
Figure 4: Example of a reducible braid β, and its corresponding tubular braid
β̂.

2. For i, j ∈ {1, . . . , t}, if β[i] and β[j] are conjugate, then β[i] = β[j].

Hence, if β is in regular form, there is at most one non-trivial interior braid
for each orbit, and any two interior braids are either equal or non-conjugate.
Fortunately, one can conjugate every non-periodic reducible braid β to another
one in regular form, as we are going to see.

First, consider the subgroup BR(β) ⊂ Bn consisting of those braids preserv-
ing R(β). For α ∈ BR(β), we can consider the tubular braid α̂ induced by α and
R(β). Every α ∈ BR(β) is completely determined by α̂ and its interior braids
αi,k, for i = 1, . . . t and k = 1, . . . , ri.

Now consider, in β, an orbit Ci = {Ci,1, . . . , Ci,ri
} and the interior braids

βi,1, . . . , βi,ri
∈ Bmi

. We define α ∈ BR(β) as follows: α̂ is trivial, αj,k = 1
if j #= i, and αi,k = βi,kβi,k+1 · · ·βi,ri

. If we conjugate β by α, we obtain
β′ = α−1βα, which has the following properties:

• β̂′ = β̂.

• β′
j,k = βj,k, for j #= i.

• β′
i,k = (αi,k)−1βi,kαi,k+1 = (β−1

i,ri
· · ·β−1

i,k )(βi,k · · ·βi,ri
) = 1, for k #= ri.

• β′
i,ri

= (αi,ri
)−1βi,ri

αi,1 = β−1
i,ri

βi,ri
(βi,1 · · ·βi,ri

) = βi,1 · · ·βi,ri
.

In other words, if we conjugate β by α we ‘transfuse’ all the interior braids in
Ci to the last tube Ci,ri

, so β′
i,ri

becomes the only nontrivial interior braid in Ci.
In figure 5 we can see an example of such a conjugation, where β[i] denotes the
product βi,1 · · ·βi,ri

. We can now do the same for every i = 1, . . . , t. Therefore,
since we are interested in β up to conjugacy, we can suppose that βi,k = 1 if
k #= ri and denote β[i] = βi,ri

, for every i = 1, . . . , t.
Now suppose that some β[i] is conjugate to some β[j], and let hi,j be a

conjugating braid, that is, h−1
i,j β[i]hi,j = β[j]. Consider the braid α ∈ BR(β) such

that α̂ = 1, αj,k = 1 for j #= i and αi,k = hi,j for every k. As we can see
in figure 6, if we conjugate β by α, then β[i] is replaced by β[j]. Therefore, we
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ON THE COMPLEXITY OF BRAIDS 5

Throughout the paper, all curve diagrams we mention will be assumed
tight with respect to the axis unless otherwise specified. We define the
norm of a curve diagram D to be the number of intersections of D with
the real axis:

‖D‖ = #(D ∩ R).

It is intuitively plausible that in order to create a very complicated curve
diagram, one needs a very long braid word. Equivalently, in order to ob-
tain the diagram E by untangling a complicated curve diagram, one needs
to act on it by a long braid word. However, there is no simple propor-
tionality relation between length and complexity, as the following example
demonstrates.

Example 1.1. Consider the following two braids: α = σ−1
2 σ1 and β = σ2σ1.

E

σ2σ1 · E (σ2σ1)2 · E

σ−1

2
σ1 · E (σ−1

2
σ1)2 · E (σ−1

2
σ1)3 · E

(σ2σ1)3 · E

Figure 1. The diagram E in Dn consists of n−1 arcs, each
intersecting the real axis once (shown here the case n = 3).
The top row shows curve diagrams of the braids αk, the
bottom row of the braids βk.

The crucial observation now is that the sequence ‖αk · E‖ grows expo-
nentially with k, whereas the sequence ‖βk · E‖ grows only linearly with
k. Indeed, it is an exercise to prove that ‖αk · E‖ = 2(Fk+2 − 1), where
F0 = 1, F1 = 1, F2 = 2, . . . is the Fibonacci sequence. By contrast, we
have ‖βk · E‖ = 2

[
4k−1

3

]
+ 4, where [x] stands for the integral part of x.

Thus,

‖αk · E‖ ∼ constk, ‖βk · E‖ ∼ const · k.


