Linear time solution to the conjugacy problem in RAAGs and their subgroups

Bert Wiest

IRMAR, Université de Rennes 1

Joint work with John Crisp and Eddy Godelle

- **1** Conjugacy problem in \mathbb{F}_n and RAAGs
- 2 Quasiconvex subgroups of RAAGs
- 3 Example : surface groups in RAAGs
- 4 Example : graph braid groups in RAAGs
- **5** Conjugacy problem in subgroups of RAAGs

- **1** Conjugacy problem in \mathbb{F}_n and RAAGs
- 2 Quasiconvex subgroups of RAAGs
- 3 Example : surface groups in RAAGs
- 4 Example: graph braid groups in RAAGs
- **5** Conjugacy problem in subgroups of RAAGs

Conjugacy problem in \mathbb{F}_n

comparing cyclic words

Linear time [Knuth-Morris-Pratt, Boyer-Moore, Suffix tree methods, ...]

Right-angled Artin groups

The graph defines a RAAG

$$A := \langle a, b, c, d, e \mid [a, b] = 1, [b, c] = 1, \ldots \rangle$$

In general : any graph without loops, double edges \rightsquigarrow RAAG.

 \forall such group A, \exists cubical complex Y, loc. CAT(0) with one n-cube (with opposite faces identified) for each n-tuple of commuting generators, s.t.

$$\pi_1(Y) = A$$

Right-angled Artin groups

The graph defines a RAAG

$$A := \langle a, b, c, d, e \mid [a, b] = 1, [b, c] = 1, \ldots \rangle$$

In general : any graph without loops, double edges → RAAG.

 \forall such group A, \exists cubical complex Y, loc. CAT(0) with one n-cube (with opposite faces identified) for each n-tuple of commuting generators, s.t.

$$\pi_1(Y) = A$$

Solution to conj. problem in RAAG A

1st linear time solution : [Liu, Wrathall, Zeger]

Our solution : given w_1, w_2 ,

- 1 build pilings $p_1, p_2 \iff \text{lin. time solution to word problem}$
- 2 cyclically reduce p_1, p_2
- $\overset{\text{extract}}{\longrightarrow} \text{ canonical cyclic words } \widetilde{w}_1, \widetilde{w}_2$
- **5** compare them : w_1, w_2 conjugate iff $\widetilde{w}_1 \stackrel{\text{cyclic}}{=} \widetilde{w}_2$

Example:
$$A = b$$
 b
 a
 c
 d
Order generators $a < b < c < d$.
$$w_1 = dc^{-1}b^{-1}ccabb$$

(1) Piling: sticks ↔ generators, beads of 3 colours: +, -, 0
tile: 1 bead ±, connected by threads
to 0-beads on adjct. sticks
0-beads commute, but block ±-beads
cancellation of ± ↔ - tiles

Example:
$$A = \underbrace{b \quad a \quad c \quad d}$$
Order generators $a < b < c < d$.
$$w_1 = dc^{-1}b^{-1}ccabb$$

(1) Piling : sticks \leftrightarrow generators, beads of 3 colours : +,-,0

Example:
$$A = \underbrace{\bullet \quad \bullet \quad \bullet}_{b \quad a \quad c \quad d}$$

Order generators $a < b < c < d$.
 $w_1 = dc^{-1}b^{-1}ccabb$

(1) Piling: sticks \leftrightarrow generators, beads of 3 colours: +, -, 0

Example:
$$A = b$$
 b
 a
 c
 d

Order generators $a < b < c < d$.
$$w_1 = dc^{-1}b^{-1}ccabb$$

(1) Piling: sticks \leftrightarrow generators, beads of 3 colours: +, -, 0

Example:
$$A = b$$
 b
 a
 c
 d
Order generators $a < b < c < d$.
$$w_1 = dc^{-1}b^{-1}ccabb$$

(1) Piling: sticks \leftrightarrow generators, beads of 3 colours: +, -, 0

Example:
$$A = \underbrace{b \quad a \quad c \quad d}$$
Order generators $a < b < c < d$.
$$w_1 = dc^{-1}b^{-1}ccabb$$

(1) Piling: sticks \leftrightarrow generators, beads of 3 colours: +, -, 0

Example:
$$A = \underbrace{\bullet \quad \bullet \quad \bullet}_{b \quad a \quad c \quad d}$$

Order generators $a < b < c < d$.
 $w_1 = dc^{-1}b^{-1}ccabb$

(1) Piling: sticks \leftrightarrow generators, beads of 3 colours: +, -, 0

Example:
$$A = \underbrace{\bullet - \bullet \bullet}_{b} \underbrace{\bullet \quad c \quad d}_{c}$$
Order generators $a < b < c < d$.
$$w_1 = dc^{-1}b^{-1}ccabb$$

(1) Piling: sticks \leftrightarrow generators, beads of 3 colours: +, -, 0

(1) Piling: sticks \leftrightarrow generators, beads of 3 colours: +, -, 0

Example:
$$A = b$$
 b
 a
 c
 d
Order generators $a < b < c < d$.
$$w_1 = dc^{-1}b^{-1}ccabb$$

(1) Piling: sticks \leftrightarrow generators, beads of 3 colours: +, -, 0

(2) Cyclic reduction

(3) Create a *pyramidal piling* \tilde{p}_1 cyclically equivalent to p_1 : let a whirlwind act on piling, but hold the lowest *a*-bead in place.

(4) Find a canonical cyclic word \widetilde{w}_1 whose piling is \widetilde{p}_1 . Algorithm: keep extracting largest letter (a < b < c < d) from bottom of \widetilde{p}_1

$$\implies \widetilde{w}_1 = acdb$$

- **1** Conjugacy problem in \mathbb{F}_n and RAAGs
- 2 Quasiconvex subgroups of RAAGs
- 3 Example : surface groups in RAAGs
- 4 Example: graph braid groups in RAAGs
- **5** Conjugacy problem in subgroups of RAAGs

Lemma

Suppose

- $\Phi: X \longrightarrow Y$ locally injective, locally convex. Then CAT(0).
- X is locally CAT(0),
- $\widetilde{\Phi} \colon \widetilde{X} \longrightarrow \widetilde{Y}$ is an isometric embedding
- Φ_* : $\pi_1(X) \to \pi_1(Y)$ is a monomorphism, q.i. embedding.

We shall apply lemma in case

 $\pi_1(Y) \cong A$ a RAAG, Y the associated cube complex.

Example: surface groups in RAAGs

Theorem [Crisp, Wiest] \exists RAAG A which contains all surface groups $\pi_1(S)$ except $S = \mathbb{R}P^2$, KleinB, $S_{\chi=-1}$.

Example: S an orientable surface

Theorem [Crisp, Wiest] The three exceptional surface groups don't embed in any RAAG.

Definition If Γ a graph, $n \in \mathbb{N}$, define

 $B_n(\Gamma) = \pi_1(\text{discretized config. space of } n \text{ points in } \Gamma)$

Theorem [Crisp, Wiest] $\forall \Gamma, \forall n, B_n(\Gamma) \hookrightarrow \text{some RAAG}.$

Example For $\Gamma = K_5$ we have

$$B_2(K_5) \hookrightarrow RAAG(\Delta)$$
.

Amusing fact

$$B_2(K_5) = \pi_1(S_{\chi = -5})$$

Definition If Γ a graph, $n \in \mathbb{N}$, define

 $B_n(\Gamma) = \pi_1$ (discretized config. space of *n* points in Γ)

Theorem [Crisp, Wiest] $\forall \Gamma, \forall n, B_n(\Gamma) \hookrightarrow \text{some RAAG}.$

Example For $\Gamma = K_5$ we have

$$B_2(K_5) \hookrightarrow RAAG(\Delta).$$

Amusing fact

$$B_2(K_5) = \pi_1(S_{\chi=-5}).$$

Definition If Γ a graph, $n \in \mathbb{N}$, define

 $B_n(\Gamma) = \pi_1$ (discretized config. space of *n* points in Γ)

Theorem [Crisp, Wiest] $\forall \Gamma, \forall n, B_n(\Gamma) \hookrightarrow \text{some RAAG}.$

Example For $\Gamma = K_5$ we have

$$B_2(K_5) \hookrightarrow RAAG(\Delta).$$

Amusing fact

$$B_2(K_5) = \pi_1(S_{\chi=-5}).$$

Definition If Γ a graph, $n \in \mathbb{N}$, define

 $B_n(\Gamma) = \pi_1$ (discretized config. space of *n* points in Γ)

Theorem [Crisp, Wiest] $\forall \Gamma, \forall n, B_n(\Gamma) \hookrightarrow \text{some RAAG}.$

Example For $\Gamma = K_5$ we have

$$B_2(K_5) \hookrightarrow RAAG(\Delta).$$

Amusing fact

$$B_2(K_5) = \pi_1(S_{\chi=-5}).$$

Definition If Γ a graph, $n \in \mathbb{N}$, define

 $B_n(\Gamma) = \pi_1$ (discretized config. space of *n* points in Γ)

Theorem [Crisp, Wiest] $\forall \Gamma, \forall n, B_n(\Gamma) \hookrightarrow \text{some RAAG}.$

Example For $\Gamma = K_5$ we have

$$B_2(K_5) \hookrightarrow RAAG(\Delta)$$
.

Amusing fact

$$B_2(K_5) = \pi_1(S_{\chi=-5}).$$

- **1** Conjugacy problem in \mathbb{F}_n and RAAGs
- **2** Quasiconvex subgroups of RAAGs
- 3 Example : surface groups in RAAGs
- 4 Example: graph braid groups in RAAGs
- **5** Conjugacy problem in subgroups of RAAGs

Want Linear time solution to conjugacy problem in $\pi_1(X)$.

Wrong theorem If $\alpha, \beta \in \pi_1(X)$,

$$\alpha, \beta$$
 conjugate in $\pi_1(X) \Leftrightarrow \Phi_*(\alpha), \Phi_*(\beta)$ conjugate in $\pi_1(Y)$

Wrong proof Suppose $\Phi(\alpha)$, $\Phi(\beta)$ freely homotopic in Y.

Hypotheses on $\Phi \Longrightarrow$ can pull back free homotopy to X.

$$\Rightarrow \alpha, \beta$$
 freely homotopic.

Want Linear time solution to conjugacy problem in $\pi_1(X)$.

Wrong theorem If $\alpha, \beta \in \pi_1(X)$,

$$\alpha, \beta$$
 conjugate in $\pi_1(X) \Leftrightarrow \Phi_*(\alpha), \Phi_*(\beta)$ conjugate in $\pi_1(Y)$

Wrong proof Suppose $\Phi(\alpha)$, $\Phi(\beta)$ freely homotopic in Y.

Hypotheses on $\Phi \Longrightarrow$ can pull back free homotopy to X.

$$\Longrightarrow \alpha$$
, β freely homotopic.

Want Linear time solution to conjugacy problem in $\pi_1(X)$.

Wrong theorem If $\alpha, \beta \in \pi_1(X)$,

$$\alpha, \beta$$
 conjugate in $\pi_1(X) \Leftrightarrow \Phi_*(\alpha), \Phi_*(\beta)$ conjugate in $\pi_1(Y)$

Wrong proof Suppose $\Phi(\alpha)$, $\Phi(\beta)$ freely homotopic in Y.

Hypotheses on $\Phi \Longrightarrow$ can pull back free homotopy to X.

$$\implies \alpha, \beta$$
 freely homotopic.

Want Linear time solution to conjugacy problem in $\pi_1(X)$.

Wrong theorem If $\alpha, \beta \in \pi_1(X)$,

$$\alpha, \beta$$
 conjugate in $\pi_1(X) \Leftrightarrow \Phi_*(\alpha), \Phi_*(\beta)$ conjugate in $\pi_1(Y)$

Wrong proof Suppose $\Phi(\alpha)$, $\Phi(\beta)$ freely homotopic in Y.

Hypotheses on $\Phi \Longrightarrow$ can pull back free homotopy to X.

$$\implies \alpha, \beta'$$
 freely homotopic, where $\Phi(\beta') = \Phi(\beta)$.

Want Linear time solution to conjugacy problem in $\pi_1(X)$.

Wrong theorem If $\alpha, \beta \in \pi_1(X)$,

$$\alpha, \beta$$
 conjugate in $\pi_1(X) \Leftrightarrow \Phi_*(\alpha), \Phi_*(\beta)$ conjugate in $\pi_1(Y)$

Wrong proof Suppose $\Phi(\alpha)$, $\Phi(\beta)$ freely homotopic in Y.

Hypotheses on $\Phi \Longrightarrow$ can pull back free homotopy to X.

$$\implies \alpha, \beta'$$
 freely homotopic, where $\Phi(\beta') = \Phi(\beta)$.

Example where $A = \pi_1(Y) = \mathbb{F}_2$

Counterexample to wrong theorem

The loops e_1 and $e_2e_3e_2^{-1}$ in X are not freely homotopic but their images a_1 and $a_2a_1a_2^{-1} \simeq a_1a_2^{-1}a_2 \simeq a_1$ are.

Example of our remedy "carrying along a basepoint in X" The based words x_1a_1 and $x_1a_2a_1a_2^{-1} \simeq x_2a_1a_2^{-1}a_2 \simeq x_2a_1$ are not equivalent.

Example where $A = \pi_1(Y) = \mathbb{F}_2$

Counterexample to wrong theorem

The loops e_1 and $e_2e_3e_2^{-1}$ in X are not freely homotopic but their images a_1 and $a_2a_1a_2^{-1} \simeq a_1a_2^{-1}a_2 \simeq a_1$ are.

Example of our remedy "carrying along a basepoint in X"

The based words x_1a_1 and $x_1a_2a_1a_2^{-1} \simeq x_2a_1a_2^{-1}a_2 \simeq x_2a_1$ are not equivalent.

- **1** Conjugacy problem in \mathbb{F}_n and RAAGs
- 2 Quasiconvex subgroups of RAAGs
- 3 Example : surface groups in RAAGs
- 4 Example : graph braid groups in RAAGs
- **5** Conjugacy problem in subgroups of RAAGs