

FIGURE 1. The disk D_n , and its universal cover $\widetilde{D_n}$ embedded in \mathbb{H}^2 —indicated as the unshaded part.

on curve diagrams—and the lifting of $\varphi(\Gamma_x)$ is a path in $\widetilde{D_n}$ from * to some point in $\partial \widetilde{D_n}$. This is the point that we define to be $\varphi(x)$. Note that, if x was a point in S_{∞}^1 , then all the paths mentioned were necessarily infinite. Note also that the path $\varphi(\Gamma_x)$ is, in general, not a geodesic even if Γ_x is geodesic.

Let us summarize what we have achieved so far. We have described an action by homeomorphisms of B_n on a topological space $\partial D_n \setminus \{*\}$, which we managed to identify with \mathbb{R} . We shall say that an ordering of B_n is of Nielsen–Thurston type if it arises from a point x in \mathbb{R} with $\operatorname{Stab}(x) = \{1\}$ in this action of B_n on \mathbb{R} . More precisely:

DEFINITION 1.4. We say that a left-ordering \prec of B_n is of Nielsen-Thurston type if there exists an element x of \mathbb{R} such that, for all β, β' in B_n , the relation $\beta \prec \beta'$ is equivalent to $\beta(x) <_{\mathbb{R}} \beta'(x)$.

Our aim will now be to classify the order types of B_n of Nielsen–Thurston type. For instance, we shall prove that for $n \ge 3$ there are uncountably many

240