

Spectral Theory

CC3, the 12/10/2018 (10mn)

Documents are not allowed

Surname :

First name :

Question. Define what is a Fredholm operator $T \in \mathcal{L}(E, F)$.

Exercise 1. Let $E = \mathbb{R}^2$. Given $\lambda \in \mathbb{C}$, define $T \in \mathcal{L}(E)$ and $P_{\lambda} \in \mathcal{L}(E)$ by

$$T := \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}, \qquad P_{\lambda} := \frac{1}{2i\pi} \int_{\Gamma_{\lambda}} (z - T)^{-1} dz,$$

where Γ_{λ} is the circle of center λ and radius 1. Determine P_{λ} by a direct computation.

 $T.S.V.P \implies$

Exercise 2. Let *E* be the Banach space $\mathcal{C}^0([0,1];\mathbb{R})$ equipped with the sup norm. Select a strictly increasing function $\varphi \in E$, and consider the operator $T: X \to X$ which is given by the multiplication $T(f) = \varphi f$. Determine the essential spectrum $\operatorname{sp}_{ess}(T)$ of *T*.