M2 - Mathématiques UNIVERSITÉ DE RENNES UNIVERSITÉ DE RENNES

Spectral Theory

CC2, Correction

Question. Let (Dom(T), T) be a densely defined operator on the Hilbert space H.

a) What is the definition of $Dom(T^*)$?

 $\operatorname{Dom}(T^*) = \{x \in \mathsf{H}; \Phi_x : \operatorname{Dom}(T) \ni y \longmapsto \langle Ty, x \rangle \text{ is continuous for the norm of } \mathsf{H}\}.$

b) Given $x \in \text{Dom}(T^*)$, explain how is constructed T^*x .

By the Riesz representation theorem, the continuous linear map Φ_x can be represented in the form $\Phi_x(y) = \langle y, z \rangle$ for some $z = T^*x \in H$.

Exercise 1. Given an operator (Dom(T), T), consider the two following assertions :

- (i) The set $\overline{\Gamma(T)}$ is the graph of an operator.
- (ii) For all $(u_n) \in \text{Dom}(T)^{\mathbb{N}}$ such that $u_n \to 0$ and $Tu_n \to v$, we have v = 0.

1.1. Prove that (i) implies (ii).

Assume (i), that is $\overline{\Gamma(T)} = \Gamma(R)$ for some operator (Dom(R), R). Since $(0, v) \in \overline{\Gamma(T)}$, we must have v = R0 = 0.

1.2. Prove that (ii) implies (i).

Assume (ii), and work by contradiction. The set $\overline{\Gamma(T)}$ is not the graph of an operator if we can find x, y and z with $y \neq z$ such that $(x, y) \in \overline{\Gamma(T)}$ and $(x, z) \in \overline{\Gamma(T)}$. It follows that we can find two sequences $((x_n, y_n = Tx_n))_n$ and $((\tilde{x}_n, \tilde{y}_n = T\tilde{x}_n))_n$ such that

$$\lim_{n \to +\infty} x_n = x, \quad \lim_{n \to +\infty} \tilde{x}_n = x, \quad \lim_{n \to +\infty} y_n = y, \quad \lim_{n \to +\infty} \tilde{y}_n = z.$$

Define $u_n = \tilde{x}_n - x_n$ and $v_n = \tilde{y}_n - y_n = T(\tilde{x}_n - x_n)$, so that

$$\lim_{n \to +\infty} u_n = 0, \quad \lim_{n \to +\infty} v_n = \lim_{n \to +\infty} Tu_n = z - y.$$

Thus, we must have z - y = 0 which is the expected contradiction.

1.3. Assume moreover that (Dom(T), T) is densely defined. Show that T^* is closed. See Exercise 2.21 in the course.

Exercise 2. Take $H = \ell^2(\mathbb{N}; \mathbb{C})$. Consider the linear subspace

$$\operatorname{Dom}(T) := \{ u = (u_n)_n \in \ell^2(\mathbb{N}; \mathbb{C}) ; \sup_{n \in \mathbb{N}} n^3 |u_n| < +\infty \}.$$

Given $u = (u_n)_n \in \ell^2(\mathbb{N}; \mathbb{C})$, define $Tu = v = (v_n)_n$ according to

$$v_0 = \sum_{n=0}^{+\infty} n u_n, \qquad v_j = 0, \quad \forall j \in \mathbb{N}^*.$$

2.1 Is this operator (Dom(T), T) closable? Justify the answer.

No. It suffices to apply the criterion (iii) of Proposition 1.20. For all $n \in \mathbb{N}^*$, define $u_n := (n^{-1}\delta_{nj})_j$. The sequence $(u_n)_n$ is going to 0 whereas $Tu_n = (\delta_{0j})_j$ is constant (and not zero).

2.2 Compute the domain of T^* . Conclusion ?

An element $v \in H$ is in the domain of T^* if and only if the application

$$\operatorname{Dom}(T) \ni u \mapsto \langle Tu, v \rangle = \sum_{n=0}^{+\infty} n u_n v_0$$

is continuous on ℓ^2 -norm. But that is never the case except if $v_0 = 0$. Thus, we have

$$Dom(T^*) = \{ v = (v_n)_n \in \ell^2(\mathbb{N}; \mathbb{C}) ; v_0 = 0 \}.$$

The distance from $(\delta_{0j})_j$ to $\text{Dom}(T^*)$ is 1, or the codimension of $\text{Dom}(T^*)$ is 1. It follows that $\text{Dom}(T^*)$ is not dense, and the operator (Dom(T), T) cannot be closable. This confirms the result of 2.1.

Exercise 3. We work here with an operator (Dom(T), T) whose spectrum Sp(T) is strictly contained in \mathbb{C} . We fix some z in the resolvent set of T.

3.1 Let (x, y) be such that $(T - z)^{-1}(y - zx) = x$. What can we say about (x, y)?

We must have $(x, y) \in \Gamma(T)$.

3.2 Show that T is closed.

Let $((x_n, y_n))_n \in \Gamma(T)^{\mathbb{N}}$ be such that $x_n \to x$ and $y_n = Tx_n \to y$. We have

$$(T-z)^{-1}(y_n - zx_n) = x_n.$$

Since $(T-z)^{-1}$: $\mathsf{H} \to \mathrm{Dom}(T)$ is continuous, we can pass to the limit in order to obtain

$$(T-z)^{-1}(y-zx) = x.$$

From **3.1**, we can conclude that $(x, y) \in \Gamma(T)$.