Spectral Theory

Terminal Examination (2h)

Documents are not allowed

Exercise 1. Let *H* be a Hilbert space. We consider an operator $T \in \mathcal{L}(H)$. A complex number λ is said to be :

- * in the spectrum if $T \lambda Id$ is not invertible; the spectrum of T is denoted by $\sigma(T)$.
- * in the *point spectrum* if $T \lambda Id$ is not injective; the point spectrum of T is denoted by $\sigma_p(T)$.
- * An approached eigenvalue if there exists a sequence $(x_n) \in H^{\mathbb{N}}$ with $||x_n|| = 1$ and

$$\lim_{n \to +\infty} \| (T - \lambda Id) x_n \| = 0.$$

The set of approached eigenvalues is denoted by $\sigma_{ap}(T)$.

We recall that the resolvent set $\rho(T)$ is defined by $\rho(T) = \mathbb{C} \setminus \sigma(T)$. Thus, given $\lambda \in \rho(T)$, the operator $T - \lambda Id$ is invertible with inverse denoted by $R_{\lambda}(T) \equiv (T - \lambda Id)^{-1}$.

1.1. Show that $\sigma_p(T) \subset \sigma_{ap}(T)$.

1.2. Show that $\sigma_{ap}(T) \subset \sigma(T)$.

1.3. Fix $\lambda \in \mathbb{C}$, and consider the following assertions :

(i) $\lambda \notin \sigma_{ap}(T)$.

(ii) There exists a constant $c \in \mathbb{R}^*_+$ such that, for all $x \in H$, we have

 $\parallel (T - \lambda Id)x \parallel \geq c \parallel x \parallel .$

(iii) The operator $T - \lambda Id$ is injective with a closed range.

The purpose of this question 1.3 is to show step by step that the three above assertions are equivalent, and then to deduce some decomposition of $\sigma(T)$.

1.3.1 Prove by contradiction that (i) implies (ii).

- 1.3.2 Prove that (ii) implies (iii).
- **1.3.3** Prove that (iii) implies (i).

1.3.4 Deduce that $\sigma(T)$ can be viewed as the following disjoint union

$$\sigma(T) = \sigma_{ap}(T) \cup \{\bar{\lambda}; \lambda \in \sigma_p(T^*)\}.$$

1.4. Look at two complex numbers λ and μ adjusted in the following way

$$\lambda \in \mathbb{C} \setminus \sigma(T), \qquad \mu \in \mathbb{C}, \qquad |\mu - \lambda| < || R_{\lambda}(T) ||^{-1}.$$

1.4.1 Prove that $\mu \in \mathbb{C} \setminus \sigma(T)$.

1.4.2 Prove that

$$\forall \lambda \in \mathbb{C} \setminus \sigma(T), \quad \operatorname{dist}(\lambda, \sigma(T))^{-1} \leq \parallel R_{\lambda}(T) \parallel .$$

1.5. The boundary of $\sigma(T)$ is defined by $\partial \sigma(T) = \overline{\sigma(T)} \setminus \widehat{\sigma(T)}$. Select $\lambda \in \partial \sigma(T)$. **1.5.1** Prove that we can find a sequence $(\lambda_n)_{n \in \mathbb{N}^*}$ such that

$$\lambda_n \in \mathbb{C} \setminus \sigma(T), \qquad \lim_{n \to +\infty} \lambda_n = \lambda, \qquad \lim_{n \to +\infty} \| R_{\lambda_n}(T) \| = +\infty.$$

1.5.2 Prove that we can find a sequence $(y_n)_{n \in \mathbb{N}^*}$ such that

$$y_n \in H$$
, $|| y_n || = 1$, $\lim_{n \to +\infty} || R_{\lambda_n}(T) y_n || = +\infty$.

1.5.3 Let us introduce

$$\forall n \in \mathbb{N}, \qquad x_n := \frac{R_{\lambda_n}(T)y_n}{\parallel R_{\lambda_n}(T)y_n \parallel}.$$

Remark that $||x_n|| = 1$, and explain why we have

$$\lim_{n \to +\infty} \parallel (T - \lambda Id) x_n \parallel = 0.$$

1.5.4 Conclusion ?

1.6. In this question, we assume that T is compact.

1.6.1 Prove that $\sigma_p(T) = \sigma_{ap}(T)$.

1.6.2 By using the Fredholm alternative, prove that $\sigma(T) = \sigma_{ap}(T)$.

1.7. In this question, we assume that T is a normal operator (satisfying TT* = T*T).
1.7.1 Assume that T*x = λx. By computing || (T* − λId)x ||², prove that Tx = λx.
1.7.2 Explain why σ(T) = σ_{ap}(T).

Exercise 2. Let H be a separable Hilbert space with a complete orthonormal sequence (a basis) denoted by $(e_n)_{n \in \mathbb{N}^*}$. Given $(\lambda_n)_{n \in \mathbb{N}^*} \in \mathbb{C}^{\mathbb{N}^*}$, define $T \in \mathcal{L}(H)$ by

$$\forall n \in \mathbb{N}^*, \qquad Te_n = \lambda_n e_n \,.$$

2.1. Determine necessary and sufficient conditions on the sequence $(\lambda_n)_n$ to obtain the following properties on T. Justify the answer.

- **2.1.1** The operator T is bounded.
- **2.1.2** The operator T is invertible.
- **2.1.3** The operator T is compact.

2.2. Assume that T is bounded. What is the spectrum of T?

Exercise 3. The space $L^2([0,1])$ is equipped with the L^2 -norm. Consider the unbounded operator $T : L^2([0,1]) \to L^2([0,1])$ with domain the space $\mathcal{C}^0([0,1])$ of continuous functions, and defined by Tf = f(1/2). Is the operator T closable ? Justify the answer.

Exercise 4. Let H be a Hilbert space.

4.1. In this question, we consider a bounded invertible operator $T \in \mathcal{L}(H)$ satisfying $||T|| \leq 1$ and $||T^{-1}|| \leq 1$.

4.1.1 Prove that $\sigma(T) \subset \{\lambda \in \mathbb{C}; |\lambda| = 1\}.$

4.1.2 Prove that T is a unitary operator, meaning that $T^* = T^{-1}$.

4.2. We recall that an operator T is positive when

$$\forall x \in H, \qquad \langle Tx, x \rangle \in \mathbb{R}_+.$$

4.2.1 Prove that a bounded operator T is positive if and only if

 $\exists \lambda_0 \in \mathbb{R}_+ \, ; \qquad \forall \lambda \ge \lambda_0 \, , \quad \parallel \lambda I d - T \parallel \le \lambda \, .$

4.2.2 Consider two positive self-adjoint commuting operators S and T. Prove that the operator ST is positive.