Examen Terminal - Semestres S2 et S4

 $2^{\grave{e}me}$ session - le / /2008

Corrigé

Exercice 1. Question de cours. Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle.

- 1. Rappeler la définition d'une suite minorée.
- 2. Rappeler la définition de $\lim_{n\to+\infty} u_n = -\infty$.
- 3. Donner un exemple de suite $(u_n)_{n\in\mathbb{N}}$ qui n'est pas minorée et qui ne tend pas vers $-\infty$.
- 1. Dire qu'une suite $(u_n)_{n\in\mathbb{N}}$ est minorée signifie qu'il existe un réel M tel que pour tout entier n, on a $u_n \geq M$, ou encore :
- (1) $\exists M \in \mathbb{R}; \forall n \in \mathbb{N}, u_n \geq M.$
- 2. Dire que $\lim_{n\to+\infty}u_n=-\infty$ signifie :
- (2) $\forall M \in \mathbb{R}, \quad \exists n_0 \in \mathbb{N}; \quad \forall n \ge n_0, \quad u_n \le M.$
- 3. On considère la suite $(\tilde{u}_n)_{n\in\mathbb{N}}$ définie par $\tilde{u}_n=0$ pour n pair et par $\tilde{u}_n=-n$ pour n impair. La suite $(\tilde{u}_n)_{n\in\mathbb{N}}$ n'est pas minorée car d'après la propriété d'Archimède, on a :

$$\forall M \in \mathbb{R}, \quad \exists p \in \mathbb{N} \text{ impair}; \quad \tilde{u}_p = -p \leq M$$

ce qui contredit (1). Par ailleurs, on peut mettre (2) en défaut en prenant M=-1 car :

 $\forall n_0 \in \mathbb{N}, \quad \exists n \geq n_0 \text{ pair et alors } \tilde{u}_n = 0 > -1.$

Exercice 2. Pour n entier, on pose $u_n = \frac{n^3 + 2^n}{5^n}$. Montrer que la suite $(u_n)_{n \in \mathbb{N}}$ est convergente et déterminer sa limite.

On a $u_n = v_n + w_n$ avec $v_n = \frac{n^3}{5^n}$ et $w_n = (\frac{2}{5})^n$. La suite $(v_n)_{n \in \mathbb{N}}$ met en jeu, pour $n \in \mathbb{N}^*$, des termes qui sont tous strictement positifs. On peut donc lui appliquer le critère de D'Alembert. On trouve :

$$\lim_{n \longrightarrow \infty} \frac{v_{n+1}}{v_n} = \lim_{n \longrightarrow \infty} \frac{1}{5} \left(1 + \frac{1}{n} \right)^3 = \frac{1}{5} < 1$$

ce qui implique que la suite $(v_n)_{n\in\mathbb{N}}$ est convergente. Par ailleurs, la suite $(w_n)_{n\in\mathbb{N}}$ est une suite géométrique de raison $\frac{2}{5} < 1$. Elle est donc convergente (cours). Enfin, comme la suite $(u_n)_{n\in\mathbb{N}}$ est la somme de deux suites convergentes, elle est convergente.

Exercice 3. Soit f la fonction numérique définie sur l'intervalle $[-\frac{\pi}{2}, \frac{\pi}{2}]$ par $f(x) = \sin x$. On considère la suite $(u_n)_{n \in \mathbb{N}}$ définie par :

$$\begin{cases} u_0 = -\frac{\pi}{2}, \\ u_{n+1} = f(u_n) \text{ pour tout } n \text{ appartenant à } \mathbb{N}. \end{cases}$$

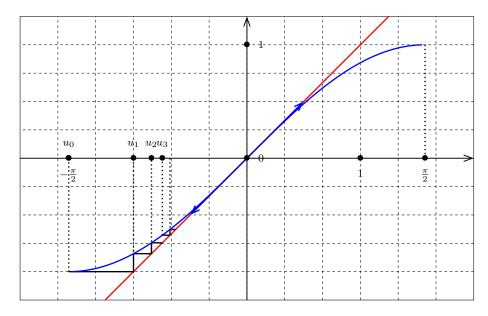
1. Etudier les variations de f sur l'intervalle $\left[-\frac{\pi}{2},+\frac{\pi}{2}\right]$.

La fonction f est dérivable et on a $f'(x) = \cos x$. D'où $f(x) \ge 0$ pour $x \in [-\frac{\pi}{2}, +\frac{\pi}{2}]$. Ainsi, la fonction f est croissante sur $[-\frac{\pi}{2}, +\frac{\pi}{2}]$.

2. Déterminer les points fixes de f sur $\left[-\frac{\pi}{2}, +\frac{\pi}{2}\right]$.

On pose $g(x) = \sin x - x$. On a $g'(x) = \cos x - 1 < 0$ pour $x \in]-\frac{\pi}{2}, +\frac{\pi}{2}[$. Ainsi, la fonction g est strictement décroissante sur] $-\frac{\pi}{2}$, $+\frac{\pi}{2}$ [. Comme $g(-\frac{\pi}{2})=-1+\frac{\pi}{2}>0$ et $g(\frac{\bar{\pi}}{2})=1-\frac{\pi}{2}<0$, il existe un et un seul $\bar{x} \in]-\frac{\pi}{2},+\frac{\pi}{2}[$ tel que $g(\bar{x})=0.$ Comme g(0)=0, on a forcément $\bar{x}=0.$ Par conséquent, la function f a pour seul point fixe sur $\left[-\frac{\pi}{2}, +\frac{\pi}{2}\right]$, le point $\bar{x}=0$.

3. Sur le schéma gradué de la page suivante, dessiner le graphe de la fonction f, la droite d'équation y = x (première bissectrice) et les premières marches de l'escalier permettant de visualiser les premiers termes de la suite.



4. Montrer que : $-1 \le u_n \le 0$, $\forall n \in \mathbb{N}^*$.

Preuve par récurrence. On note (\mathcal{P}_n) la propriété :

$$(\mathcal{P}_n)$$
 $-1 \leq u_n \leq 0$.

On a (\mathcal{P}_1) puisque $-1 \leq u_1 = -1 \leq 0$. Supposons maintenant que la propriété (\mathcal{P}_n) est vérifiée. D'après la question 1., on a :

$$-1 \le \sin(-1) \le \sin u_n = u_{n+1} \le \sin 0 = 0$$

ce qui n'est autre que (\mathcal{P}_{n+1}) .

5. Prouver que la suite $(u_n)_{n\in\mathbb{N}}$ est croissante.

On utilise cette fois-ci les questions 2. et 3. La question 2. donne accès à :

$$g(x) \ge 0 \quad \forall x \in [-1, 0]$$

ce qui donne avec (\mathcal{P}_n) :

$$g(u_n) = u_{n+1} - u_n \ge 0.$$

6. La suite $(u_n)_{n\in\mathbb{N}}$ est-elle convergente et si oui, quelle est sa limite?

D'après les questions 4. et 5., la suite $(u_n)_{n\in\mathbb{N}}$ est croissante et majorée (par 0) donc convergente vers $l \in [-1,0]$. Nécessairement, l est un point fixe de f. D'après la question 2., on a l=0.

Exercice 4. Déterminer la nature convergente ou divergente de chacune des séries $\sum u_n$ dont le terme général u_n est donné pour $n \in \mathbb{N}^*$ par :

(a)
$$u_n = \left(\frac{\ln{(n+2)}}{\ln{(n+2)}}\right)^n$$
 (b) $u_n = \ln{\left(\frac{n+2}{\ln{(n+2)}}\right)}$ (c) $u_n = \frac{n+2}{\ln{(n+2)}}$

(b)
$$u_n = \ln \left(\frac{n+2}{n+2} \right)$$

(c)
$$u_n = \frac{n+2}{n+2}$$

(d)
$$u_n = (-1)^n e^{\frac{1}{n}}$$
 (e) $u_n = (-1)^n e^{-n}$

(a) La suite $(u_n)_{n\in\mathbb{N}}$ met en jeu, pour $n\in\mathbb{N}^*$, des termes qui sont tous strictement positifs. On peut donc appliquer à la série correspondante le critère de Cauchy. On trouve :

$$\lim_{n \longrightarrow \infty} \frac{\ln (n+2)}{n+2} = 0, \qquad \lim_{n \longrightarrow \infty} \frac{n+2}{n} = 1 \quad \Longrightarrow \quad \lim_{n \longrightarrow \infty} u_n = \lim_{n \longrightarrow \infty} \frac{\ln (n+2)}{n} = 0 < 1$$

ce qui implique que la série $\sum u_n$ est convergente.

- (b) Deux preuves possibles:
- On reconnait en $\sum u_n$ une série t'elescopique:

$$U_N = \sum_{n=1}^{N} u_n = \sum_{n=1}^{N} \left(\ln(n+2) - \ln n \right) = -\ln 2 + \ln(N+1) + \ln(N+2)$$

qui tend clairement vers $+\infty$ lorsque $N \longrightarrow +\infty$. Ainsi, la série $\sum u_n$ est divergente.

• On utilise un équivalent. Pour cela, on se souvient que :

$$\lim_{x \longrightarrow 0} \frac{\ln(1+x)}{x} = 1$$

ce qui conduit à :

$$\lim_{n \longrightarrow +\infty} \frac{n}{2} \ln \left(1 + \frac{2}{n}\right) = 1 \implies u_n \sim \frac{2}{n}.$$

Comme d'après le critère de Riemann, la série $\sum \frac{2}{n}$ est divergente, il en va de même pour $\sum u_n$.

(c) On peut là encore utiliser un équivalent :

$$u_n = \frac{n+2}{\sqrt{n^5+1}} = n^{-3/2} (1+2/n) (1+1/n^5)^{-1/2} \sim n^{-3/2}.$$

Comme d'après le critère de Riemann, la série $\sum \frac{1}{n^{3/2}}$ est convergente, il en va de même pour $\sum u_n$.

(d) On remarque que:

$$\lim_{n \to +\infty} u_{2n} = e^0 = 1, \qquad \lim_{n \to +\infty} u_{2n+1} = -e^0 = -1.$$

Ainsi, la suite $(u_n)_{n\in\mathbb{N}}$ ne converge pas. Il s'ensuit que la série $\sum u_n$ est grossièrement divergente.

(e) On reconnait ici en $\sum u_n$ une série alternée. Comme $|u_n|=e^{-n}$ tend vers 0 en décroissant, la série $\sum u_n$ est convergente.