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Conjugacy problem in F,

0

comparing cyclic words

Linear time
[Knuth-Morris-Pratt, Boyer-Moore, Suffix tree methods, ...]
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Right-angled g\rtin groups

C d

€ b The graph defines a RAAG
A= <a’b’C,d,e | [a,b] =1, [b,C] = 1,>

In general : any graph without loops, double edges ~» RAAG.
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Right-angled g\rtin groups

C d

€ b The graph defines a RAAG
A= <a’b’C,d,e | [a,b] =1, [b,C] = l,>

In general : any graph without loops, double edges ~» RAAG.

¥ such group A, 3 cubical complex Y, loc. CAT (0) with one
n-cube (with opposite faces identified) for each n-tuple of
commuting generators, s.t.

7T1(Y) =A
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Solution to conj. problem in RAAG A

1st linear time solution : [Liu, Wrathall, Zeger]

Our solution : given wq, wy,
@ build pilings p1,p2 (= lin. time solution to word problem)
® cyclically reduce pq, p2
© 22 create pyramidal pilings p1, P2

extract
@ ~= canonical cyclic words w1, w»

. ~ cyclic ~
@® compare them : wy,w, conjugate iff w; = Wo
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(1) build pilings p1,p2, (2) cycl. reduce p1,p2, (3) cyeling pyram.
pilings p1, P2, (4) 2 canon. cyclic words Wy, W», (5) compare them

Example: A = e———e————o—¢

Order generatorsa < b < ¢ < d.
w; = dc™tb~ccabb
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(1) build pilings p1,p2, (2) cycl. reduce p1,p2, (3) cyeling pyram.
extract

pilings p1, P2, (4) = canon. cyclic words wi,w,, (5) compare them

(3) Create a pyramidal piling p1 cyclically equivalent to p; :
let a whirlwind act on piling, but hold the lowest a-bead in place.

cycling
_—
each bead
makes
< (#generators)
rounds

Thisisthe pyramidal
piling Py
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(1) build pilings p1,p2, (2) cycl. reduce p1,p2, (3) cyeling pyram.
pilings p1, P2, (4) 2 canon. cyclic words Wy, W», (5) compare them

(4) Find a canonical cyclic word ~ w; whose piling is p;.
Algorithm : keep extracting largest letter (a < b < ¢ < d)
from bottom of p;

b a ¢ d b a ¢ d b a ¢ d b a ¢
% g extract a $ $ extract ¢ Nextract d |
—_— —_— —_—

— wj; =acdb

d
extract b
hthuiont e Y
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9 Quasiconvex subgroups of RAAGs
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Lemma

Suppose

¢: X — Y locally injective, locally convex. Then
cubed cubed, CAT(0).

e X is locally CAT(0),
o ®: X — Y is an isometric embedding
e ¢.: m(X) — m1(Y) is a monomorphism, g.i. embedding.]

We shall apply lemma in case

m1(Y) = A aRAAG, Y the associated cube complex.
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Example : surface groups in RAAGs

Theorem [Crisp, Wiest] 4 RAAG A which contains all
surface groups 71(S) except S = RP? KleinB, Sy=-1.

Example : S an orientable surface

Theorem [Crisp, Wiest] The three exceptional surface groups
don’t embed in any RAAG.
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Example : graph braid groups in RAAGs
Definition If I a graph, n € N, define
Bn(I") = w1 (discretized config. space of n pointsin I)
Theorem [Crisp, Wiest] VI, ¥n, Bg(I') — some RAAG.
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Example : graph braid groups in RAAGs
Definition If I a graph, n € N, define
Bn(I") = w1 (discretized config. space of n pointsin I)
Theorem [Crisp, Wiest] VI, ¥n, Bg(I') — some RAAG.

s
PN
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Example For I = Ks we have




Example : graph braid groups in RAAGs
Definition If I a graph, n € N, define

Bn(I") = m1(discretized config. space of n pointsin I)
Theorem [Crisp, Wiest] VI, ¥n, Bp(I') — some RAAG.

AN
NG

Example For I = Ks we have

B,(Ks) < RAAG(A).

(Discretized configuration space of 2 points in Ks) = S,__s5, so
B2(Ks) = m1(Sy=-5)-
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Suppose ¢: X — Y as above (= 71(X) — m1(Y) =RAAG)

Want Linear time solution to conjugacy problem in my(X).
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Suppose ¢: X — Y as above (= 71(X) — m1(Y) =RAAG)

Want Linear time solution to conjugacy problem in my(X).

Wrong theorem  If o, 5 € m1(X),

a, f conjugate in m1(X) < ®.(a),d.(5) conjugate in T (Y)

Wrong proof  Suppose $(«), ¢(3) freely homotopicin Y.
Hypotheses on & = can pull back free homotopy to X.

= «, ' freely homotopic, where ®(5’) = ®(3).
Problem easily remidied ~ While deciding whether ®(«), ®(3)

freely homotopic, carry along a finite piece of extra information
(a basepoint in X).
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Example where A=m(Y)=TF,
er e3 ap = d(e1) = d(es) az = P(ez)

X1 g, X (0] Y

X = —_—

N basepoint

Counterexample to wrong theorem

The loops e; and ezegegl in X are not freely homotopic
but their images a; and azalagl ~ alaglaz ~a; are.
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Example where A=m(Y)=TF,
er e3 ap = d(e1) = d(es) az = P(ez)

X1 g, X (0] Y

X = —_—

N basepoint

Counterexample to wrong theorem

The loops e; and ezegegl in X are not freely homotopic

but their images a; and a,a;a,* ~ aja;‘a, ~a; are.
2 2

Example of our remedy “carrying along a basepoint in X

The based words x;a; and xlazalagl ~ xzalaglaz ~ X8
are not equivalent.
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