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Abstract. We prove by elementary means a regularity theorem for quasi-isometries
of T'x R™ (where T denotes an infinite tree), and of many other metric spaces with
similar combinatorial properties, e.g. Cayley graphs of Baumslag-Solitar groups.
For quasi-isometries of 7' x R™ it states that the image of {z} x R™ (z € T) is
uniformly close to {y} x R™ for some y € T, and there is a well-defined surjection
QI(T x R™) — QI(T). Even stronger, the image of a quasi-isometric embedding of
R™!in T x R™ is close to (a geodesic in T)xR™
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1. Motivation and statement of results

What do quasi-isometries of the Cayley graph of Fy x Z" look like? As
a special case of a powerful and difficult theorem in (?7) we know the
answer; it is, roughly speaking: there are only the obvious ones! The aim
of the present paper is to give an elementary proof of this and in fact
of the stronger result that the image of a quasi-isometric embedding of
R™*!in 3 xR™is uniformly close to (a geodesic in F3)xR™. This is done
in section 2. Moreover, due to the mostly topological (not geometric)
nature of the proof, the hypotheses can be weakened considerably, and
we shall adapt our techniques to other situations, different from the
ones considered in (?77). For instance, we shall give a simple proof of
a key result of (77) on quasi-isometries of Baumslag-Solitar groups,
and, more generally, of results of (77) and (77) on graphs of Z"s. Also,
our results apply to general spaces of the form tree x R™, where the
hypotheses on the metrics carried by the tree and by R™ are very weak
—e.g. we may take tree x H". Moreover, instead of a quasi-isometry
we can use any uniform embedding, and the conclusion still holds
true. This is the content of section 3. In a final section, we give some
surprising examples, which illustrate the difficulty in trying to apply
our techniques to other product spaces like F5 X F5, or to semidirect
products Fy X Z.

';“ © 2002 Kluwer Academic Publishers. Printed in the Netherlands.

estelle.tex; 18/01/2002; 19:04; p.1



To fix notation, we recall that a (A, C)-quasi-isometric embedding,
for A > 1,C > 0, is a function f: X — Y between metric spaces
such that tdx(z,%) — C < dy(f(2), f(Z)) < Mdx(z,%) + C for all
z,Z € X. We shall often talk about a “quasi-isometric embedding”,
without specifying the so-called quasi-isometry constants A and C' of
[ A quasi-isometry is by definition a quasi-isometric embedding which
is quasi-surjective (meaning that there exists a D > 0 such that the D-
neighbourhood of ém(f) in Y equals all of Y.) A quasi-isometry f has a
quasi-inverse, i.e. a quasi-isometric embedding ¢g: Y — X such that fog
and g o f are uniformly close to the identity on Y and X respectively;
moreover, the quasi-isometry constants of g can be bounded in terms of
D, A, and C. On the monoid of all quasi-isometries of X into itself, one
can define an equivalence relation by identifying two quasi-isometries
which are uniformly close to each other; the quotient naturally carries
a group structure, this is the quasi-isometry group Q1(X). For details
and background see (77; 77; 77).

Throughout the paper we denote by T (or T”) an infinite simplicial
tree in which the length of all edges is finite and bounded away from
zero and each vertex has finite valency (note that the valency is not
necessarily uniformly bounded). Recall that a metric space (X,d) is
uniformly contractible if there is a function M: Rt — R* such that
any continuous map of a finite simplicial complex (not necessarily con-
nected) to X whose image is contained in an r-ball is contractible in
an M (r)-ball. For example, any contractible space with a co-compact
isometry group is uniformly contractible.

2. Treex[E"

2.1. STATEMENTS

We shall consider spaces of the form T x E*, where E" is the Euclidean
space of dimension n and x denotes the product metric (with the
distance between points in the product space given by the Pythagorean
formula). For instance, the Cayley graphs of F,, X Z, where F), is a
free group on m generators, are quasi-isometric to such spaces (with R
as the second factor).

Lemma If¢: E*t! — T x E" is a quasi-isometric embedding, then
the image of ¢ is uniformly close to a “hyperplane in T X E*” i.e. to
L x E*, where L is a bi-infinite geodesic in T.

THEOREM 2.1. Suppose f: T xE* — T'xE" is a quasi-isometric em-
bedding, and all vertices of T' have valency at least 3. Then [ “preserves
the E"-direction”. More precisely, there is a constant D = D(f) > 0
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with the property that for any vertex z' € T there is a vertex y' € T’
such that f({z'} x E*) and {y'} x E* have Hausdorfl-distance at most
D.

Remark In fact, if f is a (X, C)-quasi-isometry, then one can bound D
in terms of A and C. The proof of this fact is not hard, but tedious; one
simply has to give bounds on the relevant constants of quasi-isometry
in every step of our proof.

COROLLARY 2.2. Suppose each vertex of T has valency at least 3,
and each edge of T has length 1. Then there is a well-defined and natural
surjective homomorphism 6: QI(T x E*) — QI(T). Thus QI(T x E*)
is a semi-direct product QI(T) x ker(8), where ker(6) consists of all
quasi-isometries of T x E* which fix the T-coordinate.

Remarks

1. This result is the best possible: there do exist quasi-isometries of
T x R which are not close to ones of the form f’ x f”, where f’
and f" are quasi-isometries of T and R. For instance, for any fixed
z{, € T consider the “shear” (z’,2") — (2, 2" + dr(2’, z()).

2. It is not difficult to find a characterization of the elements of ker(6).
Let (¢¢)ter be a family of mappings E* — E". For (¢,z) € T x E",
let us define ¢(t,z) = (¢,¢:(x)). Then ¢ is a quasi-isometry of
T x E* (thus belonging to ker ) if and only if:

(i) There exist A > 1 and C' > 0 such that forall t € T', ¢, is a
(A, C)-quasi-isometry.

(ii) There exist g > 0 and D > 0 such that for all £,# € T and
v € B, din (o2, p0(2)) < pdr(t, ) + D.

Proof of the Corollary . Since each point of T is at bounded distance
from a vertex, it follows from theorem 2.1 that a (A, C')-quasi-isometry
f of T x E* induces a well-defined mapping f: T — T; we have to
prove f’ is a quasi-isometry. Since the projection of T" x E* — T
is distance-decreasing, we have d(f'(t), f'(t)) < Ad(t, 1) + C for all
x,z € T. If the quasi-inverse g of f is a (M, C’)-quasi-isometry, then
the projection ¢’: T — T is, by the same arguments, a mapping T — T
with d(g'(z), ¢'(%)) < Nd(t,t) +C" such that f'og’ and g’o f' are both

close to the identity of T'. It follows that f’ and ¢’ are quasi-isometries.
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2.2. ProoFs

We start by presenting a lemma whose proof is a prototype for the
sort of argument we shall need for theorem 2.1. This very elegant proof
appears to be due to Brian Bowditch (?7). We shall give an alternative
proof, which allows broader generalisations, later on; thus parts of the
present proof are only included for their beauty, and are not strictly
necessary for what follows. The result was certainly known before - see
(??7) Lemma 8.2, (77) Cor. 5.3.

LEMMA 2.3.

All quasi-isometric embeddings E* — E" are quasi-surjective.

Proof. Suppose f: E* — E" is a (A, C)-quasi-isometric embedding.
The first step is to observe that there is a continuous mapping fi: E* —
E® which is uniformly close to f, i.e. such that dp (f(2), fi(z)) is
globally bounded.

Here is a sketch proof of this fact, known as the “connect-the-dots
argument”. We fix a CW structure of the domain E™, where the size
of all cells is globally bounded by a constant M. Now we build up
f1 by induction on the dimension of the cells. For every vertex v let
Jfi(v) = f(v). We send each edge e of the CW structure to a geodesic
segment between fi(2(e)) and fi(7(e)). Note that fi, as defined so far
(on the 1-skeleton) is uniformly close to f, because for any point z on
e, both fi(z) and f(z) have distance at most AM 4+C' from f(z(e)). If a
continuous map f; on the boundary of a certain i-cell is already given,
and if the image of this (¢ — 1)-sphere by f lies in some ball B.(z) in
the target space, then we can find a continuous mapping of the u-cell
which extends the mapping of the boundary, and whose image lies in
the same ball. The fact that the size of the cells is uniformly bounded
and that f verifies the right inequality ensures that dg» (f(z), fi(z)) is
globally bounded. This completes the construction of f;.

Thus by replacing f by fi; and possibly increasing C' we obtain a
continuous quasi-isometric embedding close to f. Our aim is now to
prove the stronger result that f;: E* — E” is actually surjective.

The second step is to extend f; to infinity: let us consider the one-
point compactification of E*, such that the neighbourhoods of co are
the complements of the compact subsets of E*. Let f; be such that
Jfi(z) = fi(z) if z € E* and fi(c0) = oo. In order to prove that fj is
continuous, it suffices to show that f; is a proper mapping, that is, that
the preimages of any compact (i.e. closed and bounded) A C E” is again
compact. But f~1(A) is closed since f; is continuous, and bounded since
f1 is a quasi-isometric embedding (using the left inequality). Thus f;
is proper, and extending f; by sending oo to oo yields a continuous
mapping f;: E* Uoo — E* U oo.
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There is a homeomorphism 4: S — E™ U oo identifying E* U oo
with the n-sphere; we note that simply by scaling we can choose § in
such a way that for any pair z,, xp of antipodal points of S™ we have
dpn (8(z4),0(zp)) > X-C.

The third step is to use the Borsuk-Ulam theorem: let’s assume, for
a contradiction, that f, is not surjective, i.e. that the image of f, is
in fact contained in a subset of E* U co which is homeomorphic to E”.
Then by the Borsuk-Ulam theorem (77) there exists a pair of antipodal
points z, and x; in S™ such that f,(8(z,)) = f;(6(zp)). This is absurd:
the (A, C)-quasi-isometry f1: E* — E* cannot identify two points that
are more than A - C away from each other, nor does it send any point
of E” to infinity. Therefore f; is surjective, and so f is quasi-surjective.

Remarks (1) We have proved that there exists a K > 0 such that
every point of E* has distance at most K from ¢m(f). We remark that
K can be bounded in terms of A and C.

(2) When considering the hyperbolic space H" instead of E*, there
is a well-known alternative proof using the sphere at infinity.

Proof. of theorem 2.1 We fix a CW structure of T'xE" in which the
size of the cells is globally bounded, and each compact subset intersects
only finitely many cells. As in step one of the proof of lemma 2.3, since
T x E™ is uniformly contractible, we can replace the quasi-isometric
embedding f of T x E* into itself by a continuous and proper one.
After a further bounded homotopy we can assume that f is transverse.
To define what that means and justify it we need some general com-
ments. (We shall use a non-standard definition of transversality, which
is convenient for our purposes.)

Suppose f: X — Y is a continuous proper mapping between sim-
plicial or CW complexes of dimension (n+ 1), both of which have the
property that each cell is in the closure of an (n + 1)- (i.e. maximal)-
dimensional one, and with only finitely many cells intersecting any
compact subset. We call a point in X or Y generic if it is in the interior
of an (n + 1)-dimensional cell. We say f is transverse if for any open
(n + 1)-dimensional cell A € Y we have that f~!(int(A)) has only
finitely many path components, each of which lies in the interior of some
(n+41)-cell of X, and if the restriction of f to any such path component
is a homeomorphism onto A. It is a basic fact from PL topology that
any continuous proper map f is homotopic to a transverse one, where
the homotopy moves points in Y only within their (n 4 1)-cells.

Now a point y in the interior of an (n+41)-cell A C Y has only finitely
many preimages (all of them generic in X') which can be counted either
geometrically or modulo 2. The geometric number is denoted | f=1(y) |.
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We recall that if X and Y are compact manifolds, then the modulo 2
count yields the degree modulo 2 of f. (We need the hypotheses on the
local finiteness of the CW decomposition and that f be proper in order
to get only finitely many cell preimages.)

LEMMA 2.4. Let p: E**! — T x E* be a continuous quasi-isometric
embedding. Then its image o(E**!) contains a “hyperplane” L x E",
where L is a bi-infinite geodesic in T.

Proof. By the same methods as before, we can assume that ¢ is
transverse. Let Y be the union of the closed (n + 1)-cells intersecting
©(E**1). Then the mapping ¢ has a quasi-inverse ¢: Y — E**! which
can also be made continuous and transverse. By definition of a quasi-
inverse we have that ¥ o ¢: E**1 — E**! is uniformly close to the
identity map, so there is a homotopy between ¥ o ¢ and tdpn+1 which
moves every point of E**! only by a globally bounded distance, namely
H(z,t) =tz + (1 —t)¥oe(x). Moreover, for all ¢ € [0, 1], the mapping
t — H(t,z) is uniformly close to the identity map, so it is proper.
So by the same argument as in the proof of lemma 2.3, ¥ o ¢ and
its homotopy with the identity map can all be extended to a family of
mappings E*T! Uoo — E**! Uco. Since the degree of mappings between
compact manifolds is invariant under homotopy, and the identity map
has degree 1, it follows that 1 o ¢: E**1 Uco — E**! U co has degree
1.

We now claim that there exists a point yg € T'X E™ in the interior of
an (n+1)-cell, such that ¢ (yo) C E**! has an odd number of points.
To see this, it suffices to note that for a generic point z € E**! we
have that ¢»=!(z) C T x E* has a finite number of points; all of them
are again generic and we can consider their preimages under ¢. Since
(¥ o )~Y(z) € E*™! has an odd number of points, and since

[ (o)™ @) [ = > eI,

yEY~1(z)

there exists necessarily at least one point yo € ¢~ 1(z) such that ™1 (yo) C
E**! has an odd number of points. This proves the claim.

Next, we define a projection mapping proj,,: T'x E* — R x E* that
“folds the tree into a line, pivoting around the point yo” (see figure 1).
More precisely, for every y € T x E* let ' € T and y” € E* denote
the two coordinates of y, so that for instance yo = (y), ;). Then we
define a projection projg’joz T — R which sends y to 0, and the two
path components of 7" — z{, onto R} and R_, in such a way that for
every y' € T we have | proj/(y') | = dr(y',y)). Finally, we define
Projy, = projy, X idpn.
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and 27.965 19.412
Figure 1. The projection projy,: T x E* — R x E* (here n = 1, and all edges
adjacent to eg have the same length)

We now consider the composition proj,, o ¢: E**1 — R x E". Since
both ¢ and proj,, are proper, by the same arguments as before, it can
be extended to a mapping between the compactified spaces prog,, o ¢: E**1U
00 =+ R X E* Uoo. Moreover, if eg C T denotes the edge which contains
Yy, then we observe that the restriction of proj,, to eg x E* is a home-
omorphism (in fact an isometry). Thus, by counting preimages of the
point projy, (yo), we find that the map proj,, o ¢ has odd degree. In
particular, it is surjective, which implies in turn that the whole “band”
eo X E* C T x E" is in the image of ¢.

Let us now consider the edges e} of T" adjacent to one of the end-
points of e (see Figure 1). The images of the bands e} x E* under the
projection praj,, to RxE" all contain a band of width min;{length(e)}.
Since projy,, o ¢: E**! — RXE" has odd degree, we have for any generic
point g in this image band that |(prog,, o ©)~*(71)] is odd. It follows
that at least one of the points of proj '(71) C T x E* has an odd
number of preimages under . Let’s call this point y;, and let’s denote
the corresponding edge among the edges e} by e;. Now we can use a
projection proj,, pivoting around y; to prove, by the same arguments
as before, that the whole band e; X E” is in the image of ¢, and covered
by ¢ with degree 1.

Finally, with the help of the projection proj,,, we find a point y; in
a band ey x E”, and so on. It follows inductively that the image of ¢
contains a whole hyperplane L X E*, where L is a geodesic L := [J;cy €;.

Remark Lemma 2.4 enables us to give another proof of lemma 2.3,
without using the Borsuk-Ulam theorem:

COROLLARY 2.5. All quasi-isometric embeddings " — E* are quasi-
surjective.

Proof. 1t suffices to apply lemma 2.4 in the special case when T is a
regular tree of valency 2, i.e. is isometric to R. In this case, we do not
even need the procedure of successive projections; the observation that
o has odd degree suffices.

LEMMA 2.6. Let ¢: E**! — T x E* be a continuous quasi-isometric
embedding. Then there exists a constant D' = D'(X,C') such that the
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image @(E"*1) lies in the D'-neighbourhood of a hyperplane L x E*,
where I C T is a bi-infinite geodesic.

Proof. We recall that there is a continuous (A, C')-quasi-isometric
embedding ¢: o(E**!) — E**! (for some X,C’ € R4 which can be
bounded in terms of A and C'), namely the quasi-inverse of ¢. Moreover,
by the previous lemma, the image of ¢ contains a hyperplane (which is
isometric to R x E"), we only have to prove that it can’t contain much
more than that. By lemma 2.3 or lemma 2.5, the restriction of ¥ to
the hyperplane is already surjective; it follows that @(E**1) C T x E*
can’t contain any point whose distance to the hyperplane is greater
than X' - C’, for ¢ cannot identify points which are more than A’ - C’
away from each other.

We can now finish the proof of theorem 2.1, using an argument
which is similar to the one of section 7.2 of (?7): if 2’ € T, then we
want to study f({z'} x E*). We know from lemma 2.6 that f induces
an injective function F from the set of bi-infinite geodesics of T to
that of 7’; F can be defined by the fact that f sends any hyperplane
L x E* near a hyperplane F(L) x E*. Now consider a tripod centered
at ' € T, i.e. three disjoint geodesic rays T, Ty, T5 emenating from z’.
Any two of these rays can be combined to form a bi-infinite geodesics
Li3,Ly3 0or Lys. We note that F'(Ly3) and F'(Lq,3) are not identical
(because all points in T3 x E* whose distance to Ly 3 X E* is larger than
A (C'42D') cannot be sent to F(Ly ) x E*). Moreover, each geodesic
L; ; is contained in the union of the other two, and the same goes for
their images f(L; ; x E"); each such image contains a unique hyperplane
F(L; ;) x E*, so each of them must be contained in the union of the
other two. We deduce that F'(Ly2) U F(Ly3) U F(Lg3) is a tripod
in 77, centered at some point y’. We now have that f({z'} x E*) =
f((L172ﬂL173mL2’3) X En) - (IV(LILQ) QAN(L{[73) ﬂAT(L/QS)) X En, where
N denotes the A"-C’-neighbourhood. Since N (L} ,) NN (L] 3) NN (L3 5)
is a finite neighbourhood of the point 3’, we have completed the proof
of theorem 2.1.

3. Generalisations

3.1. OTHER METRICS ON R"”

In all the previous section, the metric on R™ was the Euclidean metric.
We can observe that most of the arguments in the previous section still
work if we replace the Euclidean metric on the topological space R™ by
any “reasonable” metric.
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Let’s, for the moment, call a metric on R™ tame if it is proper, uni-
formly contractible, and admits a CW-decomposition of R™ whose cells
have uniformly bounded diameter, and with only finitely many cells in-
tersecting any compact subset of R™. For instance, H" is homeomorphic
to R™, equipped with a tame metric.

LEMMA 3.1. Letd,d be tame metrics on R™. Then any quasi-isomelric
embedding (R",d) — (R",d') is uniformly close to a continuous map-
ping.

Proof. This is a simple generalisation of the “connect the dots”
argument presented in the proof of lemma 2.3

LEMMA 3.2. Letd,d be tame metrics onR™. Let f: (R",d) — (R", d')
be a continuous mapping, and suppose there exists a constant K > 0
such that d'(f(z),z) < K for all z € R". Then the continuous extension
of f to the one-point compactification of R™ has degree one.

Proof. The first step is to construct a homotopy G: R" x [0,1] = R”
between f and the identity map (i.e. with G(z,0) = f(z) and G(z,1) =
) such that sup,cpnsefo11d(G(2,1), ) < oc.

Sinc d is tame, there is a CW structure on R” such that the diameter
of all cells for d is uniformly bounded by a constant M. It induces a CW
structure on R”™ x [0, 1], still with cells of uniformly bounded diameter.

We define GG on the cells in R”x (0, 1) by induction on the dimension,
starting with ¢ = 1: suppose G is already defined on the (i — 1)-skeleton
of R”x [0, 1],in such a way that the images under G of the boundaries of
all ¢-cells have globally bounded diameter. Then we can extend G over
the i-cells, and since the metric d’ on the target space R™ is uniformly
contractible, we can do this in such a way that the diameter of the
images of the i-cells is again globally bounded.

Since f is uniformly close to the identity map, it is proper, and can
be continuously extended to a mapping f: R” Uco — R” U co. As in
the proof of lemma 2.4, the homotopy G between f and the identity
map on R” can be extended to R™ U oo. Since the degree of mappings
between compact manifolds is invariant by homotopy, f has degree 1.

PROPOSITION 3.3.

(a) The analogue of theorem 2.1 holds for the metric space T x R",
where R™ carries any tame melric.
(b) Let d,d" be two tame metrics on R"™. Then all quasi-isometric
embeddings (R", d) — (R™,d') are quasi-surjective.
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3.2. (GRAPHS OF Z"s

We shall now show that our previous results also hold for a larger class
of spaces, namely the graphs of groups in which all vertex groups and
edge groups are Z".

This class of groups includes for example all the Baumslag-Solitar
groups, which have been studied in (77) and (?7), and also finitely
presented non polycyclic abelian-by-cyclic groups, which are special
cases of HNN-extensions of Z", and have been treated in (?7). Using
powerful coarse separation results in (?7), results similar to ours (and
much more general results) have been proven in (?7) and (?77), in order
to obtain quasi-isometric rigidity results for that class of groups and
other, larger classes. It seems likely that our techniques can be applied
to more general classes of graphs of groups than graphs of Z"s. We
refer the reader to (77) for references concerning graphs of groups.

For our purposes, we don’t need a detailed description of the Cayley
graphs of such graphs of groups. All we need to know about them are
the following well-known facts.

There is a metric space X quasi-isometric to the Cayley graph of
the graph of groups and homeomorphic to T" x R™, where T denotes
the Bass-Serre tree of the graph of groups. More precisely, X can be
constructed by taking a copy of R” for each vertex v of T, a copy of
R™ x [0, 1] for each edge e of T', and if e connects the vertices 7(e) and
i(e), then we attach the boundaries R™ x {0} respectively R™ x {1} to
the R”s lying over the vertices 7(e) and «(e) respectively, by an (affine)
linear transformation. Only a finite number of different such glueing
maps occur in the whole space X, namely the natural extensions to R”
of the inclusion maps from edge- to vertex groups that appeared in the
graph of groups. In particular, there is a constant A > 0 such that all
glueing maps are bilipschitz, dilating distances only by factors between
1/A and A.

If every R™ x [0, 1] is fibred by segments {z} x [0, 1], then after the
glueing we obtain a trivial fibration of X by copies of T'. Choosing any
point of X as the basepoint, we get a (piecewise linear) homeomorphism
¢: R™" x T — X which identifies each R™ X e, where e is an edge of T,
with a copy of R"x [0, 1]in X, and in particular R®x {0} by the identity
map with the horizontal plane through the base point. In particular,
dx(¢(z,t),((z,t") = dr(t,t') for all {,¢’ € T and = € R”. We stress
that the map ¢ is not canonical, but depends on the choice of basepoint
for H.

Slightly different descriptions of metric spaces associated to such
graphs of groups can be found in (?7), (??) (for Baumslag-Solitar groups

estelle.tex; 18/01/2002; 19:04; p.10



11

and graphs of Zs), (?7) (for finitely presented abelian-by-cyclic groups)
and (7?) (for graphs of Z"s).

We define a hyperplane H in X to be a subset homeomorphic to
R™*! corresponding to (a geodesic in T) x R™. Note that hyperplanes
are in general not quasi-convex in X. A hyperplane H consists of a
Z-family of “horizontal bands” R™ x [0, 1], where R" is equipped with
the Euclidean metric, and the boundary R™ x {1} of the ith copy is
identified with the boundary R™ x {1} of the (¢ 4 1)st by a bilipschitz
(and in fact affine linear) mapping with Lipschitz constant A.

In the following lemma we shall, by abuse of notation, use the
identification of H with R™ x R by ¢ without explicitly writing the
homeomorphism. Thus the Euclidean metric on R™ x R gives rise to a
metric dg, on H.

We remark that R™ x {t} in H is in general not quasi-convex, and
we shall denote by dg the shortest path metric in H. Note that H,
equipped with the metric dy, is a geodesic metric space. We note as
well that d((z,t), (2, ")) > dr(t,t') for all (z,t), (z',¢') € H.

LEMMA 3.4. (a) There exists a mapping p: Ry — R4 such that
limy—, o p(t) = 0o and and for all hy,hy € H we have:

p(du(hi, ha)) < dx (b1, ha) < dp(ha, ha).

(b) For every K > 0 there exist functions at,a_: Ry — Ry such that
limy—, o ax(t) = 00 and for all hy,hy € R X [- K, K] we have

a_(dpyc(hi, h2)) < da(hi,he) < ay(dpge(hi, h2)).

Moreover, a4 can be chosen independently of the choice of basepoint in
H.

Proof. (a) Let z,y be two points of H such that dx(z,y) = D.
Clearly dx(z,y) < dg(z,y). Let v be a geodesic in X between z and y.
Considering the vertical projection of v on H, we obtain that dy (z,y) <
APD.

(b) We observe that there are such functions o/, with o’ (dgyq((z,t),(0,0))) <
di((z,1),(0,0)) < o, (dgua((2,t),(0,0))). Moreover, we have by con-
struction dg((z,t), (z/,t") = du((z + v,t), (2" + v, ")) for all v € R™,
and dy((z,t), (,t")) and dg((z,t + u), (z',t' + u)) differ only by a
factor between 1/Al“l and Alvl,

LEMMA 3.5. Let H be a hyperplane of X. Then (H,dx) is uniformly
contractible.

Proof. Thanks to lemma 3.4(a), it suffices to prove that (H,dy) is
uniformly contractible.
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We note that by lemma 3.4(b) the dg-ball of radius R > 0 around
(0,0) € R” x R is contained in the “cylinder” B(r) X [—R, R], where
B(r) denotes of Euclidean ball of some sufficiently large radius r =
r(R) around 0 € R”™ This cylinder is contractible, and in turn by
lemma 3.4(b) contained in some sufficiently large dg-ball. Since all
these estimates were independent of the choice of the basepoint in H,
we have (a).

LEMMA 3.6. Let H and H' be two hyperplanes in X (both equipped
with the dx-metric). Then any quasi-isometric embedding f: H — H'
1S quasi-surjective.

Proof. Tt is easy to see that (H,dx) and (H’,dx) satisfy the hy-
potheses of lemma 3.3 (a).

LEMMA 3.7. Let (H,dx) be a hyperplane of X and ¢: H — X a
continuous quasi-isometric embedding. Then its image contains a hy-
perplane of X.

Proof. The proof of lemma 2.4 goes through virtually unchanged. It
is easy to find a CW structure of X in which the diameter of all cells is
uniformly bounded, and every compact subset intersects only finitely
many cells. By the same methods are before, we can assume that ¢
is continuous and transverse, and that its quasi-inverse ¢: p(H) — H
is continuous and transverse too. Then o ¢o: H — H is a continuous
map which is uniformly close to the identity map. H is homeomorphic
to R™1, the metric dx of H is proper and uniformly contractible, and
after applying lemma 3.4(a) we see that the conclusion of lemma 3.2
holds for H. Thus, if ¢ o is the continuous extension of ¥ o ¢ to
H U oo, then % o ¢ has degree 1. Finally, we have to find a hyperplane
in the image of ¢ “band by band”, using appropriate projection maps

—1
proj,: X & R*x T — R x R.

In fact, due to lemma 3.6, we even have (generalising lemma 2.6) that
the image of a hyperplane under a (A,C) continuous quasi-isometric
embedding lies in a D’-neighbourhood of a hyperplane, where D’ =
D'(X\,C). If m: X — T is the canonical surjection, we finally obtain the
following generalisation of theorem 2.1 and corollary 2.2:

THEOREM 3.8. Let f: X — X a quasi-isometric embedding. Then
there is a constant D = D(f) > 0 with the property that for any
vertex ¥’ € T of valency at least 3, there is a vertex y' € T' such
that f(7=1(z')) and 771 (y') have Haussdorf-distance at most D.

If T has infinitely many ends, there is a well-defined and natural
morphism 6: QI(G) — QI(T).
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Proof. The proof of theorem 2.1 goes through virtually unchanged.

If T has infinitely many ends, there is a constant M > 0 such that
any vertex is at distance at most M from a vertex of valency at least
3. Then any quasi-isometry f of X induces a well-defined mapping
[+ T — T. The rest of the proof of corollary 2.2 goes verbatim.

Remarks Note that, unlike in corollary 2.2, here 6 is not necessarily
surjective (cf (77)).

We also remark that the above result still holds when one considers
two different graphs of groups and associated spaces X and X', as in
theorem 2.1.

It is worth noting that computing the quasi-isometry groups of such
groups is still an open problem in general, even in the special case of
finitely presented, non polycyclic, abelian-by-cyclic groups studied in

(??).
3.3. UNIFORM EMBEDDINGS

In fact, one can show that the previous results still hold for slightly
weaker hypotheses about the mapping.

A mapping f: X — Y is said to be a uniform embedding if it verifies
the following inequalities:

(i) there exists (A, C) such that for all z,z2 € X, dy(f(z), f(2)) <
Adx(z,z)+ C.

(ii) for all A > 0, there exists B > 0 such that for all z,z € X, if
dy (f(z), f(7)) < A then dx(z,z) < B.

Note that the first property implies the following one:

(i)’ for all A" > 0, there exists B’ > 0 such that for all z,z € X, if
dx(z,z) < A’ then dy (f(z), f(z)) < B'.

A mapping verifiying the properties (i)’ and (ii) will be called a weak
uniform embedding.

If X is connected, then any weak uniform embedding is a uniform
embedding. Note that quasi-isometric embeddings are uniform embed-
dings, and that any continuous uniform embedding between proper
spaces is a proper mapping.

It is not difficult to show that if f: X — Y is an almost surjective
weak uniform embedding, then there exists M > 0 and a weak uniform
embedding ¢g: Y — X such that dx(go f(z),z) < M for all z € X and
dy(fog(y),y) <M for all y € Y. Any such g is called a weak inverse

of f.
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Lemma 2.3 remains true if f is a weak uniform embedding. One
can see that the “connect-the-dots argument” still holds thanks to
inequality (i)’, so that one can assume that f is continuous. In order
to show that f is proper, one only needs to show that the preimages of
bounded sets are bounded, which remains true due to inequality (ii).
Then, thanks to (i), there is a constant B’ such that f cannot identify
two points which are more than B’ away from each other, so that the
rest of the proof still holds.

Similarly, the proof of lemma 2.4 can be adapted easily: let ¢ be
a weak inverse of . Then one only needs inequality (i) to apply the
“connect-the-dots” argument for ¢ and . For the rest of the proof,
one only needs the facts that ¢ o ¢ is uniformly close to identity, and
that ¢ is proper. The analogue of 2.1 follows.

4. Counterexamples

One motivation of the present paper was the connection of the main
theorem with quasi-isometries of F x Fy: it was also proved in (??) that
QI(Fyx Fy) = (QI(F3) XQI(F2)) X Zgy, where the Zy-factor comes from
the interchange (¢',¢"”) — (t”,¢'). However, we shall give an example to
show that this result is more subtle than our main theorem, and not
directly amenable to our methods of proof. More precisely, one might
conjecture that, in analogy with the previous cases, any quasi-isometric
embedding T'XR — T xT sends any plane uniformly close to a product

raj@kegeodesics.

To

ais. Lo disprove this, we let T" be the Cayley graph of the group Fj,
Pegquipped with a basepoint *, one of the vertices of T. Let v’ be a

B

geodesic ray in T starting at *.

PROPOSITION 4.1. There exists a quasi-isometric embedding g: T X
R — T x T such that g({x} xR) =~ x {x}U{x} x+'. That is, g sends
a geodesic {x} x R to an “L”-shaped line in T x T.

Proof. Let T, be a tree equal to T, except that at the vertex % two
extra (fifth and sixth) branches (consisting of rooted infinite four-valent
trees) have been attached; so we have ' C 1. Let v C (14:\7) U * be
an infinite geodesic ray in one of the added branches, starting at *. It is
well known that there exists a quasi-isometric embedding 7y — 7" that
sends v homeomorphically onto 4’. Thus in order to prove the theorem
it suffices to construct a quasi-isometric embedding f: T'xR — T4 xT
satisfying the same condition f({*} x R) =~ x {*} U{x} x 7.

We shall first construct f, and then prove that it is a quasi-isometric

embedding. We define f on the 0-level T'x {0} by f((¢,0)) = (£,¢). On
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the z-level T x {z} (z € Ry), the definition goes as follows: we first
define g,: T — T4 to be the continuous function which moves any
point in T" by a distance of z towards the limit point at infinity v
of the geodesic ray v (e.g. 7 is just shunted by the distance z along
itself). Now we define f((t,z)) = (¢, ¢-(t)). Similarly for z < 0 we
define f((t,2)) = (g—s(1), ).

We now prove that f is a quasi-isometry, and in fact bilipschitz. Let
(t,z),(t',2") € T x R be two points. Obtaining an upper bound for
dr, w1, (f(t,z), f(t',2')) is easy — just observe that, using the triangle
inequality, drxr(f(t, ), f(t', ")) < V2dr(t, t') + |z — 27|

It remains to give a lower bound; such a bound can be immediately
deduced from the following inequalities (1), (2a), and (2b):

1
dT+XT+(f(t7x)7f(t/7 aj/)) Z ﬁ|$_x/|7 (1)
drxr, (f(t2), [(t,2') > V2de(t,t) = |z —2'|  ifa-a'<0, (2a)
dr, x1, (ft,2), f(t',2") > dp(t,t") ifaz-2" >0. (2b)
From inequalities (2b) if -2’ > 0 and (1) and (2a) if 2 - 2’ < 0, one

can deduce the following inequality:

dT+><T+ (f(t7 w)? f(t/7 x/)) P \/%/j__ 1

dr(t,t)  (20)

To see that inequality (1) holds, note that 7y x T is “foliated” by
sets

Sy :={(t,t") | dr(t,t') = z, and t' lies on a geodesic from ¢ to v} (z > 0),

Sz = {(t,t') | dr(t,t") = z, and ¢ lies on a geodesic from ¢’ to v*°} (z < 0).

With this definition, f(¢,z) € S, for all (¢,z) € T x R. We now observe
that the subsets S, and Sy of Ty X Ty have distance at least %Lr -

(because walking from a point (¢,t') to a point at distance 1 from it,
we can change the quantity dr, (¢,¢') by at most V2).
For inequality (2a), which is of course vacuous if dp(t,t') < |z —
2’|, we notice that dr, xr, (f(¢,0), f(t',0)) = 2dr(t,t'). Moreover,
dr,«1, (f(t,0), f(t,z)) < |z|, and similarly for #’; (2a) follows from
the triangle inequality.
Finally for (2b) observe that the projections py,pa: T4 x Ty — T4
onto the first or second coordinate are distance decreasing functions.
For z, 2" > 0it follows that dr, «1, (f(t,2), f(t',2")) > dp, (p1 (f(t,2)), m(f(¥',2"))) =
dr(t,t'). For z,2" < 0 one uses the same argument with p; replaced by

P2-
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Let Y be the infinite tripod. We want to think of ¥ as RU «, with
o isometric to R4 and the points 0 € R and 0 € R identified.

THEOREM 4.2. There exists a quasi-isometric embedding h: T XY —
T xT sending the geodesic {*} xR to the L-shaped line v x {x}U{*} x~.

Proof. As before, it suffices to construct a quasi-isometric embedding
g: T xY — T4 x T, satisfying the condition g({*} x R) = v x {x} U
{x} x ~v.

In the previous proposition, we constructed a mapping f: T X R —
Ty x Ty. We observe that the preimage f~!(T x {*}) is the set T :=
{(t,dr(t,*)) | t € T} C T x R, which is just a quasi-isometric copy of
T. (Note that T is only the preimage of 7' x {}, not of T’y x {*}.) Let
¥: TxR — T XR be defined by ¥(t,z) = (¢t,z+dr(t, *)). Clearly # is
a quasi-isometry which sends 7' x {0} to Ty, and ¢ ({*} x R) = {x} xR.

We now claim that the mapping fov¢: T xR — T x T can be
extended to a quasi-isometric embedding T'x Y — Ty xT,. So we have
to extend foth over T'X o, and we shall do it in the most obvious possible
way. Let § be another geodesic ray in T \T starting at *, disjoint from
v except at *, and §(z) € T the point on it at distance z from *. Then
the extension of f o over T' x a is defined by (¢,z) — (¢,8(z)). One
can show that this extended mapping is a quasi-isometric embedding,
using similar methods as those of the previous proposition.

We finish with a few speculations about semidirect product spaces
of the form T x¢ Z, where ®: T — T is a quasi-isometry (typically
T is the Cayley graph, and ® an automorphism of F,,. Such spaces
have been studied in (?77)). Explicitely, we take a Z-family of copies of
T x[0,1] and glue the “top end” T'x {1} of the jth to the “bottom end”
T x {0} of the j + 1st, using ® as the gluing map. This space contains
some obvious “hyperplanes”: their intersection with each “level”, i.e.
each copy of T' x [0, 1], consists exactly of (a geodesic in T')x (0, 1], and
if L; is the geodesic on the jth level, then L;;, is the unique geodesic
uniformly close to ®(L;).

It is a major open problem to decide whether quasi-isometries of
such spaces send obvious hyperplanes uniformly close to obvious hy-
perplanes. It is tempting to conjecture some generalisation of lemma
2.6 like: “If f: R? — T x¢ Z is a quasi-isometric embedding (with R?
carrying any proper uniformly contractible metric) then im(f) is at
finite Hausdorfl distance from an obvious hyperplane.” Unfortunately,
this conjecture appears to be false.

We outline here how a counterexample may be constructed; details
will appear elsewhere. If ®: F,,, — F,, is a {ree group automorphism,
lifting to a quasi-isometry of the Cayley graph T of F), with six fixed
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points on the limit set, three of which are attracting (say ai, as, as) and
the other three repelling (say az, a4, ag) - this can e.g. be obtained using
a pseudo-Anosov automorphism of a punctured surface). The idea is
now to send a plane into F,,, X Z in the following way: consider six
rays R} emanating in a starlike fashion from the point (0,0) in the
plane, cutting it into six “wedges”. We send this star to the 0th copy of
T,» %[0, 1], to six infinite rays, and we denote the limit point at infinity of
the image of the ¢th ray of the star (in the cyclic ordering) by b; € 91" x
[0,1]. We choose the mapping in such a way that lim;_,., ®/(by;_;) =
im0 @j('bQi) = ag;—1 (indices modulo 6), and lim;_,_., CDj(b;)i) =
lim;_,_ o ®7(bg;41) = ag;. We can now extend the mapping over the
six wedges in R, in such a way that 3 of them get sent to the “upper
half” (j > 0) of 7' x4 Z, and the other three into the lower half (j < 0).
More precisely, this is done in such a way that, restricting our attention
to say the upper half of T' x4 Z, the image of the plane just seems to
consist of 3 obvious hyperplanes, namely the ones whose intersection
with the 0-level are the geodesics b1bg, b3by, and bsbg.
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