

Algèbre IV pour MIASHS - TD4

Année 2020-2021

Exercice 1. Soit $q: \mathbb{R}^2 \to \mathbb{R}$ l'application définie par $q(x_1, x_2) = 4x_1^2 - 4x_1x_2 + x_2^2$.

- 1. Quelle est la forme bilinéaire symétrique φ associée à q?
- 2. Quelle est la matrice S de φ dans la base canonique de \mathbb{R}^2 ?
- 3. Décomposer q en somme et/ou en différences de carrés de formes linéaires qui sont linéairement indépendantes.
- 4. La forme quadratique q est-elle positive?
- 5. La forme quadratique q est-elle non dégénerée ?

Exercice 2. Soit $q: \mathbb{R}^2 \to \mathbb{R}$ l'application définie par $q(x_1, x_2) = 3x_1^2 - 2x_1x_2 + 3x_2^2$.

- 1. Quelle est la forme bilinéaire symétrique φ associée à q ?
- 2. Quelle est la matrice S de φ dans la base canonique de \mathbb{R}^2 ?
- 3. Décomposer q en somme et/ou en différences de carrés de formes linéaires qui sont linéairement indépendantes. Cette écriture est-elle unique ?
- 4. La forme quadratique q est-elle positive?
- 5. La forme quadratique q est-elle non dégénerée ?
- 6. On introduit $x_1' = (x_1 x_2)/\sqrt{2}$ ainsi que $x_2' = (x_1 + x_2)/\sqrt{2}$. Que devient la forme quadratique q lorsqu'elle est exprimée en terme de $x' = (x_1', x_2')$?
- 7. Déterminer la figure géométrique \mathcal{E} du plan qui est définie par l'équation suivante :

$$\mathcal{E} := \{ x = (x_1, x_2) \in \mathbb{R}^2 ; q(x_1, x_2) = 2 \}.$$

Exercice 3. On note $\mathcal{M}_2(\mathbb{R})$ l'ensemble des matrices carrées de taille 2×2 à coefficients réels. Soit $\phi : \mathcal{M}_2(\mathbb{R}) \times \mathcal{M}_2(\mathbb{R}) \to \mathbb{R}$ l'application donnée par $\phi(A, B) = \operatorname{Tr}({}^t AB)$.

- 1. Vérifier que ϕ est une application bilinéaire.
- 2. Les matrices A et B se mettent sous la forme $A = (a_{ij})_{1 \leq i,j \leq 2}$ et $B = (b_{ij})_{1 \leq i,j \leq 2}$. Exprimer la valeur de $\phi(A,B)$ en termes des coefficients a_{ij} et b_{ij} .
- 3. Quelle est la matrice de ϕ dans la "base canonique" de $\mathcal{M}_2(\mathbb{R})$?

Exercice 4. Décomposer les deux formes quadratiques q suivantes en somme et/ou en différences de carrés de formes linéaires qui sont indépendantes. En déduire leur signature ainsi que leur rang.

a)
$$q(x, y, z) = x^2 - 2y^2 + xz + yz$$
, b) $q(x, y, z) = 2x^2 - 2y^2 - 6z^2 + 3xy - 4xz + 7yz$.

Exercice 5. On fixe $n \in \mathbb{N}^*$. On note $\mathbb{R}_n[X]$ l'espace vectoriel des polynômes réels de degré inférieur ou égal à n. Etant donnés $P \in \mathbb{R}_n[X]$ et $Q \in \mathbb{R}_n[X]$, on pose

$$B(P,Q) := \int_0^1 t P(t) Q'(t) dt, \qquad f(P) := B(P,P).$$

- 1) Montrer que B est une forme bilinéaire.
- 2) La forme bilinéaire B est-elle symétrique? Antisymétrique?
- 3) La forme f a-t-elle des vecteurs isotropes non nuls?
- 4) Calculer la matrice de f dans la base $(1, X, \dots, X^n)$.
- 5) Cas n=2. La forme quadratique f est-elle positive? Négative?

Exercice 6. Soit $q: \mathbb{R}^3 \to \mathbb{R}$ la forme quadratique définie par la formule

$$q(x, y, z) := x^2 + 4xy + 6xz + 4y^2 + 16yz + 9z^2.$$

- 1) Déterminer la forme bilinéaire symétrique associée à q et sa matrice dans la base canonique.
- 2) Décomposer q en combinaison linéaire de carrés de formes linéaires linéairement indépendantes. En déduire le rang de q.
- 3) Déterminer une base \mathcal{B} qui est orthogonale pour q.
- 4) Quelle est la matrice de q dans la base \mathcal{B} ?
- 5) Pour tout réel λ , on note $v_{\lambda} = (\lambda, -1, 1)$ et F_{λ} l'orthogonal de v_{λ} pour q. Déterminer la dimension de F_{λ} .
- 6) Déterminer à quelle condition sur le réel λ on a une décomposition en somme directe $\mathbb{R}^3 = F_{\lambda} \oplus \mathbb{R}v_{\lambda}$.

Exercice 7. Soit $q: \mathbb{R}^3 \to \mathbb{R}$ la forme quadratique définie par la formule

$$q(x, y, z) := x^2 - 2y^2 - xy + zx - 2yz.$$

- 1) Déterminer le noyau de q.
- 2) Soit F le sous-espace vectoriel de \mathbb{R}^3 engendré par $(0,0,1)=e_3$. Déterminer une base de l'orthogonal de F pour q.