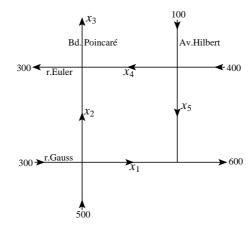
IUT GEA, Rennes I TD Mathématiques 2009–2010

Feuille d'exercices no 4

Exercice 1 Trouver les solutions des systèmes d'équations linéaires.

Exercice 2 Trouver toutes les solutions du système d'équations linéaires

Exercice 3 Dans une ville il y a un quartier où toutes les rues sont à sens unique. Le réseau de la figure montre comment s'écoule le trafic (en nombre de véhicules par heure) dans ce quartier. En supposant que le flux total rentrant dans le quartier est égal au flux total sortant, calculez le flux dans chaque segment de chaque rue.



Exercice 4 Une entreprise fabrique trois produits, A, B, et C. Produire une pièce du produit A nécessite 2 heures de main d'oeuvre; pour le produit B c'est 3 heures et pour le produit C, 4 heures. Vu le nombre d'employés, l'entreprise peut utiliser 800 heures de main d'oeuvre par jour. Pour les trois produits on a besoin de deux types de matière première, X et Y. L'entreprise peut disposer de 75kg de matière X et de 300kg de matière Y par jour. Les besoins en matière X sont de 300g (pour le produit A), 200g (produit B) et 200g (produit C) par pièce. 1kg de matière Y est nécessaire pour fabriquer une pièce de chaque produit (A, B, ou C). Combien de pièces du produit A, B, et C est-ce que l'entreprise peut fabriquer?

Exercice 5 Regardons un modèle extrèmement simplifié de l'économie d'un pays. Il y a deux industries : production d'énergie (E) et production de machinerie (M). Les consommateurs du pays ont besoin de 2000 unités d'énergie et de 750 unités de machinerie. Pour pouvoir produire x unités d'énergie, le secteur (E) a besoin de $0,1\cdot x$ unités de machinerie (pour construire des centrales électriques, par exemple). Réciproquement, pour construire y unités de machinerie, le secteur (M) a besoin de $0,25\cdot y$ unités d'energie. Calculer le nombre x d'unités d'énergie et y de machinerie qu'on doit produire en total pour satisfaire aux besoins du pays.

Exercice 6 Maximiser la fonction

$$f(x,y) = x + 2y$$

parmi tous les couples de nombre (x, y), sujet aux restrictions

$$0 \leqslant x \leqslant 1$$
 $0 \leqslant y$ $x + y \leqslant 2$

Exercice 7 On essaie de minimiser la fonction

$$f(x,y) = x + y$$

parmi tous les couples de nombres (x, y), sujet aux restrictions

$$3x + y \geqslant 7$$
 $x + 2y \geqslant 4$ $x + 6y \geqslant 6$ $x + y \geqslant 2$

Trouver le point (x, y) optimal.

Exercice 8 Calculer le produit de matrices $A \cdot B$ et $B \cdot A$, dans les cas où c'est défini.

$$(\mathbf{a}) \ A = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}, \ B = \begin{pmatrix} -1 & 3 \\ 2 & 4 \end{pmatrix}, \quad (\mathbf{b}) \ A = \begin{pmatrix} 2 & 3 & 1 \\ 7 & 5 & 2 \end{pmatrix}, \ B = \begin{pmatrix} 0 & 1 \\ -2 & 1 \end{pmatrix}$$