Analyse, Distribution, Fourier

Corrigé du CC1 (posé le 04/10/2024)

Questions de cours

i) Soit $f \in L^1_{loc}(\mathbb{R}^N)$ avec $N \in \mathbb{N}^*$. Rappeler comment est définie la distribution T_f qui est canoniquement associée à f.

$$\langle T_f, \varphi \rangle = \int_{\mathbb{R}^N} f(x) \ \varphi(x) \ dx, \qquad \forall \varphi \in \mathcal{D}(\mathbb{R}^N).$$

I.2) Soient Ω un ouvert de \mathbb{R}^N et T une forme linéaire sur $\mathcal{D}(\Omega)$. Sous quelles conditions peut-on affirmer que T est une distribution?

Il faut que T vérifie la propriété de continuité suivante. Pour tout compact $K \subset \Omega$, il existe une constante C_K et un entier p_K tels que pour toute fonction test $\varphi \in \mathcal{D}(\Omega)$ à support dans K, on a

$$|\langle T, \varphi \rangle| \le C_K \max_{|\alpha| \le p_K} \sup_{x \in \mathbb{R}^N} |\partial_x^{\alpha} \varphi(x)|.$$

Exercice I. On considère la forme linéaire $S: \mathcal{D}(]-1,1[) \to \mathbb{R}$ définie par

$$\langle S, \varphi \rangle := \int_{-1}^{0} \varphi'(t) \ dt - \int_{0}^{1} \varphi'(t) \ dt, \qquad \forall \varphi \in \mathcal{D}(] - 1, 1[).$$

I.1) Montrer que S est une distribution qui est positive et d'ordre 0.

Pour $\eta \in \mathbb{R}_+^*$ suffisamment petit, on a supp $\varphi \subset [-1 + \eta, 1 - \eta]$. On a alors par simple intégration

$$\langle S, \varphi \rangle = \int_{-1+\eta}^{0} \varphi'(t) \ dt - \int_{0}^{1-\eta} \varphi'(t) \ dt = 2 \ \varphi(0) \ .$$

Autrement dit $S = 2 \delta_0$ qui est clairement positive et d'ordre 0.

I.2) Déterminer le support de S. Justifier la réponse.

Pour tout φ à support dans $]-1,0[\cup]0,1[$, on a $\langle S,\varphi\rangle=0$. Le support de S est donc dans le singleton $\{0\}$. Par ailleurs, pour tout ouvert ω contenant 0, on peut trouver $\varphi \in \mathcal{D}(\omega)$ vérifiant $\langle S,\varphi\rangle=\varphi(0)\neq 0$. Donc 0 est dans le support de S. Par conséquent supp $S=\{0\}$.

Exercice II. On considère dans $L^1_{loc}(\mathbb{R})^{\mathbb{N}}$ la suite de fonctions $(f_n)_n$ définies par $f_n(x) := n \, \mathbb{1}_{[-2,2]}(n \, x)$ où la notation $\mathbb{1}_{[a,b]}$ désigne la fonction caractéristique de l'intervalle [a,b]. Montrer que la suite $(f_n)_n$ converge au sens des distributions vers un élément $T \in \mathcal{D}'(\mathbb{R})$ à identifier.

Soit $\varphi \in \mathcal{D}(\mathbb{R})$. On fait un changement de variable puis on applique le théorème de convergence dominée

$$\langle T_{f_n}, \varphi \rangle = n \int_{-2/n}^{2/n} \varphi(x) \ dx = \int_{-2}^{2} \varphi(y/n) \ dy \to \int_{-2}^{2} \varphi(0) \ dy = 4 \ \varphi(0) = \langle 4\delta_0, \varphi \rangle.$$

Cela suffit pour conclure à la convergence avec $T = 4 \delta_0$.

Exercice III. Calculer la limite dans $\mathcal{D}'(\mathbb{R})$ de la suite de distributions $(T_n)_n$ donnée par $T_n := (1/n) \sum_{p=0}^{n-1} \delta_{p/n}$.

Soit $\varphi \in \mathcal{D}(\mathbb{R})$. On calcule

$$\langle T_n, \varphi \rangle = \frac{1}{n} \sum_{p=0}^{n-1} \varphi \left(\frac{p}{n} \right).$$

On reconnait à droite une somme de Riemann correspondant à l'intégration sur l'intervalle [0,1] de φ . Comme φ est continue (puisque C^{∞}), on obtient

$$\langle T_n, \varphi \rangle \to \int_0^1 \varphi(x) \ dx$$
.

Par conséquent, la suite $(T_n)_n$ converge au sens des distributions vers $\mathbb{1}_{[0,1]}$.

Exercice IV. Soit $\varphi \in \mathcal{D}(\mathbb{R})$ avec $\varphi \neq 0$. A l'aide de φ , on construit une suite $(\varphi_n)_n$, et on considère l'affirmation suivante :

La suite
$$(\varphi_n)_{n\in\mathbb{N}^*}$$
 converge dans $\mathcal{D}(\mathbb{R})$.

Répondre par OUI ou par NON (entourer la bonne réponse et barrer la mauvaise) à cette affirmation puis donner une justification dans les différents cas suivants :

a)
$$\varphi_n(x) = \frac{\varphi(x)}{n}$$
 OUI

Soit K le support de φ . Alors K est compact, et le support des φ_n est contenu dans K. Par ailleurs, pour tout entier $m \in \mathbb{N}$, la suite $\varphi_n^{(m)} = \varphi^{(m)}/n$ converge uniformément sur K vers 0. Ainsi, la suite $(\varphi_n)_{n \in \mathbb{N}^*}$ converge vers 0 dans $\mathcal{D}(\mathbb{R})$.

b)
$$\varphi_n(x) = \frac{\varphi(x/n)}{n}$$
 NON

Comme $\varphi \neq 0$, son support contient un intervalle de la forme [a,b] avec a < b. Il s'ensuit que le support de φ_n contient $[n\,a,n\,b]$ qui ne peut pas être mis dans un compact (uniformément en n).

c)
$$\varphi_n(x) = \frac{\varphi(n \, x)}{n}$$
 NON

On obtient $\varphi'_n(x) = \varphi'(n x)$. Pour $x \in \mathbb{R}^*$, la position n x sort du support de φ' pour n assez grand, de sorte que $\varphi'_n(x) = 0$. Ainsi, la suite $(\varphi'_n)_n$ converge vers 0 pour tout $x \in \mathbb{R}^*$. Sa limite uniforme, à supposer qu'elle existe, ne peut être que la fonction nulle. Mais cela amène à une contradiction puisque la norme L^{∞} de φ'_n est fixe, égale à $\|\varphi'\|_{L^{\infty}} \neq 0$.

Exercice V. On se place dans $\mathcal{D}'(\mathbb{R}^2)$. Soit $\varphi \in \mathcal{D}(\mathbb{R}^2)$.

V.1) Montrer que la formule suivante

$$\langle T, \varphi \rangle = \int_0^{+\infty} \left(\varphi(1/t^2, \sin t) - \varphi(0, \sin t) \right) dt$$

définit une distribution qui est d'ordre au plus 1.

On écrit
$$T = T_1 + T_2$$
 avec $\langle T_1, \varphi \rangle := \int_0^1 \left(\varphi(1/t^2, \sin t) - \varphi(0, \sin t) \right) dt$ et

$$\langle T_2, \varphi \rangle := \int_1^{+\infty} \left(\varphi(1/t^2, \sin t) - \varphi(0, \sin t) \right) dt = \int_1^{+\infty} \left(\int_0^{1/t^2} (\partial_x \varphi)(s, \sin t) ds \right) dt.$$

On a d'une part $|\langle T_1, \varphi \rangle| \leq 2 \|\varphi\|_{L^{\infty}}$ et d'autre part

$$|\langle T_2, \varphi \rangle| \le \int_1^{+\infty} \frac{1}{t^2} \sup_{s \in [0,1]} |(\partial_x \varphi)(s, \sin t)| dt \le ||\partial_x \varphi||_{L^{\infty}([0,1] \times [-1,1])}.$$

Cela prouve que T est une distribution d'ordre au plus 1.

V.2) Décrire le support de T. On ne demande pas de justification.

Le support de T est formé de l'union d'un segment vertical et du graphe sur \mathbb{R}_+^* de la fonction $u \mapsto \sin(1/\sqrt{u})$. Autrement dit

$$supp T = (\{0\} \times [-1, 1]) \cup \{(u, \sin(1/\sqrt{u})); u \in \mathbb{R}_+^*\}.$$