M2 - Mathématiques

Spectral Theory

CC3, correction

Question. Given two Banach spaces E and F, what does it means to say that $\lambda \in \mathbb{C}$ is in the essential spectrum $\operatorname{sp}_{\operatorname{ess}}(T)$ of $T \in \mathcal{L}(E, F)$?

See the course.

Prove that $\operatorname{sp}_{\operatorname{ess}}(T) \subset \operatorname{sp}(T)$.

See the course.

Exercise 1. Let X_1 and X_2 be Banach spaces. Select $T \in \mathcal{L}(X_1, X_2)$, and define

$$\mathcal{M} = \begin{pmatrix} T & R_-\\ R_+ & 0 \end{pmatrix}, \tag{1}$$

with $R_- : \mathbb{C}^{n_-} \to X_2$ and $R_+ : X_1 \to \mathbb{C}^{n_+}$ bounded. Assume that \mathcal{M} is bijective. We denote by \mathcal{E} its (bounded) inverse :

$$\mathcal{E} = \begin{pmatrix} E & E_+ \\ E_- & E_0 \end{pmatrix}, \qquad \begin{array}{ll} E \in \mathcal{L}(X_2, X_1), & E_+ \in \mathcal{L}(\mathbb{C}^{n_+}, X_1), \\ E_- \in \mathcal{L}(X_2, \mathbb{C}^{n_-}), & E_0 \in \mathcal{L}(\mathbb{C}^{n_+}, \mathbb{C}^{n_-}). \end{array}$$
(2)

Assume that T is bijective. Show that E_0 is bijective.

See the course.

Exercise 2. We work on the Banach space $E = C^0([0,1];\mathbb{R})$ with the sup norm. Let $T: E \to E$ be the operator given by (Tf)(x) = xf(x).

2.1) What is the point spectrum of T?

It is empty. Indeed, let $\lambda \in \mathbb{C}$ be an eigenvalue. The equation $(T - \lambda)f = 0$ implies $(x - \lambda)f(x) = 0$ for all $x \in [0, 1]$, that is $f \equiv 0$.

2.2) What is the spectrum of T?

It is the interval [0,1]. Let $\lambda \notin [0,1]$. Then $T - \lambda$ is invertible with continuous inverse given by $(T - \lambda)^{-1}g(x) = (x - \lambda)^{-1}g(x)$. On the contrary, when $\lambda \in [0,1]$, the operator $T - \lambda$ cannot be surjective since $(T - \lambda)f$ is a function vanishing at λ .

2.3) Is this operator T compact?

No. The Fredholm alternative says that the non-zero spectrum of T must be discrete, which is not the case.

A direct proof is also available. The sequence $f_n(x) = x^n$ is bounded but its image f_{n+1} has no subsequence converging uniformly on [0,1] since it converges simply to the discontinuous function which is 0 on [0,1[and equal to 1 at 1.

Exercise 3. Let *E* be a Banach space. Show that a Fredholm operator $T \in \mathcal{L}(E, E)$ is a compact perturbation of an invertible operator if and only if its index vanishes.

 \implies Assume that T is a compact perturbation of an invertible operator, that is T = U + Kwith U invertible and K compact. Then, for all $s \in [0, 1]$, the operator T(s) := U + sKis Fredholm, and the function $indT(\cdot)$ is continuous. It follows that the index of $T(\cdot)$ is constant on [0, 1]. Therefore

$$ind T(1) = ind T = ind U = 0.$$

 \Leftarrow Assume that dim kerT = codim ranT = n. Then

$$E = \ker T \oplus F$$
, $E = \operatorname{ran} T \oplus G$, $\dim \ker T = \dim G$.

Let K be an invertible linear map between ker T and G. We still denote by K its extension by zero to the whole space E. Then K is compact (because ran K = G is of finite dimension), whereas T - K is (by construction) invertible. It suffices to remark that T = (T - K) + K.