1}{(j+1)^2}, \frac{1}{(j-1)^2}\right[.$$

On obtient alors

$$\langle T, \varphi_j \rangle = \varphi_j \left(\frac{1}{j^2} \right) = 1.$$

Comme le support de T est un fermé, cela implique

$$\tilde{K} := \{0\} \cup \left\{ \bigcup_{j=1}^{\infty} \frac{1}{j^2} \right\} \subset \operatorname{supp} T.$$

Soit alors $\varphi \in \mathcal{D}(\mathbb{R})$ vérifiant supp $\varphi \cap \tilde{K} = \emptyset$. Comme $\langle T_n, \varphi \rangle = 0$, on récupère à la limite $\langle T, \varphi \rangle = 0$ ce qui donne supp $T = \tilde{K}$.

3) En testant T contre $\varphi_p(x) := p^2 x \chi(p^2 x)$ pour $p \in \mathbb{N}$ et $\chi(\cdot)$ bien choisi, prouver que T est une distribution d'ordre un.

On choisit pour $\chi(\cdot)$ une fonction plateau qui est de classe C^{∞} sur \mathbb{R} , qui est positive, qui vaut 1 sur]-1,1[et 0 pour $2 \leq |x|$. On a alors

$$supp\,\varphi_p\subset]-2,2[,\qquad \sup_{x\in\mathbb{R}}\ |\varphi_p(x)|=\sup_{y\in\mathbb{R}}\ |y\chi(y)|=C_\chi<+\infty.$$

Par ailleurs, pour $n \ge p$, on a

$$|\langle T_n, \varphi_p \rangle| \ge \sum_{j=p}^n \frac{p^2}{j^2} \ge p^2 \int_{p-1}^{n-1} \frac{dt}{t^2} \implies |\langle T, \varphi_p \rangle| \ge \frac{p^2}{p-1} \ge p.$$

Si la distribution T était d'ordre 0, associé au compact K = [-2, 2], on pourrait trouver une constante C_K telle que

$$\forall \varphi \in \mathcal{D}(\mathbb{R}); \quad supp \, \varphi \subset [-2, 2], \quad |\langle T, \varphi \rangle| \leq C_K \sup_{x \in [-2, 2]} |\varphi(x)|.$$

Mais cette majoration est contredite par la famille $\{\varphi_p\}_p$ pour $p \geq C_K C_\chi$.

Exercice II. Soit Ω un ouvert de \mathbb{R}^d . On se donne $\varphi \in \mathcal{D}(\Omega)$. On considère les énoncés a) et b) suivants :

a)
$$\langle T, \varphi \rangle = 0$$
; b) $\varphi T = 0$ au sens de $\mathcal{D}'(\Omega)$.

1) Montrer que b) implique a).

On suppose b). Soit alors $\chi \in \mathcal{D}(\mathbb{R})$ une fonction plateau qui vaut 1 sur un voisinage du support de φ . On teste φT contre χ ce qui donne

$$\langle \varphi T, \chi \rangle = \langle T, \varphi \chi \rangle = \langle T, \varphi \rangle = 0,$$

c'est à dire a).

2) Montrer que a) n'implique pas b).

Il suffit de fournir un contre-exemple. On prend $T = \delta'_0$ et $\varphi = \chi$ avec χ ajusté comme à la correction de la question 3) de l'exercice I. Pour ces choix, on obtient

$$\langle T, \varphi \rangle = \langle \delta'_0, \chi \rangle = -\chi'(0) = 0.$$

Par contre

$$\langle \chi \delta_0', x \chi(x) \rangle = \langle \delta_0', x \chi^2(x) \rangle = -\langle \delta_0, \chi^2(x) \rangle - \langle \delta_0, 2x \chi'(x) \chi(x) \rangle = -1 \neq 0.$$

On a donc a) sans avoir b).

Exercice III. On admet que:

$$\forall M \in \mathbb{R}_{+}^{*}, \qquad \lim_{\varepsilon \to 0+} \frac{1}{\sqrt{i\pi\varepsilon}} \int_{0}^{M} e^{-\frac{x^{2}}{4i\varepsilon}} dx = 1. \tag{1}$$

Etant donné $\varepsilon \in \mathbb{R}_+^*$, on considère la distribution T_ε de $\mathcal{D}'(\mathbb{R})$ qui est associée à la fonction localement intégrable f_ε définie par :

$$f_{\varepsilon}: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{1}{2\sqrt{i\pi\varepsilon}}e^{-\frac{x^2}{4i\varepsilon}}.$$

1) Soit $\varphi \in \mathcal{D}(\mathbb{R})$. Justifier l'existence de $\psi \in \mathcal{C}^{\infty}(\mathbb{R})$ tel que $\varphi(x) = \varphi(0) + x\psi(x)$. Donner une condition nécessaire et suffisante (impliquant φ) sous laquelle $\psi \in \mathcal{D}(\mathbb{R})$.

Il suffit de remarquer que

$$\varphi(x) = \varphi(0) + x \int_0^x \varphi'(tx) dt, \qquad \psi(x) = \int_0^x \varphi'(tx) dt$$

où ψ est de classe \mathcal{C}^{∞} et est à support compact si et seulement si $\varphi(0) = 0$.

2) On fixe $\varphi \in \mathcal{D}(\mathbb{R})$. Montrer qu'il est possible de trouver $M \in \mathbb{R}_+^*$ tel que :

$$\forall \varepsilon \in \mathbb{R}_{+}^{*}, \quad \langle T_{\varepsilon}, \varphi \rangle = \frac{\varphi(0)}{2\sqrt{i\pi\varepsilon}} \int_{-M}^{M} e^{-\frac{x^{2}}{4i\varepsilon}} dx + \frac{\sqrt{i\varepsilon}}{\sqrt{\pi}} \int_{-M}^{M} e^{-\frac{x^{2}}{4i\varepsilon}} \psi'(x) dx + \mathcal{O}(\sqrt{\varepsilon}).$$

On ajuste M de façon à ce que $supp \varphi \subset [-M, M]$. En utilisant la question III.1) suivie d'une intégration par parties, on obtient

$$\langle T_{\varepsilon}, \varphi \rangle = \frac{\varphi(0)}{2\sqrt{i\pi\varepsilon}} \int_{-M}^{M} e^{-\frac{x^{2}}{4i\varepsilon}} dx + \frac{1}{2\sqrt{i\pi\varepsilon}} \int_{-M}^{M} x e^{-\frac{x^{2}}{4i\varepsilon}} \psi(x) dx$$

$$= \frac{\varphi(0)}{2\sqrt{i\pi\varepsilon}} \int_{-M}^{M} e^{-\frac{x^{2}}{4i\varepsilon}} dx - \frac{\sqrt{i\varepsilon}}{\sqrt{\pi}} \int_{-M}^{M} \partial_{x} \left(e^{-\frac{x^{2}}{4i\varepsilon}}\right) \psi(x) dx$$

$$= \frac{\varphi(0)}{2\sqrt{i\pi\varepsilon}} \int_{-M}^{M} e^{-\frac{x^{2}}{4i\varepsilon}} dx + \frac{\sqrt{i\varepsilon}}{\sqrt{\pi}} \int_{-M}^{M} e^{-\frac{x^{2}}{4i\varepsilon}} \psi'(x) dx$$

$$-\frac{\sqrt{i\varepsilon}}{\sqrt{\pi}} e^{-\frac{M^{2}}{4i\varepsilon}} \left[\psi(M) - \psi(-M)\right] dx,$$

ce qui fournit le résultat puisque la dernière ligne est un $\mathcal{O}(\sqrt{\varepsilon})$.

3) En déduire que la famille $(T_{\varepsilon})_{\varepsilon}$ converge dans $\mathcal{D}'(\mathbb{R})$ vers la masse de Dirac en 0. L'identité du III.2) se traduit par

$$\langle T_{\varepsilon}, \varphi \rangle = \frac{\varphi(0)}{\sqrt{i\pi\varepsilon}} \int_{0}^{M} e^{-\frac{x^{2}}{4i\varepsilon}} dx + \mathcal{O}(\sqrt{\varepsilon})$$

ce qui après passage à la limite $(\varepsilon \to 0)$ utilisant (1) fournit

$$\lim_{\varepsilon \to 0+} \langle T_{\varepsilon}, \varphi \rangle = \varphi(0) = \langle \delta_0, \varphi \rangle.$$

Exercice IV. Soit $\varrho \in \mathcal{D}(\mathbb{R})$ vérifiant $\int \varrho(y)dy = 1$. Etant donné $\varphi \in \mathcal{D}(\mathbb{R})$, on pose :

$$\forall x \in \mathbb{R}, \quad \psi(x) := \varphi(x) - \left(\int_{\mathbb{R}} \varphi(y) dy\right) \varrho(x).$$

1) Montrer que ψ admet une primitive $\Psi \in \mathcal{D}(\mathbb{R})$.

Il suffit de poser

$$\Psi(x) := \int_{-\infty}^{x} \psi(t) \, dt.$$

Il est clair que $\Psi \in \mathcal{C}^{\infty}(\mathbb{R})$. Par ailleurs, il existe $R \in \mathbb{R}_+$ tel que $supp \varphi \subset [-R, R]$ et $supp \varrho \subset [-R, R]$. On a alors par construction $\psi(x) = 0$ pour $x \leq -R$, tandis que

$$\forall x \ge R, \qquad \Psi(x) = \int_{\mathbb{R}} \varphi(y) dy - \Big(\int_{\mathbb{R}} \varphi(y) dy \Big) \Big(\int_{\mathbb{R}} \varrho(y) dy \Big) = 0.$$

Ainsi Ψ est à support compact.

2) Soit $R \in \mathcal{D}'(\mathbb{R})$ vérifiant R' = 0 au sens des distributions. Montrer qu'il existe une constante $C \in \mathbb{R}$ telle que R s'identifie à la fonction constante égale à C.

C'est un corollaire du IV.1). On calcule

$$0 = \langle R', \Psi \rangle = -\langle R, \Psi' \rangle = -\langle R, \varphi \rangle + \Bigl(\int_{\mathbb{R}} \varphi(y) dy \Bigr) \langle R, \varrho \rangle$$

ce qui implique que R s'identifie à la fonction constante égale à $C = \langle R, \varrho \rangle$.

- 3) Soit $T \in \mathcal{D}'(\mathbb{R}^2)$ vérifiant $\partial_{x_1} T = 0$.
- 3.a) Prouver que pour tout $\psi \in \mathcal{D}(\mathbb{R})$ il existe une unique constante $S(\psi)$ telle que :

$$\forall \varphi \in \mathcal{D}(\mathbb{R}), \qquad \langle T, \varphi \otimes \psi \rangle = S(\psi) \int_{\mathbb{R}} \varphi(x) dx.$$

On fixe $\psi \in \mathcal{D}(\mathbb{R})$ et on considère l'application S de $\mathcal{D}(\mathbb{R})$ dans \mathbb{R} définie par

$$\varphi \longmapsto S(\varphi) := \langle T, \varphi \otimes \psi \rangle.$$

C'est une distribution vérifiant

$$\langle \partial_{x_1} S, \varphi \rangle = -\langle S, \partial_{x_1} \varphi \rangle = -\langle T, \partial_{x_1} \varphi \otimes \psi \rangle = \langle \partial_{x_1} T, \varphi \otimes \psi \rangle = 0.$$

D'après la question IV.2), il existe une constante $S(\psi)$ telle que S s'identifie à la fonction constante égale à $S(\psi)$.

3.b) En déduire que l'application $\psi \mapsto S(\psi)$ est une distribution et que $T = 1 \otimes S$. Soit $\varphi \in \mathcal{D}(\mathbb{R})$ d'intégrale 1 dont le support est dans le compact K. Pour tout compact \tilde{K} de \mathbb{R} et pour tout $\psi \in \mathcal{D}(\mathbb{R})$ à support dans \tilde{K} , il existe un entier p tel que

$$\begin{split} |\langle T, \varphi \otimes \psi \rangle| &= |S(\psi)| \leq C_{K,\tilde{K}} \sup_{|\alpha| \leq p} \sup_{x \in K \times \tilde{K}} |\partial_{x_1}^{\alpha_1} \varphi(x_1) \, \partial_{x_2}^{\alpha_2} \psi(x_2)| \\ &\leq C_K(\varphi) \sup_{|\alpha_2| \leq p} \sup_{x_2 \in \tilde{K}} |\partial_{x_2}^{\alpha_2} \psi(x_2)|. \end{split}$$

Ainsi S est une distribution d'ordre inférieur à p et on a

$$\langle 1 \otimes S, \varphi \otimes \psi \rangle = \langle 1, \varphi \rangle \langle S, \psi \rangle = \langle T, \varphi \otimes \psi \rangle.$$

Comme $\mathcal{D}(\mathbb{R}) \times \mathcal{D}(\mathbb{R})$ est dense dans $\mathcal{D}(\mathbb{R}^2)$, cela implique $T = 1 \otimes S$.

Exercice V. On considère la fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ qui à x associe $e^{\frac{ix^2}{2}}$.

1) Montrer que f définit une distribution tempérée $T_f \in \mathcal{S}'(\mathbb{R})$.

La fonction f est bornée donc dans $S'(\mathbb{R})$.

2) Ecrire une équation différentielle satisfaite par la fonction f, et en déduire une équation satisfaite dans $\mathcal{S}'(\mathbb{R})$ par sa transformée de Fourier $\hat{T}_f \equiv \mathcal{F}(T) = \hat{f}$.

On a

$$f'(x) - ixf(x) = 0$$

ce qui côté Fourier conduit à

$$i\xi \hat{f}(\xi) + \hat{f}'(\xi) = 0. \tag{2}$$

3) En utilisant l'exercice IV, prouver l'existence d'une constante $c \in \mathbb{C}$ telle que :

$$\forall \xi \in \mathbb{R}, \qquad \hat{T}_f(\xi) = c e^{-\frac{i\xi^2}{2}}.$$

La distribution $R := e^{\frac{i\xi^2}{2}} \hat{f}(\xi)$ vérifie

$$R' = e^{\frac{i\xi^2}{2}} (i\xi \hat{f}(\xi) + \hat{f}'(\xi)) = 0.$$

On applique la question IV.2) aux distribitions Re R et Im R pour récupérer R=c pour un certain $c \in \mathbb{C}$.

4) On admet que:

$$\mathcal{F}\left(e^{-\frac{\xi^2}{2}}\right) = \sqrt{2\pi} \, e^{-\frac{x^2}{2}}, \qquad \int_{\mathbb{R}} e^{-\frac{(1+i)x^2}{2}} \, dx = 2^{\frac{1}{4}} \sqrt{\pi} \, e^{-i\frac{\pi}{8}}.$$

En testant \hat{T}_f contre $e^{-\frac{\xi^2}{2}}$, déterminer la valeur de c.

Soit à calculer

$$\langle \hat{T}_f, e^{-\frac{\xi^2}{2}} \rangle = c \int e^{-\frac{(1+i)\xi^2}{2}} d\xi = c \, 2^{\frac{1}{4}} \sqrt{\pi} \, e^{-i\frac{\pi}{8}}$$

$$= \langle T_f, \mathcal{F}(e^{-\frac{\xi^2}{2}}) \rangle = \sqrt{2\pi} \, \langle T_f, e^{-\frac{x^2}{2}} \rangle = \sqrt{2\pi} \, \int e^{-\frac{(1-i)x^2}{2}} \, dx$$

$$= \sqrt{2\pi} \int e^{-\frac{(1+i)x^2}{2}} \, dx = \sqrt{2\pi} \, 2^{\frac{1}{4}} \sqrt{\pi} \, e^{i\frac{\pi}{8}}.$$

D'où l'on déduit $c = \sqrt{2\pi} e^{i\frac{\pi}{4}}$.

5) Soit $\varphi \in \mathcal{D}(\mathbb{R})$. Etablir que :

$$\forall \varepsilon \in \mathbb{R}_+^*, \qquad \frac{1}{\varepsilon} \langle f(x/\varepsilon), \varphi \rangle_{\mathcal{S}', \mathcal{S}} = \frac{c}{2\pi} \int_{\mathbb{R}} e^{-i\varepsilon^2 \frac{\xi^2}{2}} \hat{\varphi}(-\xi) \, d\xi.$$

On remarque que

$$\frac{1}{\varepsilon} \langle f(x/\varepsilon), \varphi \rangle_{\mathcal{S}', \mathcal{S}} = \langle \mathcal{F}(\frac{1}{\varepsilon} f(x/\varepsilon)), \mathcal{F}^{-1} \varphi \rangle_{\mathcal{S}', \mathcal{S}} = \langle \hat{f}(\varepsilon\xi)), \frac{1}{2\pi} \int e^{ix\xi} \varphi(x) dx \rangle_{\mathcal{S}', \mathcal{S}}$$

$$= \langle ce^{\frac{-i\varepsilon^2 \xi^2}{2}}, \frac{1}{2\pi} \hat{\varphi}(-\xi) \rangle_{\mathcal{S}', \mathcal{S}} = \frac{c}{2\pi} \int_{\mathbb{R}} e^{-i\varepsilon^2 \frac{\xi^2}{2}} \hat{\varphi}(-\xi) d\xi.$$

6) Quelle est la limite au sens de $S'(\mathbb{R})$ de la famille $f(x/\varepsilon)/\varepsilon$ lorsque ε tend vers 0 par valeurs positives?

La famille $\{v_{\varepsilon}\}_{\varepsilon}$ définie via

$$v_{\varepsilon}(\xi) := e^{-i\varepsilon^2 \frac{\xi^2}{2}} \hat{\varphi}(-\xi), \qquad \varepsilon \in]0,1]$$

converge ponctuellement vers $\hat{\varphi}(-\xi)$. Elle est uniformément bornée selon

$$|v_{\varepsilon}(\xi)| \le |\hat{\varphi}(-\xi)| \in L^1(\mathbb{R}).$$

Le théorème de convergence dominé fournit

$$\lim_{\varepsilon \to 0+} \frac{1}{2\pi} \int_{\mathbb{R}} e^{-i\varepsilon^2 \frac{\xi^2}{2}} \hat{\varphi}(-\xi) d\xi = \lim_{\varepsilon \to 0+} \frac{1}{2\pi} \int_{\mathbb{R}} e^{-i\varepsilon^2 \frac{\xi^2}{2}} \hat{\varphi}(\xi) d\xi$$
$$= \frac{1}{2\pi} \int_{\mathbb{R}} \hat{\varphi}(\xi) d\xi = \mathcal{F}^{-1}(\hat{\varphi})(0) = \varphi(0).$$

La limite de $f(x/\varepsilon)/\varepsilon$ dans $S'(\mathbb{R})$ lorsque ε tend vers 0 est donc $c \delta_0$.

Exercice VI. Soit $P \in \mathbb{R}[X_1, \dots, X_d]$ un polynôme à d variables. On suppose $P \not\equiv 0$. En remplaçant X_i par ∂_{x_i} , on obtient un opérateur différentiel $P(\partial)$ à coefficients constants.

1) Montrer qu'une distribution à support compact $T \in \mathcal{E}'(\mathbb{R})$ vérifiant $P(\partial)T = 0$ est nécessairement nulle.

Côté Fourier, cela donne $P(i\xi)\hat{T}=0$ où $\hat{T}(\xi)$ est une fonction de classe C^{∞} en tant que transformée de Fourier de $T\in\mathcal{E}'(\mathbb{R})$. L'ensemble des zéros de $P(\cdot)$ est isolé. En effet, dans le cas contraire, la fonction $P(\cdot)$ est nulle sur le voisinage d'un point ξ_0 et, par analycité, sur \mathbb{R}^d tout entier de sorte que $\hat{P}\equiv 0$ puis $P\equiv 0$ en contradiction avec les hypothèses. Par conséquent \hat{T} est nulle sur un ensemble dense, et donc sur \mathbb{R}^d tout entier par continuité. Ainsi $T\equiv 0$.

2) On suppose de plus que P ne s'annule qu'à l'origine de \mathbb{R}^d . Montrer que les solutions tempérées $T \in \mathcal{S}'(\mathbb{R})$ de l'équation $P(\partial)T = 0$ sont toutes polynômiales.

Côté Fourier, cela donne $P(i\xi)\hat{T} = 0$ où cette fois-ci \hat{T} est une distribution dans S'. Soit alors $\varphi \in \mathcal{S}(\mathbb{R})$ dont le support est dans $\mathbb{R}^d \setminus \{0\}$. On a

$$\langle P(i\xi)\hat{T}, P(i\xi)\varphi\rangle = \langle 0, P(i\xi)\varphi\rangle = 0 = \langle \hat{T}, \varphi(\xi)\rangle.$$

Ainsi $supp \hat{T} = \{0\}$ ce qui implique (voir le cours) que \hat{T} est une somme de dérivées de masses de Dirac en zéro. Après Fourier inverse, cela donne un polynôme.