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Recall : The Teichmiller space of the once-punctured torus
(T(TZ - pt)a dTeich) = (sz dhyp)
(Thin part of T)
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@ /a(f) :==log,(|ke| + 1) + log,(|kz| + 1) + ...+ log,(|ke| + 1)

© complexity of the curve f(s(;,1)), where
S(p.q) = (P,q) — torus knot, and complexity(s(, q)) := l0g,(p +q)
Corollary Up to g.i., a combinatorial model for the thick part of 7 :
MCG(T? — pt), with the metric d(f, f2) := £a(f; *f2)

Fact Analogue results for all surfaces [Rafi].
We only deal with the case of the n-punctured sphere (braid group)
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@ Two quasi-equal “complexities” of braids
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Curve diagrams

Recall : braid groups B, = MCG(D,). Helpful for visualizing
homeomorphisms of D, (i.e. elements of B;) : curve diagrams

-1
2

o

7121



Complexity of curve diagrams

Definition If D is a curve diagram,
D] :== #{D N R}.
For a braid g3,

complexity(3) := log,([|3.E[l) — log,([E[).

Examples ‘ ‘
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Recall complexity c(3) = log,(||8.El|) — log,(||E|])-

Key idea :

e c(random word)— oo linearly
e c(T") — oo logarithmically (where T = Dehn twist)
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A new “length” of braids

Consider B, with generators

{Dehn half-twists A;j |0 <i <j < n}

Definition The A-length of a word

_ AQ b z
w=A2 A A

la(w) = log(la] +1) +...+ log(|z] +1)

For g € By, we define

£A(B) := the minimal A-length among all words representing (.
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The main results [Dynnikov-W]

Theorem There is a bilipschitz relation

1%

complexity(5) = ¢a(f)

i.e. geometric measure “=" algebraic measure.

Theorem 3 polynomial-time algorithm with
INPUT : a braid 8

OUTPUT : a representative word of 3 of near-minimal A-length.
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A discrete model for 7 (S? — (n + 1 points))

Define a new (non—geodesic !) metric
The A-metric on B,/(A2) % MCG(S2 — (n + 1 pts)) :

da(B1, B2) := La(By *Ba).
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A discrete model for 7 (S? — (n + 1 points))
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Define a new (non—geodesic !) metric
The A-metric on B,/(A2) % MCG(S2 — (n + 1 pts)) :
da (B, B2) == La(B; 1 52).
Corollary Up to quasi-isometry, the group B, /(A?), equipped with
the da-metric, is a model of

(Tiick (S? — (n+ 1 points)) , diipschitz )



©® Proof of the main theorem
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Theorem complexity(3) op A(B)

Difficult part of the proof

Given a curve diagram of complexity e.g. 328.67, prove that the
diagram can be “relaxed” into the trivial diagram by the action of a
braid word

14
w=A% . Af st ) log,(Jk| + 1) < const - 328.67.

injr © 7 Tede
m=1
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Theorem complexity(3) op A(B)

Difficult part of the proof

Given a curve diagram of complexity e.g. 328.67, prove that the
diagram can be “relaxed” into the trivial diagram by the action of a
braid word

w=AMR Ak st Zlogz |km| 4+ 1) < const - 328.67.

1 ” lee
m=1

For proving this, the “obvious” strategy is :
prove that for every curve diagram D,

Ji,j,k st logy(Jk| + 1) < const- (c(D) — c(AK.D))

WRONG!

Good proof : define a complexity function cayr, which depends on the
curve diagram and the history of the untangling procedure so far.
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Transform the curve diagram into an IS (interval identification
system), and apply transmissions a la Agol-Hass-Thurston.

cant(D) := > log,(width(S))

strip S



Imagine that the strips of the IIS are elastic :

op-action
—
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Example of a transmission which decreases a lot canT, followed by

the action of A}j where k >> 0.
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Example of a transmission which decreases a lot canT, followed by

the action of AI} where k >> 0.

Key observation 1If D,D’,D” are IISs, and
transm —~, relax s
D— D —D
where the relaxation is done by the action of a braid AX, then

!

log,(lk + 1|) < const - (Cant(D) — cant(D")) -
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@ Conclusions and outlook
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It was known already

Kasra Rafi found independently the same model for (Ziick , Areich )
using two deep results :
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It was known already

Kasra Rafi found independently the same model for (Ziick , Areich )
using two deep results :

@ The results of [Masur-Minsky?2]

® Y. Minsky’s precise description of the thin regions of 7 :
Recall 7 (torus) =H? (complex point of view).
Theorem (Minsky) Let a = (aq,...,ax) be a family of disjoint
s.c.c.s on a surface S. Then the region of 7 where all the ¢;
become simultaneously short is
T(S\a)xH2 x...xH2
equipped with a metric d which, up to an additive constant, is

d = max (dTeich(S \ Oz), dhyp, ceey dhyp) .
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Open guestions

@ Generalisations to MCGs of arbitrary surfaces ?
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@ Generalisation to Out(F,), yielding a nice metric on CV(F,) ?

® Consider successive squashings

MCG — MCG/log.squash — MCG/complete squash
2 Tthick, Teich ~ Twp = Pants

Does our relaxation procedure create paths in B, which are
guasi-geodesics w.r.t. all 3 metrics ?

@ Applications to the conjugacy problem in braid groups ?
(Rk : correspondence

conjugacy classes in B, <
free homotopy classes of loops in 7/B,.)
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Conclusions

We have found a simple combinatorial model for the thick part of
Teichmudiller space of a punctured sphere.

Bad because :
e Known already, in more generality.
e Previous proofs yield deep geometrical insights.

Good because :

e Comparatively low-tech

e Our proofs yield simple, polynomial-time algorithms for
calculating quasi-geodesics in Ziick Teich (and probably Zyp).

Help wanted : Actual algorithmic applications.
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