Spectral Theory

CC2, the 27/09/2019 (20mn)

Documents are not allowed

Surname :

First name :

Question. Let (Dom(T), T) be a densely defined operator on the Hilbert space H.

a) What is the definition of $Dom(T^*)$?

 $\operatorname{Dom}(T^*) =$

b) Given $x \in \text{Dom}(T^*)$, explain how is constructed T^*x .

Exercise 1. Given an operator (Dom(T), T), consider the two following assertions : (i) The set $\overline{\Gamma(T)}$ is the graph of an operator.

(ii) For all $(u_n) \in \text{Dom}(T)^{\mathbb{N}}$ such that $u_n \to 0$ and $Tu_n \to v$, we have v = 0.

1.1. Prove that (i) implies (ii).

1.2. Prove that (ii) implies (i).

1.3. Assume that (Dom(T), T) is densely defined. Show that T^* is closed.

 $T.S.V.P \implies$

Exercise 2. Take $H = \ell^2(\mathbb{N}; \mathbb{C})$. Consider the linear subspace

$$\operatorname{Dom}(T) := \{ u = (u_n)_n \in \ell^2(\mathbb{N}; \mathbb{C}) ; \sup_{n \in \mathbb{N}} n^3 |u_n| < +\infty \}.$$

Given $u = (u_n)_n \in \ell^2(\mathbb{N}; \mathbb{C})$, define $Tu = v = (v_n)_n$ according to

$$v_0 = \sum_{n=0}^{+\infty} n u_n, \qquad v_j = 0, \quad \forall j \in \mathbb{N}^*.$$

2.1 Is this operator (Dom(T), T) closable? Justify the answer.

2.2 Compute the domain of T^* . Conclusion ?

Exercise 3. We work here with an operator (Dom(T), T) whose spectrum Sp(T) is strictly contained in \mathbb{C} . We fix some z in the resolvent set of T.

3.1 Let (x, y) be such that $(T - z)^{-1}(y - zx) = x$. What can we say about (x, y)?

3.2 Show that T is closed.