

Spectral Theory

CC1, the 21/09/2018 (20mn)

Documents are not allowed

Surname :

First name :

Question. Let *E* and *F* be two Banach spaces. Consider a linear subspace $Dom(T) \subset E$. Define what is a closed operator (Dom(T), T).

Exercise 1. Recall that the Sobolev spaces $H \equiv H^0(\mathbf{R})$ and $H^1(\mathbf{R})$ can be defined by

$$H \equiv H^{0}(\mathbf{R}) \equiv L^{2}(\mathbf{R}), \qquad \| f \|_{H} := \left(\int |f(x)|^{2} dx \right)^{1/2}$$
$$H^{1}(\mathbf{R}) := \left\{ f \in L^{2}(\mathbf{R}); f' \in L^{2}(\mathbf{R}) \right\}, \qquad \| f \|_{H^{1}} := \left(\| f \|_{H}^{2} + \| f' \|_{H}^{2} \right)^{1/2}$$

On $H \equiv L^2(\mathbf{R})$ consider the two operators $T: H \to H$ and $S: H \to H$ given by

Dom
$$(T) = \mathcal{C}_0^{\infty}(\mathbb{R}), \qquad Tf = f'$$
 (1)

$$Dom (S) = H^1(\mathbb{R}), \qquad Sf = f'$$
(2)

1.1. Show that (Dom(S), S) is a closed operator.

1.2. What is the smallest closed extension $(\text{Dom}(\bar{T}), \bar{T})$ of (Dom(T), T)? Justify your answer.

 $T.S.V.P \implies$

Exercise 2. Let *E* and *F* be two Banach spaces. Consider a linear subspace $\text{Dom}(T) \subset E$, and a closable operator (Dom(T), T) which is of finite-rank, meaning that

 $d:=\dim\,\mathrm{Ran}\,T<+\infty\quad;\quad\mathrm{Ran}\,T:=\big\{T(x);x\in\mathrm{Dom}(T)\big\}\subset F$

Show that T is bounded.