Université de Rennes 1 Institut Mathématique 2005–2006

Géométrie différentielle (M1) Feuille d'exercices no 9.

Exercice 47 Soit S une surface minimale (sans bord).

- (a) Que peut-on dire sur sa courbure de Gauss?
- (b) La surface S, peut-elle être compacte?
- (c) Si $P \in S$ est un point ombilical, que peut-on dire de la courbure principale k(P) ?
- (d) Soit S est une surface minimale ayant K=0 en tout point. De quelle surface s'agit-il ?

Exercice 48 (a) Montrer que la surface z = f(x, y) est minimale si et seulement si

$$(1+f_y^2)f_{xx} - 2f_x f_y f_{xy} + (1+f_x^2)f_{yy} = 0.$$

(b) Montrer que la surface de Scherk $z = \ln(\frac{\cos(y)}{\cos(x)})$ est minimale.

Exercice 49 Dans cet exercice on va regarder des surfaces minimales avec une paramétrisation conforme. Supposons que φ est une paramétrisation locale dont la première forme fondamentale est $E(\mathrm{d}u^2+\mathrm{d}v^2)$

- (a) Montrer que $\varphi_{uu} + \varphi_{vv}$ est orthogonale à φ_u et φ_v .
- (b) Déduire que

$$H \equiv 0 \Leftrightarrow \varphi_{uu} + \varphi_{vv} \equiv 0.$$

(c) Montrer que la surface de Catalan

$$\varphi(u,v) = \left(u - \sin(u)\cosh(v), 1 - \cos(u)\cosh(v), -4\sin(\frac{u}{2})\sinh(\frac{v}{2})\right)$$

est minimale.

(d) Montrer que dans la surface de Catalan, la courbe donnée par u=0 est une droite. Montrer que la courbe donnée par $u=\pi$ est une parabole. Montrer que, après reparamétrisations convenables, ces deux courbes sont des géodésiques.