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Question. Let 𝑇 be a densely defined operator which is symmetric and closable. Compare
the operators 𝑇 , 𝑇 * and 𝑇 , and then give a necessary and sufficient condition to be sure
that 𝑇 is self-adjoint.

We have 𝑇 ⊂ 𝑇 ⊂ 𝑇 * and 𝑇 is self-adjoint if and only if 𝑇 = 𝑇 = 𝑇 *.

Exercise 1. We work on 𝐿2(R) with the standard inner product

⟨𝑓, 𝑔⟩ :=
∫︁
𝑓(𝑥)𝑔(𝑥)𝑑𝑥

Select some non zero function 𝜓0 ∈ 𝐿2(R), as well as some function 𝑓 ∈ 𝐿∞(R) which is
not in 𝐿2(R). Then, define

Dom(𝑇 ) :=
{︀
𝜓 ∈ 𝐿2(R);

∫︁
|𝑓(𝑥)𝜓(𝑥)|𝑑𝑥 < +∞

}︀
, 𝑇𝜓 = ⟨𝑓, 𝜓⟩𝜓0

1.1. Explain why Dom(𝑇 ) is dense in 𝐿2(R).

Since the function 𝑓 ∈ 𝐿∞(R) is locally integrable, the linear subspace 𝐶∞
0 (R) is contained

in Dom(𝑇 ). On the other hand, 𝐶∞
0 (R) is dense in 𝐿2(R) and therefore the same applies

concerning Dom(𝑇 ).

1.2. Determine the domain Dom(𝑇 *) of the adjoint 𝑇 * of 𝑇 .

By definition, 𝜙 ∈ Dom(𝑇 *) if and only if the application

Dom(𝑇 ) −→ 𝐿2(R)
𝜓 ↦−→ ⟨𝑇𝜓, 𝜙⟩ = ⟨𝜓, 𝑓⟩⟨𝜓0, 𝜙⟩

is continuous on 𝐿2(R). Above, the number ⟨𝜓0, 𝜙⟩ is a fixed constant. As a consequence
of the Riesz representation theorem, the application 𝜓 ↦−→ ⟨𝜓, 𝑓⟩ is continuous on 𝐿2(R)
on condition that 𝑓 ∈ 𝐿2(R). But this is not the case. Thus, the only way to recover the
continuity is to impose ⟨𝜓0, 𝜙⟩ = 0, which means that 𝜙 ∈ 𝑉 𝑒𝑐 (𝜓0)⊥. In short, we have

Dom(𝑇 *) = 𝑉 𝑒𝑐 (𝜓0)⊥

1.3. Is the operator 𝑇 closable or not ? Justify the answer.

From 1.1, we know that Dom(𝑇 ) is dense in 𝐿2(R). We have seen in the course that 𝑇 is
closable if and only if Dom(𝑇 *) is dense. This is not the case in view of 1.2.



Exercise 2. Let Ω be an open bounded domain of R𝑁 with smooth boundary. Define

H := 𝐿2(Ω;R), ⟨𝑓, 𝑔⟩ :=
∫︁

Ω
𝑓𝑔𝑑𝑥

𝒱 := 𝐻1
0 (Ω;R), ⟨𝑓, 𝑔⟩𝒱 :=

∫︁
Ω

∇𝑥𝑓 · ∇𝑥𝑔𝑑𝑥+
∫︁

Ω
𝑓𝑔𝑑𝑥

with associated norms ‖ 𝑓 ‖:= ⟨𝑓, 𝑓⟩ and ‖ 𝑓 ‖𝒱 := ⟨𝑓, 𝑓⟩𝒱 . Select 𝑓 and 𝑉 satisfying

𝑓 ∈ H ; 𝑉 ∈ (𝒞∞ ∩ 𝐿∞)(Ω;R𝑁 ) ; div𝑉 :=
𝑁∑︁

𝑗=1
𝜕𝑥𝑗𝑉 ≡ 0.

Assume that 𝑢 ∈ 𝒱 is a solution in the sense of distributions to the equation
(𝑉 · ∇𝑥)𝑢− Δ𝑢 = 𝑓 in 𝒟′(Ω) (1)

2.1. Show that there exists a continuous coercive form 𝑄 on 𝒱 × 𝒱 such that
∀𝑣 ∈ 𝒞∞

0 (Ω;R), 𝑄(𝑢, 𝑣) = ⟨𝑓, 𝑣⟩.

A simple integration by parts indicates that (1) is equivalent to

∀𝑣 ∈ 𝒞∞
0 (Ω;R), 𝑄(𝑢, 𝑣) :=

∫︁
Ω

(𝑉 · ∇𝑥)𝑢𝑣𝑑𝑥+
∫︁

Ω
∇𝑥𝑢 · ∇𝑥𝑣𝑑𝑥 = ⟨𝑓, 𝑣⟩.

The sesquilinear form 𝑄 is continuous on 𝒱 × 𝒱 since
|𝑄(𝑢, 𝑣)| ≤

(︀
1+ ‖ 𝑉 ‖𝐿∞

)︀
‖ 𝑢 ‖𝒱‖ 𝑣 ‖𝒱

The difficulty is to explain why it is coercive. Since 𝑉 is divergence free, an integration
by parts (which can be justified by a density argument) furnishes∫︁

Ω
(𝑉 · ∇𝑥)𝑢𝑢𝑑𝑥 = −

∫︁
Ω
𝑢(𝑉 · ∇𝑥)𝑢𝑑𝑥 =⇒

∫︁
Ω

(𝑉 · ∇𝑥)𝑢𝑢𝑑𝑥 = 0

and therefore
∀𝑢 ∈ 𝒱, 𝑄(𝑢, 𝑢) =‖ ∇𝑥𝑢 ‖2 .

On the other hand, the Poincaré inequality guarantees that
∃𝐶 ∈ [1,+∞[; ‖ 𝑢 ‖≤ 𝐶 ‖ ∇𝑥𝑢 ‖

It follows that
∀𝑢 ∈ 𝒱, |𝑄(𝑢, 𝑢)| ≥ 1

1 + 𝐶2 ‖ 𝑢 ‖2
𝒱 .

2.2. Let 𝑓 ∈ 𝐿2(Ω;R). Show that the equation (1) has a unique solution 𝑢 ∈ 𝒱.

The Lax-Milgram theorem furnishes the existence of an operator
(︀
Dom(L ),L

)︀
such that

∀𝑢 ∈ Dom(L ), ∀𝑣 ∈ 𝒱, 𝑄(𝑢, 𝑣) = ⟨L 𝑢, 𝑣⟩

The operator L is bijective from Dom(L ) onto H. It suffices to take 𝑢 = L −1𝑓 to find
a solution to (1), which is in Dom(L ) ⊂ 𝒱 . Let 𝑢̃ ∈ 𝒱 be another solution. Then

∀𝑣 ∈ 𝒞∞
0 (Ω;R), 𝑄(𝑢̃− 𝑢, 𝑣) = 0 =⇒ 0 = 𝑄(𝑢̃− 𝑢, 𝑢̃− 𝑢) ≥ 1

1 + 𝐶2 ‖ 𝑢̃− 𝑢 ‖2
𝒱

which gives 𝑢̃ = 𝑢.


