

2018 - 2019

Spectral Theory

CC2, the 05/10/2018 (20mn)

Documents are not allowed

Surname :

First name :

Question. Let T be a densely defined operator which is symmetric and closable. Compare the operators T, T^* and \overline{T} , and then give a necessary and sufficient condition to be sure that T is self-adjoint.

Exercise 1. We work on $L^2(\mathbb{R})$ with the standard inner product

$$\langle f,g \rangle := \int \bar{f}(x)g(x)dx$$

We select some non zero function $\psi_0 \in L^2(\mathbb{R})$, as well as some function $f \in L^{\infty}(\mathbb{R})$ which is not in $L^2(\mathbb{R})$. Then, we define

$$\operatorname{Dom}(T) := \{ \psi \in L^2(\mathbb{R}); \int |f(x)\psi(x)| dx < +\infty \}, \qquad T\psi = \langle f, \psi \rangle \psi_0$$

1.1. Explain why Dom(T) is dense in $L^2(\mathbb{R})$.

1.2. Determine the domain $Dom(T^*)$ of the adjoint T^* of T.

1.3. Is the operator T closable or not ? Justify the answer.

 ${\rm T.S.V.P} \implies$

Exercise 2. Let Ω be an open bounded domain of \mathbb{R}^N with smooth boundary. Define

$$\begin{split} \mathbf{H} &:= L^2(\Omega; \mathbb{R}), \qquad \langle f, g \rangle := \int_{\Omega} fgdx \\ \mathcal{V} &:= H_0^1(\Omega; \mathbb{R}), \qquad \langle f, g \rangle_{\mathcal{V}} := \int_{\Omega} \nabla_x f \cdot \nabla_x gdx + \int_{\Omega} fgdx \end{split}$$

with associated norms $\parallel f \parallel := \langle f, f \rangle$ and $\parallel f \parallel_{\mathcal{V}} := \langle f, f \rangle_{\mathcal{V}}$. Select f and V satisfying

$$f \in \mathcal{H}$$
; $V \in (\mathcal{C}^{\infty} \cap L^{\infty})(\Omega; \mathbb{R}^N)$; $\operatorname{div} V := \sum_{j=1}^{N} \partial_{x_j} V \equiv 0$

Assume that $u \in \mathcal{V}$ is a solution in the sense of distributions to the equation

$$(V \cdot \nabla_x)u - \Delta u = f \quad \text{in} \quad \mathcal{D}'(\Omega) \tag{1}$$

2.1. Show that there exists a continuous coercive form Q on $\mathcal{V} \times \mathcal{V}$ such that

$$\forall v \in \mathcal{C}_0^{\infty}(\Omega; \mathbb{R}), \quad Q(u, v) = \langle f, v \rangle.$$

2.2. Let $f \in L^2(\Omega; \mathbb{R})$. Show that the equation (1) has a unique solution $u \in \mathcal{V}$.