Université de Rennes 1 Institut Mathématique Cours A01 (Bert Wiest), 2005–2006

Exercice 14 Soit $f: [0,1] \to [0,1]$ une fonction continue. Montrer que f a au moins un point fixe, c.à.d. qu'il existe au moins un nombre $x \in [0,1]$ tel que f(x) = x. (Indication: on peut commencer par définir une fonction g(x) := f(x) - x.)

Exercice 15 Montrer que la fonction $x \mapsto \frac{x}{1+|x|}$ est une bijection strictement croissante de \mathbb{R} sur]-1,1[.

Exercice 16 Montrer que l'équation $x^2 \cdot (\cos x)^2 + x \cdot \sin x + 1 = 0$ a au moins une solution dans \mathbb{R} . (Pour les plus ambitieux : montrer qu'elle en a une infinité.)

Exercice 17 Soit f un polynôme de la forme

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$$
 avec $a_n > 0$.

Montrer que $\lim_{x\to +\infty} f(x)=+\infty$ et $\lim_{x\to -\infty} f(x)=+\infty$ si n est pair et $\lim_{x\to -\infty} f(x)=-\infty$ si n est impair.

Exercice 18 Donner un exemple d'une fonction $f \colon \mathbb{R} \to \mathbb{R}$ qui est bijective mais ne pas monotone.

Exercice 11 Dans cet exercice on va étudier des suites définies de façon récursive en spécifiant u_0 , u_1 , et la formule récursive $u_{n+2} = au_{n+1} + bu_n$, où a et b sont deux nombres réels.

(a) Soient r, s deux nombres réels arbitraires. Soient x_1, x_2 des solutions de l'équation $x^2 - ax - b = 0$. Montrer que la suite $u_n := rx_1^n + sx_2^n$ satisfait, pour tout entier n, l'équation $u_{n+2} = au_{n+1} + bu_n$.

Démonstration : $au_{n+1} + bu_n = arx_1^{n+1} + asx_2^{n+1} + brx_1^n + bsx_2^n = rx_1^n(ax_1 + b) + sx_2^n(ax_2 + b) = rx_1^{n+2} + sx_2^{n+2} = u_{n+2}.$

(b) On va regarder de plus près l'exemple la suite de Fibonacci : $u_0 = 1$, $u_1 = 1$, et $u_{n+2} = u_{n+1} + u_n$ (donc $u_2 = 2$, $u_3 = 3$, $u_4 = 5$, $u_5 = 8$ etc.). Trouver les valeurs x_1 , x_2 comme dans (a). Ensuite, trouver des valeurs pour r, s pour qu'en plus on aie $u_0 = r + s = 1$ et $u_1 = rx_1 + sx_2 = 1$.

Solution : L'équation $x^2 - x - 1 = 0$ a les deux solutions $x_1 = \frac{1+\sqrt{5}}{2}$ et $x_2 = \frac{1-\sqrt{5}}{2}$. Après, on trouve pour r et s (par résolution d'un système de deux équations linéaires à deux variables :) $r = \frac{1+\sqrt{5}}{2\sqrt{5}}$ et $s = \frac{-1+\sqrt{5}}{2\sqrt{5}}$.

(c) En (b) on a trouvé la formule suivante pour la suite de Fibonacci :

$$u_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^{n+1} - \left(\frac{1 - \sqrt{5}}{2} \right)^{n+1} \right).$$

En déduire que $\frac{u_{n+1}}{u_n}$ tend vers $\frac{1+\sqrt{5}}{2}$ quand n tend vers $+\infty$. (Ceci est une propriété célèbre de la suite de Fibonacci : les quotients des termes successifs tendent vers le "nombre d'or".

tendent vers le "nombre d'or". **Solution :** $\frac{u_n}{u_{n-1}} = \frac{x_1^{n+1} - x_2^{n+1}}{x_1^n - x_2^n} = \frac{x_1 \cdot (1 - (\frac{x_2}{x_1})^{n+1})}{1 - (\frac{x_2}{x_1})^n}$, et on observe que cette dernière fraction tend effectivement vers x_1 quand n tend vers $+\infty$, car $x_1 > 1$ et $|x_2| < 1$.

Exercice 12 Calculer les limites suivantes :

(a) $\lim_{x\to +\infty}(\sqrt{x}-x)$, puis $\lim_{x\to +\infty}\exp(\sqrt{x}-x)$. Solution: On a $\sqrt{x}-x=(\frac{1}{\sqrt{x}}-1)x$. Pour étudier la limite de cette fonction quand x tend vers $+\infty$, il suffit de la regarder pour x>4. Dans ce cas, nous avons $\frac{1}{\sqrt{x}}-1\leqslant -\frac{1}{2}$. On obtient donc pour x>4 que $(\frac{1}{\sqrt{x}}-1)x\leqslant -\frac{1}{2}x$. Notons $g(x):=-\frac{1}{2}x$. Alors $\lim_{x\to +\infty}g(x)=-\infty$, et par le théorème des gendarmes, on en déduit que $\lim_{x\to +\infty}(\frac{1}{\sqrt{x}}-1)x=-\infty$. Ensuite, $\lim_{x\to +\infty}\exp(\sqrt{x}-x)=\lim_{y\to -\infty}\exp(y)=0$.

(b) $\lim_{x \to +\infty} (2\ln(x+1) - \ln(x^2+1))$. Solution: On a $(2\ln(x+1) - \ln(x^2+1)) = \ln\frac{(x+1)^2}{x^2+1} = \ln\frac{x^2+2x+1}{x^2+1} = \ln\frac{1+\frac{2}{x}+\frac{1}{x^2}}{1+\frac{1}{x^2}}$. Quand x tend vers $+\infty$, la fraction tend vers 1, et comme la fonction ln est continue en x=1 on conclut que la limite existe, et $\lim_{x \to +\infty} (2\ln(x+1) - \ln(x^2+1)) = \ln(1) = 0$.

(c) La limite de $\exp(\frac{1}{x})$ en 0 à droite est $+\infty$. Démonstration : Soit M > 1.

Alors pour x > 0, on a les équivalences suivantes :

$$M < \exp(\frac{1}{x}) \iff \ln(M) > \frac{1}{x} \iff x > \frac{1}{\ln(M)},$$

où la première équivalence est vraie car la fonction l
n est strictement croissante. Si l'on note $\delta:=\frac{1}{\ln(M)},$ alors on a pour tou
t $x\in]0,\delta]$ que $\exp(\frac{1}{x})>M.$ On a donc $\lim_{x\to 0_+}\exp(\frac{1}{x})=+\infty.$

La limite de $\exp(\frac{1}{x})$ en 0 à gauche est 0. Effectivement, soit $\epsilon > 0$ avec $\epsilon < 1$. Comme avant, on a, pour x < 0, une équivalence $\epsilon > \exp(\frac{1}{x}) \iff x > \frac{1}{\ln(\epsilon)}$. On obtient que $\lim_{x \to 0_{-}} \exp(\frac{1}{x}) = 0$.

- (d) $\lim_{x\to +\infty} \frac{\ln(x+1)}{\ln(x)}$. Solution: On a $f(x):=\frac{\ln(x+1)}{\ln(x)}=\frac{\ln(x)+\ln(\frac{x+1}{x})}{\ln(x)}=1+\frac{\ln(1+\frac{1}{x})}{\ln(x)}$. Pour considérer la limite de f quand x tend vers $+\infty$, il suffit de regarder la fonction pour x>e (où e note le nombre d'Euler). Pour $x\geqslant e$ on a $\ln(x)\geqslant 1$ (et aussi $\ln(1+\frac{1}{x})$), et donc $1< f(x)\leqslant 1+\ln(1+\frac{1}{x})$. Comme la fonction ln est continue en 1, on obtient $\lim_{x\to +\infty}\ln(1+\frac{1}{x})=\ln(1)=0$, et ensuite par le théorème des gendarmes que $\lim_{x\to \infty} f(x)=1$.
- (e) $\lim_{x\to+\infty}\frac{E(2x)}{E(x)}$. Solution: Comme pour tout $x\in\mathbb{R}$ on a $x-1\leqslant E(x)\leqslant x$ et $2x-1\leqslant E(2x)\leqslant 2x$, nous obtenons un encadrement

$$\frac{2x-1}{x} \leqslant \frac{E(2x)}{E(x)} \leqslant \frac{2x}{x-1}.$$

Pour les termes à gauche et à droite la limite quand x tend vers $+\infty$ existe et vaut 2. Par le thórème des gendarmes on peut conclure que $\lim_{x\to+\infty}\frac{E(2x)}{E(x)}=2$.

- (f) Pour $a, b \in \mathbb{R}_+$, on a $\lim_{x\to 0} \frac{x}{a} E(\frac{b}{x}) = \frac{b}{a}$. La démonstration est très semblable à celle de la question (e).
- **Exercice 13** Soit a un nombre réel strictement positif, et soit $f: [a, +\infty[\to \mathbb{R}$ la fonction définie par $f(x) = \sqrt{x^2 + a^2} \sqrt{x^2 a^2}$. (Indication: utiliser la formule $(\sqrt{x^2 + a^2} \sqrt{x^2 a^2})(\sqrt{x^2 + a^2} + \sqrt{x^2 a^2}) = 2a^2$.)
- (a) Montrer que la fonction f est décroissante. Solution : En utilisant la formule de l'indication, on obtient $f(x) = \frac{2a^2}{\sqrt{x^2 + a^2} + \sqrt{x^2 a^2}}$. Comme la fonction $g(x) = \sqrt{x^2 + a^2} + \sqrt{x^2 a^2}$ est croissante, la fonction $f(x) = \frac{2a^2}{g(x)}$ est décroissante.
- (b) Montrer que la fonction f est bornée. Solution : On observe que pour tout x > a on a f(x) > 0, donc l'image de la fonction f est minoré par 0. En plus, du fait que f est décroissante, on peut déduire que f(a) > f(x) pour tout $x \in [a, +\infty[$, donc l'image de f est majoré par f(a).
- (c) Calculer la limite de f(x) quand x tend vers $+\infty$. Solution : On remarque d'abord que $\sqrt{x^2+a^2}+\sqrt{x^2-a^2} \geqslant \sqrt{x^2+a^2} \geqslant x$. Cette inégalité implique que $|f(x)| \leqslant \frac{2a^2}{x}$. Par le théorème des gendarmes on peut conclure que $\lim_{x\to +\infty} f(x)$ existe et vaut 0.

(d) Calculer la limite de xf(x) quand x tend vers $+\infty$. Solution : Pour x>a on a

$$xf(x) = \frac{2a^2}{\frac{1}{x}\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} = \frac{2a^2}{\sqrt{1 + \frac{a^2}{x^2}} + \sqrt{1 - \frac{a^2}{x^2}}}$$

Le dénominateur de la dernière fraction tend vers 2 quand x tend vers $+\infty,$ donc xf(x) tend vers $a^2.$