The complexity of braids and the geometry of Teichmüller spaces

Bert Wiest

IRMAR, Université de Rennes 1

Joint work with Ivan Dynnikov, Moscow

2 Two quasi-equal "complexities" of braids

3 Proof of the main theorem

1 Motivation : The case of the once-punctured torus

2 Two quasi-equal "complexities" of braids

3 Proof of the main theorem

4 Conclusions and outlook

▲口▼▲□▼▲目▼▲目▼ 回 ●の4⊙

Up to a linearly bounded error, the following 3 things are equal : if

$$f = D_{\textit{merid}}^{k_\ell} \circ \ldots \circ D_{\textit{long}}^{k_3} \circ D_{\textit{merid}}^{k_2} \circ D_{\textit{long}}^{k_1} \in \mathcal{MCG}(T^2 - pt)$$

1 $d_{\text{Teich}}(f(\tau_*)), \tau_*)$, where τ_* is a base point of \mathcal{T} .

2 $\ell_{\Delta}(f) := \log_2(|k_1|+1) + \log_2(|k_2|+1) + \ldots + \log_2(|k_\ell|+1)$

3 complexity of the curve $f(s_{(1,1)})$, where

 $s_{(p,q)} := (p,q) - torus knot, and complexity(s_{(p,q)}) := \log_2(p+q)$

(日) (日) (日) (日) (日) (日) (日) (日)

Corollary Up to q.i., a combinatorial model for the thick part of \mathcal{T} :

 $\mathcal{MCG}(T^2 - pt)$, with the metric $d(f_1, f_2) := \ell_{\Delta}(f_1^{-1}f_2)$

Up to a linearly bounded error, the following 3 things are equal : if

$$f = D_{\textit{merid}}^{k_\ell} \circ \ldots \circ D_{\textit{long}}^{k_3} \circ D_{\textit{merid}}^{k_2} \circ D_{\textit{long}}^{k_1} \in \mathcal{MCG}(T^2 - pt)$$

1 $d_{\text{Teich}}(f(\tau_*)), \tau_*)$, where τ_* is a base point of \mathcal{T} .

2
$$\ell_{\Delta}(f) := \log_2(|k_1|+1) + \log_2(|k_2|+1) + \ldots + \log_2(|k_\ell|+1)$$

3 complexity of the curve $f(s_{(1,1)})$, where

 $s_{(p,q)} := (p,q) - torus knot, and complexity(s_{(p,q)}) := \log_2(p+q)$

Corollary Up to q.i., a combinatorial model for the thick part of \mathcal{T} :

 $\mathcal{MCG}(T^2 - pt)$, with the metric $d(f_1, f_2) := \ell_{\Delta}(f_1^{-1}f_2)$

Up to a linearly bounded error, the following 3 things are equal : if

$$f = \mathcal{D}_{\textit{merid}}^{k_\ell} \circ \ldots \circ \mathcal{D}_{\textit{long}}^{k_3} \circ \mathcal{D}_{\textit{merid}}^{k_2} \circ \mathcal{D}_{\textit{long}}^{k_1} \in \mathcal{MCG}(T^2 - \rho t)$$

1 $d_{\text{Teich}}(f(\tau_*)), \tau_*)$, where τ_* is a base point of \mathcal{T} .

2
$$\ell_{\Delta}(f) := \log_2(|k_1|+1) + \log_2(|k_2|+1) + \ldots + \log_2(|k_\ell|+1)$$

(3) complexity of the curve $f(s_{(1,1)})$, where

 $s_{(p,q)} := (p,q) - torus knot, and complexity(s_{(p,q)}) := \log_2(p+q)$

Corollary Up to q.i., a combinatorial model for the thick part of \mathcal{T} :

 $\mathcal{MCG}(T^2 - pt)$, with the metric $d(f_1, f_2) := \ell_{\Delta}(f_1^{-1}f_2)$

Up to a linearly bounded error, the following 3 things are equal : if

$$f = \mathcal{D}_{\textit{merid}}^{k_\ell} \circ \ldots \circ \mathcal{D}_{\textit{long}}^{k_3} \circ \mathcal{D}_{\textit{merid}}^{k_2} \circ \mathcal{D}_{\textit{long}}^{k_1} \in \mathcal{MCG}(T^2 - \rho t)$$

1 $d_{\text{Teich}}(f(\tau_*)), \tau_*)$, where τ_* is a base point of \mathcal{T} .

2
$$\ell_{\Delta}(f) := \log_2(|k_1|+1) + \log_2(|k_2|+1) + \ldots + \log_2(|k_\ell|+1)$$

3 complexity of the curve $f(s_{(1,1)})$, where $s_{(p,q)} := (p,q) - \text{torus knot, and complexity}(s_{(p,q)}) := \log_2(p+q)$

Corollary Up to q.i., a combinatorial model for the thick part of \mathcal{T} :

 $\mathcal{MCG}(T^2 - pt)$, with the metric $d(f_1, f_2) := \ell_{\Delta}(f_1^{-1}f_2)$

Up to a linearly bounded error, the following 3 things are equal : if

$$f = \mathcal{D}_{\textit{merid}}^{k_\ell} \circ \ldots \circ \mathcal{D}_{\textit{long}}^{k_3} \circ \mathcal{D}_{\textit{merid}}^{k_2} \circ \mathcal{D}_{\textit{long}}^{k_1} \in \mathcal{MCG}(T^2 - \rho t)$$

1 $d_{\text{Teich}}(f(\tau_*)), \tau_*)$, where τ_* is a base point of \mathcal{T} .

2
$$\ell_{\Delta}(f) := \log_2(|k_1|+1) + \log_2(|k_2|+1) + \ldots + \log_2(|k_\ell|+1)$$

3 complexity of the curve $f(s_{(1,1)})$, where $s_{(p,q)} := (p,q) - \text{torus knot, and complexity}(s_{(p,q)}) := \log_2(p+q)$

Corollary Up to q.i., a combinatorial model for the thick part of \mathcal{T} :

 $\mathcal{MCG}(T^2 - pt)$, with the metric $d(f_1, f_2) := \ell_{\Delta}(f_1^{-1}f_2)$

Up to a linearly bounded error, the following 3 things are equal : if

$$f = D_{\textit{merid}}^{k_\ell} \circ \ldots \circ D_{\textit{long}}^{k_3} \circ D_{\textit{merid}}^{k_2} \circ D_{\textit{long}}^{k_1} \in \mathcal{MCG}(T^2 - pt)$$

1 $d_{\text{Teich}}(f(\tau_*)), \tau_*)$, where τ_* is a base point of \mathcal{T} .

2
$$\ell_{\Delta}(f) := \log_2(|k_1|+1) + \log_2(|k_2|+1) + \ldots + \log_2(|k_\ell|+1)$$

3 complexity of the curve $f(s_{(1,1)})$, where

 $s_{(p,q)} := (p,q) - ext{torus knot}, ext{ and complexity}(s_{(p,q)}) := \log_2(p+q)$

Corollary Up to q.i., a combinatorial model for the thick part of T:

 $\mathcal{MCG}(T^2 - pt)$, with the metric $d(f_1, f_2) := \ell_{\Delta}(f_1^{-1}f_2)$

1 Motivation : The case of the once-punctured torus

2 Two quasi-equal "complexities" of braids

3 Proof of the main theorem

4 Conclusions and outlook

Curve diagrams

Recall : braid groups $B_n \cong \mathcal{MCG}(D_n)$. Helpful for visualizing homeomorphisms of D_n (i.e. elements of B_n) : *curve diagrams*

Complexity of curve diagrams

Definition If D is a curve diagram,

 $\|D\|:= \#\{D \cap \mathbb{R}\}.$

For a braid β ,

 $\operatorname{complexity}(\beta) := \log_2(\|\beta.E\|) - \log_2(\|E\|).$

Recall complexity $c(\beta) = \log_2(\|\beta \cdot E\|) - \log_2(\|E\|)$.

Key idea :

- $c(random word) \rightarrow \infty$ linearly
- $c(T^n) \longrightarrow \infty$ logarithmically (where T = Dehn twist)

A new "length" of braids

Consider B_n , with generators

{Dehn half-twists $\Delta_{i,j} \mid 0 \leq i < j \leq n$ }

Definition The Δ -length of a word

$$W = \Delta^a_{*,*} \cdot \Delta^b_{*,*} \cdot \ldots \cdot \Delta^z_{*,*}$$

is

$$\ell_{\Delta}(w) = \log(|a|+1) + \ldots + \log(|z|+1)$$

For $\beta \in B_n$, we define

 $\ell_{\Delta}(\beta) :=$ the minimal Δ -length among all words representing β .

The main results [Dynnikov-W]

Theorem There is a bilipschitz relation

complexity(β) $\cong \ell_{\Delta}(\beta)$

i.e. geometric measure "=" algebraic measure.

Theorem \exists polynomial-time algorithm with INPUT : a braid β

OUTPUT : a representative word of β of near-minimal Δ -length.

A discrete model for $T(S^2 - (n+1 \text{ points}))$

Define a new (non-geodesic!) metric

The Δ -metric on $B_n/\langle \Delta^2 \rangle \stackrel{f.i.}{=} \mathcal{MCG}(S^2 - (n+1 \text{ pts}))$: $d_{\Delta}(\beta_1, \beta_2) := \ell_{\Delta}(\beta_1^{-1}\beta_2).$

Corollary Up to quasi-isometry, the group $B_n/\langle \Delta^2 \rangle$, equipped with the d_Δ -metric, is a model of

 $(\mathcal{T}_{thick} \left(S^2 - (n+1 \text{ points}) \right), d_{Lipschitz})$

A discrete model for $T(S^2 - (n+1 \text{ points}))$

Define a new (non-geodesic!) metric

The Δ -metric on $B_n/\langle \Delta^2 \rangle \stackrel{f.i.}{=} \mathcal{MCG}(S^2 - (n+1 \text{ pts}))$: $d_{\Delta}(\beta_1, \beta_2) := \ell_{\Delta}(\beta_1^{-1}\beta_2).$

Corollary Up to quasi-isometry, the group $B_n/\langle \Delta^2 \rangle$, equipped with the d_Δ -metric, is a model of

$$(\mathcal{T}_{thick} \left(S^2 - (n+1 \text{ points}) \right), d_{Lipschitz})$$

1 Motivation : The case of the once-punctured torus

2 Two quasi-equal "complexities" of braids

Theorem complexity(β) $\stackrel{\text{bilip}}{=} \ell_{\Delta}(\beta)$

Difficult part of the proof

Given a curve diagram of complexity e.g. 328.67, prove that the diagram can be "relaxed" into the trivial diagram by the action of a braid word

$$w = \Delta_{i_1j_1}^{k_1} \dots \Delta_{i_\ell j_\ell}^{k_\ell}$$
 s.t. $\sum_{m=1}^{\ell} \log_2(|k_m|+1) \leqslant \operatorname{const} \cdot 328.67.$

For proving this, the "obvious" strategy is : prove that for every curve diagram *D*,

$$\exists i, j, k \text{ s.t. } \log_2(|k|+1) \leq \operatorname{const} \cdot (c(D) - c(\Delta_{ii}^k.D))$$

WRONG!

Good proof : define a complexity function c_{AHT} , which depends on the curve diagram *and the history of the untangling procedure so far.*

Theorem complexity(β) $\stackrel{\text{bilip}}{=} \ell_{\Delta}(\beta)$

Difficult part of the proof

Given a curve diagram of complexity e.g. 328.67, prove that the diagram can be "relaxed" into the trivial diagram by the action of a braid word

$$w = \Delta_{i_1 j_1}^{k_1} \dots \Delta_{i_\ell j_\ell}^{k_\ell} \quad \text{s.t.} \quad \sum_{m=1}^{\ell} \log_2(|k_m|+1) \leqslant \text{const} \cdot 328.67.$$

For proving this, the "obvious" strategy is : prove that for every curve diagram *D*,

$$\exists i, j, k \text{ s.t. } \log_2(|k|+1) \leq \operatorname{const} \cdot (c(D) - c(\Delta_{ii}^k.D))$$

WRONG!

Good proof : define a complexity function c_{AHT} , which depends on the curve diagram *and the history of the untangling procedure so far.*

Theorem complexity(β) $\stackrel{\text{bilip}}{=} \ell_{\Delta}(\beta)$

Difficult part of the proof

Given a curve diagram of complexity e.g. 328.67, prove that the diagram can be "relaxed" into the trivial diagram by the action of a braid word

$$w = \Delta_{i_1 j_1}^{k_1} \dots \Delta_{i_\ell j_\ell}^{k_\ell} \quad \text{s.t.} \quad \sum_{m=1}^{\ell} \log_2(|k_m|+1) \leqslant \text{const} \cdot 328.67.$$

For proving this, the "obvious" strategy is : prove that for every curve diagram *D*,

$$\exists i, j, k \text{ s.t. } \log_2(|k|+1) \leq \operatorname{const} \cdot (c(D) - c(\Delta_{ij}^k.D))$$

WRONG!

Good proof : define a complexity function c_{AHT} , which depends on the curve diagram *and the history of the untangling procedure so far.*

Transform the curve diagram into an IIS (interval identification system), and apply *transmissions* à la Agol-Hass-Thurston.

$$c_{\text{AHT}}(D) := \sum_{\text{strip } S} \log_2(\text{width}(S))$$

Imagine that the strips of the IIS are elastic :

Example of a transmission which decreases a lot c_{AHT} , followed by the action of Δ_{ii}^{k} , where $k \gg 0$.

Key observation If D, D', D'' are IISs, and

 $D \xrightarrow{\text{transm}} D' \xrightarrow{\text{relax}} D''$

where the relaxation is done by the action of a braid Δ_{ii}^k , then

 $\log_2(|k+1|) \leq \operatorname{const} \cdot (c_{\operatorname{AHT}}(D) - c_{\operatorname{AHT}}(D')).$

Example of a transmission which decreases a lot c_{AHT} , followed by the action of Δ_{ii}^{k} , where $k \gg 0$.

Key observation If D, D', D'' are IISs, and

 $D \xrightarrow{\text{transm}} D' \xrightarrow{\text{relax}} D''$

where the relaxation is done by the action of a braid Δ_{ii}^k , then

 $\log_2(|k+1|) \leq \operatorname{const} \cdot (c_{\operatorname{AHT}}(D) - c_{\operatorname{AHT}}(D')).$

1 Motivation : The case of the once-punctured torus

2 Two quasi-equal "complexities" of braids

3 Proof of the main theorem

It was known already

Kasra Rafi found independently the same model for (T_{thick}, d_{Teich}) , using two deep results :

1 The results of [Masur-Minsky2]

2 Y. Minsky's precise description of the thin regions of \mathcal{T} :

Recall $T(torus) = \mathbb{H}^2$ (complex point of view).

Theorem (Minsky) Let $\alpha = (\alpha_1, \ldots, \alpha_k)$ be a family of disjoint *s.c.c.s* on a surface *S*. Then the region of \mathcal{T} where all the α_i become simultaneously short is

$$\mathcal{T}(S \setminus \alpha) \times \mathbb{H}_1^2 \times \ldots \times \mathbb{H}_k^2$$

equipped with a metric d which, up to an additive constant, is

$$d \doteq \max (d_{\text{Teich}}(S \setminus \alpha), d_{\text{hyp}}, \dots, d_{\text{hyp}}).$$

It was known already

Kasra Rafi found independently the same model for (T_{thick}, d_{Teich}) , using two deep results :

1 The results of [Masur-Minsky2]

2 Y. Minsky's precise description of the thin regions of \mathcal{T} :

Recall $\mathcal{T}(torus) = \mathbb{H}^2$ (complex point of view).

Theorem (Minsky) Let $\alpha = (\alpha_1, \ldots, \alpha_k)$ be a family of disjoint *s.c.c.s* on a surface *S*. Then the region of \mathcal{T} where all the α_i become simultaneously short is

$$\mathcal{T}(\mathsf{S} \setminus \alpha) \times \mathbb{H}_1^2 \times \ldots \times \mathbb{H}_k^2$$

equipped with a metric d which, up to an additive constant, is

$$d \doteq \max (d_{\text{Teich}}(S \setminus \alpha), d_{\text{hyp}}, \dots, d_{\text{hyp}}).$$

It was known already

Kasra Rafi found independently the same model for (T_{thick}, d_{Teich}) , using two deep results :

1 The results of [Masur-Minsky2]

2 Y. Minsky's precise description of the thin regions of T:

Recall $\mathcal{T}(torus) = \mathbb{H}^2$ (complex point of view).

Theorem (Minsky) Let $\alpha = (\alpha_1, \ldots, \alpha_k)$ be a family of disjoint *s.c.c.s* on a surface *S*. Then the region of \mathcal{T} where all the α_i become simultaneously short is

$$\mathcal{T}(S \setminus \alpha) \times \mathbb{H}_1^2 \times \ldots \times \mathbb{H}_k^2$$

equipped with a metric d which, up to an additive constant, is

$$d \doteq \max (d_{\text{Teich}}(S \setminus \alpha), d_{\text{hyp}}, \dots, d_{\text{hyp}}).$$

- **1** Generalisations to \mathcal{MCG} s of arbitrary surfaces?
- 2 Generalisation to $Out(F_n)$, yielding a nice metric on $CV(F_n)$?
- 3 Consider successive squashings

 $\begin{array}{c} \mathcal{MCG} \longrightarrow \mathcal{MCG}/\text{log.squash} \longrightarrow \mathcal{MCG}/\text{complete squash} \\ \cong \mathcal{T}_{\text{thick,Teich}} \end{array} \xrightarrow{\cong} \mathcal{T}_{\text{WP}} \cong \text{Pants} \end{array}$

Does our relaxation procedure create paths in B_n which are quasi-geodesics w.r.t. all 3 metrics?

 Applications to the conjugacy problem in braid groups ? (Rk : correspondence)

conjugacy classes in $B_n \Leftrightarrow$

free homotopy classes of loops in \mathcal{T}/B_{n} .)

- **1** Generalisations to \mathcal{MCG} s of arbitrary surfaces?
- **2** Generalisation to $Out(F_n)$, yielding a nice metric on $CV(F_n)$?
- 3 Consider successive squashings
 - $\begin{array}{ccc} \mathcal{MCG} \longrightarrow \mathcal{MCG}/\text{log.squash} \longrightarrow \mathcal{MCG}/\text{complete squash} \\ &\cong \mathcal{T}_{\text{thick,Teich}} \end{array} &\cong \mathcal{T}_{\text{WP}} \cong \text{ Pants} \end{array}$

Does our relaxation procedure create paths in B_n which are quasi-geodesics w.r.t. all 3 metrics?

 Applications to the conjugacy problem in braid groups ? (Rk : correspondence)

conjugacy classes in $B_n \Leftrightarrow$

free homotopy classes of loops in T/B_n .)

1 Generalisations to \mathcal{MCG} s of arbitrary surfaces?

2 Generalisation to $Out(F_n)$, yielding a nice metric on $CV(F_n)$?

Onsider successive squashings

 $\begin{array}{c} \mathcal{MCG} \longrightarrow \mathcal{MCG}/\text{log.squash} \longrightarrow \mathcal{MCG}/\text{complete squash} \\ \cong \mathcal{T}_{\text{thick,Teich}} \end{array} \xrightarrow{} \mathcal{MCG}/\text{complete squash} \end{array}$

Does our relaxation procedure create paths in B_n which are quasi-geodesics w.r.t. all 3 metrics?

Applications to the conjugacy problem in braid groups ? (Rk : correspondence)

conjugacy classes in $B_n \Leftrightarrow$

free homotopy classes of loops in \mathcal{T}/B_n .)

1 Generalisations to \mathcal{MCG} s of arbitrary surfaces?

2 Generalisation to $Out(F_n)$, yielding a nice metric on $CV(F_n)$?

Onsider successive squashings

 $\begin{array}{c} \mathcal{MCG} \longrightarrow \mathcal{MCG}/\text{log.squash} \longrightarrow \mathcal{MCG}/\text{complete squash} \\ \cong \mathcal{T}_{\text{thick,Teich}} \end{array} \xrightarrow{} \mathcal{MCG}/\text{complete squash} \end{array}$

Does our relaxation procedure create paths in B_n which are quasi-geodesics w.r.t. all 3 metrics?

 Applications to the conjugacy problem in braid groups ? (Rk : correspondence)

conjugacy classes in $B_n \Leftrightarrow$

free homotopy classes of loops in T/B_n .)

Conclusions

We have found a simple combinatorial model for the thick part of Teichmüller space of a punctured sphere.

Bad because :

- Known already, in more generality.
- Previous proofs yield deep geometrical insights.

Good because :

- Comparatively low-tech
- Our proofs yield simple, polynomial-time algorithms for calculating quasi-geodesics in T_{thick,Teich} (and probably T_{WP}).

Help wanted : Actual algorithmic applications.