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Exercise 1. Let 𝐻 be a Hilbert space. We consider an operator 𝑇 ∈ ℒ(𝐻). A complex
number 𝜆 is said to be :

⋆ in the spectrum if 𝑇 − 𝜆𝐼𝑑 is not invertible ; the spectrum of 𝑇 is denoted by 𝜎(𝑇 ).
⋆ in the point spectrum if 𝑇 − 𝜆𝐼𝑑 is not injective ; the point spectrum of 𝑇 is denoted

by 𝜎𝑝(𝑇 ).
⋆ An approached eigenvalue if there exists a sequence (𝑥𝑛) ∈ 𝐻N with ‖ 𝑥𝑛 ‖= 1 and

lim
𝑛→+∞

‖ (𝑇 − 𝜆𝐼𝑑)𝑥𝑛 ‖= 0 .

The set of approached eigenvalues is denoted by 𝜎𝑎𝑝(𝑇 ).
We recall that the resolvent set 𝜌(𝑇 ) is defined by 𝜌(𝑇 ) = C ∖ 𝜎(𝑇 ). Thus, given 𝜆 ∈ 𝜌(𝑇 ),
the operator 𝑇 − 𝜆𝐼𝑑 is invertible with inverse denoted by 𝑅𝜆(𝑇 ) ≡ (𝑇 − 𝜆𝐼𝑑)−1.

1.1. Show that 𝜎𝑝(𝑇 ) ⊂ 𝜎𝑎𝑝(𝑇 ).

1.2. Show that 𝜎𝑎𝑝(𝑇 ) ⊂ 𝜎(𝑇 ).

1.3. Fix 𝜆 ∈ C, and consider the following assertions :
(i) 𝜆 ̸∈ 𝜎𝑎𝑝(𝑇 ).
(ii) There exists a constant 𝑐 ∈ R*

+ such that, for all 𝑥 ∈ 𝐻, we have

‖ (𝑇 − 𝜆𝐼𝑑)𝑥 ‖≥ 𝑐 ‖ 𝑥 ‖ .

(iii) The operator 𝑇 − 𝜆𝐼𝑑 is injective with a closed range.
The purpose of this question 1.3 is to show step by step that the three above assertions
are equivalent, and then to deduce some decomposition of 𝜎(𝑇 ).

1.3.1 Prove by contradiction that (i) implies (ii).
1.3.2 Prove that (ii) implies (iii).
1.3.3 Prove that (iii) implies (i).
1.3.4 Deduce that 𝜎(𝑇 ) can be viewed as the following disjoint union

𝜎(𝑇 ) = 𝜎𝑎𝑝(𝑇 ) ∪
{︀
�̄�; 𝜆 ∈ 𝜎𝑝(𝑇 *)

}︀
.

1.4. Look at two complex numbers 𝜆 and 𝜇 adjusted in the following way

𝜆 ∈ C ∖ 𝜎(𝑇 ) , 𝜇 ∈ C , |𝜇 − 𝜆| <‖ 𝑅𝜆(𝑇 ) ‖−1 .

1.4.1 Prove that 𝜇 ∈ C ∖ 𝜎(𝑇 ).
1.4.2 Prove that

∀ 𝜆 ∈ C ∖ 𝜎(𝑇 ) , dist
(︀
𝜆, 𝜎(𝑇 )

)︀−1 ≤‖ 𝑅𝜆(𝑇 ) ‖ .



1.5. The boundary of 𝜎(𝑇 ) is defined by 𝜕𝜎(𝑇 ) = 𝜎(𝑇 ) ∖
˚⏞  ⏟  

𝜎(𝑇 ). Select 𝜆 ∈ 𝜕𝜎(𝑇 ).
1.5.1 Prove that we can find a sequence (𝜆𝑛)𝑛∈N* such that

𝜆𝑛 ∈ C ∖ 𝜎(𝑇 ) , lim
𝑛→+∞

𝜆𝑛 = 𝜆 , lim
𝑛→+∞

‖ 𝑅𝜆𝑛(𝑇 ) ‖= +∞ .

1.5.2 Prove that we can find a sequence (𝑦𝑛)𝑛∈N* such that

𝑦𝑛 ∈ 𝐻 , ‖ 𝑦𝑛 ‖= 1 , lim
𝑛→+∞

‖ 𝑅𝜆𝑛(𝑇 )𝑦𝑛 ‖= +∞ .

1.5.3 Let us introduce

∀ 𝑛 ∈ N , 𝑥𝑛 := 𝑅𝜆𝑛(𝑇 )𝑦𝑛

‖ 𝑅𝜆𝑛(𝑇 )𝑦𝑛 ‖
.

Remark that ‖ 𝑥𝑛 ‖= 1, and explain why we have

lim
𝑛→+∞

‖ (𝑇 − 𝜆𝐼𝑑)𝑥𝑛 ‖= 0 .

1.5.4 Conclusion ?

1.6. In this question, we assume that 𝑇 is compact.
1.6.1 Prove that 𝜎𝑝(𝑇 ) = 𝜎𝑎𝑝(𝑇 ).
1.6.2 By using the Fredholm alternative, prove that 𝜎(𝑇 ) = 𝜎𝑎𝑝(𝑇 ).

1.7. In this question, we assume that 𝑇 is a normal operator (satisfying 𝑇𝑇 * = 𝑇 *𝑇 ).
1.7.1 Assume that 𝑇 *𝑥 = 𝜆𝑥. By computing ‖ (𝑇 * − 𝜆𝐼𝑑)𝑥 ‖2, prove that 𝑇𝑥 = �̄�𝑥.
1.7.2 Explain why 𝜎(𝑇 ) = 𝜎𝑎𝑝(𝑇 ).

Exercise 2. Let 𝐻 be a separable Hilbert space with a complete orthonormal sequence
(a basis) denoted by (𝑒𝑛)𝑛∈N* . Given (𝜆𝑛)𝑛∈N* ∈ CN* , define 𝑇 ∈ ℒ(𝐻) by

∀ 𝑛 ∈ N*, 𝑇 𝑒𝑛 = 𝜆𝑛𝑒𝑛 .

2.1. Determine necessary and sufficient conditions on the sequence (𝜆𝑛)𝑛 to obtain the
following properties on 𝑇 . Justify the answer.

2.1.1 The operator 𝑇 is bounded.
2.1.2 The operator 𝑇 is invertible.
2.1.3 The operator 𝑇 is compact.

2.2. Assume that 𝑇 is bounded. What is the spectrum of 𝑇 ?



Exercise 3. The space 𝐿2([0, 1]) is equipped with the 𝐿2-norm. Consider the unbounded
operator 𝑇 : 𝐿2([0, 1]) → 𝐿2([0, 1]) with domain the space 𝒞0([0, 1]) of continuous
functions, and defined by 𝑇𝑓 = 𝑓(1/2). Is the operator 𝑇 closable ? Justify the answer.

Exercise 4. Let 𝐻 be a Hilbert space.

4.1. In this question, we consider a bounded invertible operator 𝑇 ∈ ℒ(𝐻) satisfying
‖ 𝑇 ‖≤ 1 and ‖ 𝑇 −1 ‖≤ 1.

4.1.1 Prove that 𝜎(𝑇 ) ⊂ {𝜆 ∈ C; |𝜆| = 1}.
4.1.2 Prove that 𝑇 is a unitary operator, meaning that 𝑇 * = 𝑇 −1.

4.2. We recall that an operator 𝑇 is positive when

∀ 𝑥 ∈ 𝐻 , ⟨𝑇𝑥, 𝑥⟩ ∈ R+ .

4.2.1 Prove that a bounded operator 𝑇 is positive if and only if

∃𝜆0 ∈ R+ ; ∀𝜆 ≥ 𝜆0 , ‖ 𝜆𝐼𝑑 − 𝑇 ‖≤ 𝜆 .

4.2.2 Consider two positive self-adjoint commuting operators 𝑆 and 𝑇 . Prove that
the operator 𝑆𝑇 is positive.


