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Recall : The Teichmüller space of the once-punctured torus

(T (T 2 − pt), dTeich) = (H2, dhyp)

(Thin part of T )
= horodisks.
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3 quasi-equal “complexities” of f

Up to a linearly bounded error, the following 3 things are equal : if

f = Dkℓ

merid ◦ . . . ◦ Dk3
long ◦ Dk2

merid ◦ Dk1
long ∈ MCG(T 2 − pt)

1 dTeich(f (τ∗)), τ∗), where τ∗ is a base point of T .

2 ℓ∆(f ) := log2(|k1| + 1) + log2(|k2| + 1) + . . . + log2(|kℓ| + 1)

3 complexity of the curve f (s(1,1)), where

s(p,q) := (p, q)− torus knot, and complexity(s(p,q)) := log2(p + q)

Corollary Up to q.i., a combinatorial model for the thick part of T :

MCG(T 2 − pt), with the metric d(f1, f2) := ℓ∆(f−1
1 f2)

Fact Analogue results for all surfaces [Rafi].
We only deal with the case of the n-punctured sphere (braid group)
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Curve diagrams

Recall : braid groups Bn
∼= MCG(Dn). Helpful for visualizing

homeomorphisms of Dn (i.e. elements of Bn) : curve diagrams

E E

σ
−

1
2

σ
1

(E
)

σ
1

(E
)
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Complexity of curve diagrams
Definition If D is a curve diagram,

‖D‖ := #{D ∩ R}.

For a braid β,

complexity(β) := log2(‖β.E‖) − log2(‖E‖).

Examples

E

σ2σ1 · E

σ−1
2 σ1 · E (σ−1

2 σ1)
2 · E

(σ2σ1)
2 · E

(σ−1
2 σ1)

3 · E

(σ2σ1)
3 · E
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Recall complexity c(β) = log2(‖β.E‖) − log2(‖E‖).

E

σ2σ1 · E

σ−1
2 σ1 · E (σ−1

2 σ1)
2 · E

(σ2σ1)
2 · E

(σ−1
2 σ1)

3 · E

(σ2σ1)
3 · E

Key idea :
• c(random word)−→ ∞ linearly

• c(T n) −→ ∞ logarithmically (where T = Dehn twist)
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A new “length” of braids

Consider Bn, with generators

{Dehn half-twists ∆i,j | 0 6 i < j 6 n}

Definition The ∆-length of a word

20 65431

∆1,4

w = ∆a
∗,∗ · ∆

b
∗,∗ · . . . · ∆

z
∗,∗

is
ℓ∆(w) = log(|a| + 1) + . . . + log(|z| + 1)

For β ∈ Bn, we define

ℓ∆(β) := the minimal ∆-length among all words representing β.
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The main results [Dynnikov-W]

Theorem There is a bilipschitz relation

complexity(β) ∼= ℓ∆(β)

i.e. geometric measure “=” algebraic measure.

Theorem ∃ polynomial-time algorithm with

INPUT : a braid β

OUTPUT : a representative word of β of near-minimal ∆-length.

11/21



A discrete model for T
(

S2 − (n + 1 points)
)

Define a new (non–geodesic !) metric

The ∆-metric on Bn/〈∆
2〉

f .i.
= MCG(S2 − (n + 1 pts)) :

d∆(β1, β2) := ℓ∆(β−1
1 β2).

Corollary Up to quasi-isometry, the group Bn/〈∆
2〉, equipped with

the d∆-metric, is a model of

(Tthick
(

S2 − (n + 1 points)
)

, dLipschitz)
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Theorem complexity(β)
bilip
= ℓ∆(β)

Difficult part of the proof
Given a curve diagram of complexity e.g. 328.67, prove that the
diagram can be “relaxed” into the trivial diagram by the action of a
braid word

w = ∆k1
i1 j1

. . . ∆kℓ

iℓ jℓ
s.t.

ℓ
∑

m=1

log2(|km| + 1) 6 const · 328.67.

For proving this, the “obvious” strategy is :
prove that for every curve diagram D,

∃i, j, k s.t. log2(|k | + 1) 6 const ·
(

c(D) − c(∆k
ij .D)

)

WRONG !

Good proof : define a complexity function cAHT, which depends on the
curve diagram and the history of the untangling procedure so far.
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(σ−1
2 σ1)

2 · E

Transform the curve diagram into an IIS (interval identification
system), and apply transmissions à la Agol-Hass-Thurston.

cAHT(D) :=
∑

strip S

log2(width(S))
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Imagine that the strips of the IIS are elastic :

(σ1σ
−1
2 σ1) · E

relax

σ2-action

(σ−1
2 σ1)

2 · E
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Example of a transmission which decreases a lot cAHT, followed by
the action of ∆k

ij , where k ≫ 0.

Key observation If D, D′, D′′ are IISs, and

D transm
−→ D′ relax

−→ D′′

where the relaxation is done by the action of a braid ∆k
ij , then

log2(|k + 1|) 6 const · (cAHT(D) − cAHT(D′)) .
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It was known already
Kasra Rafi found independently the same model for (Tthick , dTeich),
using two deep results :

1 The results of [Masur-Minsky2]

2 Y. Minsky’s precise description of the thin regions of T :

Recall T (torus) = H
2 (complex point of view).

Theorem (Minsky) Let α = (α1, . . . , αk ) be a family of disjoint
s.c.c.s on a surface S. Then the region of T where all the αi

become simultaneously short is

T (S \ α) × H
2
1 × . . . × H

2
k

equipped with a metric d which, up to an additive constant, is

d .
= max (dTeich(S \ α), dhyp, . . . , dhyp) .
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Open questions

1 Generalisations to MCGs of arbitrary surfaces ?

2 Generalisation to Out(Fn), yielding a nice metric on CV(Fn) ?

3 Consider successive squashings

MCG −→ MCG/log.squash −→ MCG/complete squash
∼= Tthick,Teich

∼= TWP
∼= Pants

Does our relaxation procedure create paths in Bn which are
quasi-geodesics w.r.t. all 3 metrics ?

4 Applications to the conjugacy problem in braid groups ?
(Rk : correspondence

conjugacy classes in Bn ⇔

free homotopy classes of loops in T /Bn.)
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Conclusions

We have found a simple combinatorial model for the thick part of
Teichmüller space of a punctured sphere.

Bad because :

• Known already, in more generality.

• Previous proofs yield deep geometrical insights.

Good because :

• Comparatively low-tech

• Our proofs yield simple, polynomial-time algorithms for
calculating quasi-geodesics in Tthick,Teich (and probably TWP).

Help wanted : Actual algorithmic applications.
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