CC1 (13 février 2024)

Durée 45 minutes, calculatrices et documents interdits

Nom: Prénom: Gp de TD:

Exercice 1. Répondre aux questions suivantes (sans justifier les réponses).

1. Soient f et g deux fonctions dérivables de \mathbb{R} dans \mathbb{R} . Donner l'expression de la dérivée de la fonction composée $x \mapsto f \circ g(x) = f(g(x))$.

 $(f \circ g)'(x) =$

2. Soit $n \in \mathbb{N}^*$ et $x \in \mathbb{R} \setminus \{1\}$. Donner la valeur de la somme

 $\sum_{i=0}^{n-1} x^i =$

- 3. Que dire de deux primitives d'une même fonction $f: \mathbb{R} \to \mathbb{R}$?
- 4. Soit $f \colon [a,b] \to \mathbb{R}$. Comparer par un signe d'inégalité les deux expressions suivantes :

 $\int_{a}^{b} |f(t)| dt \qquad \left| \int_{a}^{b} f(t) dt \right|$

Exercice 2. Pour chacune des fonctions f_i suivantes, donner son intervalle de définition \mathcal{D}_i puis l'expression de la primitive F_i définie sur \mathcal{D}_i vérifiant $F_i(0) = 0$.

 $\star f_1: x \mapsto 4(x+1)^2$

 $\mathcal{D}_1 = F_1(x) =$

 $\star f_2 \colon x \mapsto x e^{x^2}$

 $\mathcal{D}_2 = F_2(x) =$

 $\star f_3 \colon x \mapsto \cos(2x) - 1$

 $\mathcal{D}_3 = F_3(x) =$

T. S. V. \Longrightarrow

Exercice 3.

1. Justifier l'affirmation suivante : pour tout réel $x, e^x \ge 1$ quand x est positif et $e^x \le 1$ quand x est négatif.

2. Montrer par un calcul d'intégrales que pour tout réel x négatif, $e^x \ge x + 1$.

3. En utilisant les questions précédentes, déterminer deux fonctions f et g telles que pour tout $t \in \mathbb{R}_+$, on a $f(t) \leq e^{-\frac{1}{t^2}} \leq g(t)$.

$$f(t) = g(t) =$$

4. Montrer que le nombre $I = \int_{10}^{100} e^{-\frac{1}{t^2}} dt$ approche 90 à 0,1 près. Justifier.