Spectral Theory

## CC3, the 12/10/2018 (20mn)

Documents are not allowed

## Surname :

## First name :

**Question.** Define what is a Fredholm operator  $T \in \mathcal{L}(E, F)$ .

**Exercise 1.** Let  $E = \mathbb{R}^2$ . Given  $\lambda \in \mathbb{C}$ , define  $T \in \mathcal{L}(E)$  and  $P_{\lambda} \in \mathcal{L}(E)$  by

$$T := \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}, \qquad P_{\lambda} := \frac{1}{2i\pi} \int_{\Gamma_{\lambda}} (z - T)^{-1} dz,$$

where  $\Gamma_{\lambda}$  is the circle of center  $\lambda$  and radius 1. Determine  $P_{\lambda}$  by a direct computation.

Let  $n \in \mathbb{N}$ . Recall that

$$\frac{1}{2i\pi} \int_{\Gamma_{\lambda}} (z-\lambda)^{-n} dz = \frac{1}{2i\pi} \int_{\theta=0}^{2\pi} (z-\lambda)^{-n} dz = \frac{1}{2\pi} \int_{\theta=0}^{2\pi} e^{i(1-n)\theta} d\theta = \begin{cases} 1 & \text{if } n=1, \\ 0 & \text{if } n\neq 1. \end{cases}$$

It follows that

$$P_{\lambda} := \frac{1}{2i\pi} \int_{\Gamma_{\lambda}} \left( \begin{array}{cc} (z-\lambda)^{-1} & -(z-\lambda)^{-2} \\ 0 & (z-\lambda)^{-1} \end{array} \right) dz = \left( \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right).$$

**Exercise 2.** Let *E* be the Banach space  $\mathcal{C}^0([0,1];\mathbb{R})$  equipped with the sup norm. Select a strictly increasing function  $\varphi \in E$ , and consider the operator  $T: X \to X$  which is given by the multiplication  $T(f) = \varphi f$ . Determine the spectrum  $\operatorname{sp}(T)$  of *T*. What is the essential spectrum  $\operatorname{sp}_{ess}(T)$  of *T*? And what is the discrete spectrum  $\operatorname{sp}_{dis}(T)$  of *T*?

Fix  $\lambda \in \mathbb{C}$ . Since f is continuous, we have

$$\ker (T - \lambda) = \{ f \in X; (\varphi - \lambda)f = 0 \} = \{ f \in X; f_{|\mathbb{R} \setminus \{\lambda\}} = 0 \} = \{ 0 \}.$$

Introduce  $[a,b] = \varphi([0,1])$  with  $\varphi(0) = a < \varphi(1) = b$ . If  $\lambda \notin [a,b]$ , the function  $(\varphi - \lambda)^{-1}f$  is well-defined on [0,1], in E, and such that

$$\forall f \in E, \quad (T - \lambda)((\varphi - \lambda)^{-1}f) = f,$$

which means that  $T - \lambda$  is surjective, and therefore bijective with bounded inverse. On the contrary, when  $\lambda \in [a, b]$ , we can find  $u \in [0, 1]$  such that  $\lambda = \varphi(u)$ , we find that

$$\operatorname{ran}(T - \lambda) \subset F := \{ f \in E; f(u) = 0 \}.$$

The functions  $\cos(n(x-u))$  with  $n \in \mathbb{N}$  are linearly independent and not in F. Therefore, we have  $\operatorname{codim}\operatorname{ran}(T-\lambda) = +\infty$ , and  $T-\lambda$  is not Fredholm. Finally, we have

$$sp_{dis}(T) = \emptyset$$
,  $sp_{ess}(T) = [a, b]$ ,  $sp(T) = [a, b]$ .

