
Journal of Knot Theory and Its Ramifications Vol. 0, No. 0 (1999) 00–00
c© World Scientific Publishing Company

DIAGRAM GROUPS, BRAID GROUPS, AND ORDERABILITY

BERT WIEST
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ABSTRACT
We prove that all diagram groups (in the sense of Guba and Sapir) are left-orderable.

The proof is in two steps: firstly, it is proved that all diagram groups inject in a certain
braid group on infinitely many strings, and secondly, this group is then shown to be
left-orderable.
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1. Introduction

1.1. Statement of the result

Diagram groups were defined by Meakin and Sapir in 1993, and we shall recall

this definition below. The motivating example was the well-known R. Thompson’s

group F , i.e. the group of all PL homeomorphisms of the interval [0, 1] whose break

points are dyadic integers, and whose values in the break points are also dyadic

integers. Many strong theorems about the structure of diagram groups are now

known, mostly due to Guba and Sapir [5, 6, 7], but also to Kilibidara [10] and

Farley [3]. Some of these results were new even for Thompson’s group F . One

of the major questions left open was whether all diagram groups are bi-orderable,

i.e. can be equipped with a total ordering < which is invariant under multiplication

on the left and on the right (g < h =⇒ (ag < ah and ga < ha) for all elements

a, g, h). This is a natural question, since the group F (and indeed the supergroup

of all PL homeomorphisms of the interval [0, 1]) is quite easily shown to be bi-

orderable.

The aim of the present paper is, unfortunately, not to answer this question, but

at least to settle a slightly weaker one:

Theorem 1.1 (Main theorem). All diagram groups are left-orderable, i.e. they

can be equipped with a total ordering which is invariant under multiplication on

the left.
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We remark that left-orderability is equivalent to right-orderability, and is a

strictly stronger condition than torsion-freeness. For more background on the im-

portance of being orderable, see e.g. the open questions section of [5].

The proof is in two steps, which are of interest in their own right. First we prove

that diagram groups are subgroups of a certain braid group B on infinitely many

strings, and then we prove that the braid group B is left-orderable. Since subgroups

of left-orderable groups are left-orderable, this implies the main theorem.

The paper is organized as follows: in the rest of section 1 we recall the definition

of diagram groups, and then define the braid group B. In section 2 we prove that

all diagram groups are subgroups of B. Finally in section 3 we prove that this braid

group B is left-orderable.

Remark After this paper was written, Mark Sapir informed me that he has proved

with V. Guba that diagram groups are bi-orderable [8], by embedding them in a

certain universal diagram group which is then proved to be bi-orderable.

1.2. Diagram groups

In this section we explain very briefly the definition and properties of diagram

groups which are useful for our purposes. A much more detailed account can be

found in [5].

Let P = 〈Σ |R〉 be any semigroup-presentation; that is, Σ is a finite set of

generators, and the set R consists of finitely many word rewriting rules of the form

qi → q′i, where qi and q′i are words in the alphabet Σ. For simplicity we suppose that

if (qi → q′i) ∈ R, then (q′i → qi) /∈ R. The number of elements of R is denoted r.

These generators and relations define a semigroup: the elements are all finite words

in the letters Σ, modulo the equivalence relation generated by the word rewriting

rules in R (and their inverses), and multiplication is given by concatenation of

words.

If w′ and w′′ are words in the letters Σ, then we define a (w′, w′′)-diagram to be

a finite sequence of words in the letters Σ, starting with w′ and terminating with

w′′, where each word is obtained from its predecessor by a single application of one

of the word rewriting rules in R or their inverses. Every step of the sequence of

word replacements is called a cell of the diagram. Thus a typical (w′, w′′)-diagram

(with say n cells) takes the shape

w′ ∆1−→ w1
∆2−→ . . .

∆n−1

−→ wn−1
∆n−→ w′′

where each cell is either of the form p′qp′′
∆
−→ p′q′p′′ or of the form p′q′p′′

∆−1

−→ p′qp′′,

where (q
∆
−→ q′) ∈ R. We say q is the top and q′ the bottom of the cell ∆, a fact

which is written formally as top(∆) = q and bot(∆) = q′. Similarly, for the cell

∆−1 we have top(∆−1) = q′ and bot(∆−1) = q.

We define an equivalence relation on the set of (w′, w′′)-diagrams, which is gen-

erated by the requirements that distant cells should commute, and that dipoles can
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be inserted or deleted anywhere in the sequence. More precisely, we define the two

diagrams

w′ −→ . . . −→ p1q1p2q2p3
∆1−→ p1q

′
1p2q2p3

∆2−→ p1q
′
1p2q

′
2p3 −→ . . . −→ w′′ and

w′ −→ . . . −→ p1q1p2q2p3
∆′

2−→ p1q1p2q
′
2p3

∆′

1−→ p1q
′
1p2q

′
2p3 −→ . . . −→ w′′

to be equivalent. Similarly, we define the two diagrams

w′ −→ . . . −→ wj
∆
−→ wj+1

∆−1

−→ wj −→ . . . −→ w′′ and
w′ −→ . . . −→ wj −→ . . . −→ w′′

to be equivalent.

We say a (w′, w′′)-diagram is reduced if it is not equivalent to diagram with

fewer cells, or equivalently, if it has no subsequence of the form
∆
−→ wj

∆j+1

−→ . . .
∆k−→

wk
∆−1

−→, where top(∆j+1), . . . , top(∆k) do not contain any letters which were cre-

ated by ∆, the jth cell of the sequence. Every equivalence class of (w′, w′′)-diagrams

is represented by a reduced diagram which is unique up to applications of the com-

mutation relation [10].

Definition 1.1. Let w be a word in the letters Σ. Then the diagram group D(P , w)

is the group of all equivalence classes of (w,w)-diagrams.

1.3. The braid group B

We recall that the classical braid group Bn can be defined in two ways. Let

Πn be an arbitrary configuration of n distinct unordered points, called particles, in

the interior of the closed disk D2. Then Bn is the mapping class group of the pair

(D2,Πn), i.e. the group of isotopy classes of homeomorphisms of the disk which

fix the boundary and permute the particles. Alternatively, one can define Bn as

the group of isotopy classes of particle dances, a notion which will be made precise

below.

Analogously, we have two ways of thinking about the following group B which

could be loosely described as a group of braids with infinitely many strings which

are all allowed to move simultaneously:

Definition 1.2. Let Π be the set of integral points in the first quadrant of the

plane: Π := {(x, y) |x, y ∈ N \ {0}}. These points are called the particles. We

define the group B to be the mapping class group of the pair (R>0 × R>0,Π),

i.e. the group homeomorphisms of the first quadrant R>0 ×R>0 of the plane R×R

which fix the boundary ∂(R>0 × R>0) and permute the particles Π.

Often, the most convenient way to describe an element of B is in terms of particle

dances. Let S be the totally disconnected topological space consiting of countably

many points. A particle dance, is a continuous mapping ϕ: S × [0, 1] → R+ × R+

satisfying three conditions. Firstly that ϕ(S × {0}) = ϕ(S × {1}) = Π. Secondly

that ϕ( . × {t}): S → R+ × R+ is injective for every t ∈ [0, 1]. And thirdly we
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require the following tameness condition: for every compact subset K of R+ × R+

only finitely many particles may intersect K during the dance; more formally, we

want that

| {s ∈ S ; ∃x ∈ [0, 1] such that ϕ((s, x)) ∈ K} | <∞.

A braid is a homotopy class of particle dances; that means, two particle dances ϕ

and ψ define the same braid if and only if there exists a continuous family of particle

dances relaying ϕ with ψ. We can define a group B′ as the set of all braids, where

multiplication is given by concatenation of particle dances. Braids, in this sense,

are useful for describing elements of B, because of the following

Lemma 1.1. There is a natural monomorphism B′ → B.

Proof The proof is very similar to the proof of the analogue statement for classical

braid groups, which is e.g. explained in [1] and [2]. We shall only sketch it here,

and leave it to the reader to verify that our tameness condition for particle dances

suffices to guarantee that the obvious analogue of the classical construction works

in our context.

Any particle dance can be extended to a boundary-fixing isotopy of the identity

map id: R>0 × R>0 → R>0 × R>0. Such an isotopy terminates at a representative

of an element of the mapping class group B. Moreover, any two such isotopies for

the same particle dance terminate at isotopic homeomorphisms. (We remark that

our monomorphism is in fact an isomorphism, but we shall not use this result.) �

We have to set up some more notation which will be useful for proving both the

embedding property of diagram groups in B and the left-orderability of B.

We define a diagram D, called the trivial curve diagram as follows. The diagram

consists of infinitely many closed straight line segments in the first quadrant of the

plane, exactly one for each particle. These line segments are oriented; they are

starting all on one and the same point, namely a point (x, 0) in the boundary of the

quadrant, where x is an arbitrary irrational positive number, and they terminate

on the particles. Thus every particle is connected by exactly one line segment to

the point (x, 0), the line segments do not intersect the particles except in their

endpoints, and they emanate in a startlike fashion from the point (x, 0).

We denote the particles (the elements of Π) by πi,j (i, j ∈ N \ {0}), and the line

segment from (x, 0) to πi,j by Di,j .

Definition 1.3. A curve diagram is any diagram in the first quadrant which is

the image of D under a homeomorphims ϕ of the first quadrant with ϕ(Π) = Π

which fixes the boundary of the first quadrant. Thus any curve diagram consists of

countably many arcs, which are disjoint except in the point (x, 0), each connecting

the point (x, 0) to one of the particles.

Observation Every element of B gives, in a natural way, rise to an isotopy class

of curve diagrams. Thus it makes sense to speak of “a curve diagram of β” for any

β ∈ B.

Next we define a notion of “non-wigglyness” of curve-diagrams. First we notice

that the one-dimensional integer lattice subdivides the first quadrant into infinitely



Diagram groups 5

many squares (which have the particles at their corners). The intersection of any

curve diagram with any such square consists, at least after an arbitrarily small

perturbation, of a (finite or infinite) number of arcs, which are properly embedded

in the square. Now we define a curve diagram D′ to be reduced if none of these arcs

have both of their endpoints in the interior of the same side of the square.

Every curve diagram D′ is isotopic to a reduced one, and this reduced version

of D′ is combinatorially unique. For details about such reduction-procedures see

e.g. [12] or [4].

By a slight abuse of notation, we shall denote by β(D) any reduced curve diagram

of β. We shall think of this as the result of acting on D by a particle dance

representing β; we stress that the diagram β(D) is indeed well-defined up to isotopies

of the first quadrant which fix the one-dimensional integer lattice setwise.

2. All diagram groups embed in the braid group B

Proposition 2.1. Let P = 〈Σ |R〉 be any semigroup-presentation, and w a word

in the letters Σ. Then there exists a monomorphism Φ from the diagram group

D(P , w) to the braid group B.

Proof The proof will occupy the rest of this section. First we observe that it

suffices to consider the special case where all the words appearing in the set of

relations R have length at least 2 – for instance, the semigroup-presentation P =

〈{σ1, σ2} |σ1σ2σ1 = σ1〉 would be excluded. To see why, we consider the diagram

group P = 〈Σ |R′〉 which has by definition the same generating set as P , and whose

relations R′ are obtained from the relations R by replacing every letter by its square

– e.g. in the above example we would have P ′ = 〈{σ1, σ2} |σ1σ1σ2σ2σ1σ1 = σ1σ1〉.

The homomorphism of monoids P → P ′ which is defined by sending every generator

to its square induces a homomorphism of diagram groups D(P , w) → D(P ′, w′),

where the word w′ is obtained by replacing every letter of w by its square. This

homomorphism is injective, because it sends reduced diagrams to reduced diagrams.

Thus it suffices to prove that the group D(P ′, w′) is left-orderable, and among the

relations of P ′ we have indeed no words of length 1.

Thus for the rest of the proof we assume that the words appearing in the relations

of P have length at least two. Every element of D(P , w) is represented by a (w,w)-

diagram over P , that is, a sequence of words which starts and terminates with w,

such that each element of the sequence is obtained from the preceding one by a

replacement p′qp′′ → p′q′p′′, where q ≡ q′ is one of the relations from R.

We shall define the braids Φ(∆), where ∆ denotes any cell (i.e. one step in

our word rewriting sequence) p′qp′′
∆
−→ p′q′p′′. This mapping Φ should satisfy the

following conditions:

(a) (Dipoles are sent to the trivial braid) Φ(∆) (Φ(∆−1)) = 1B
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(b) If

p1q1p2q2p3
∆1−→ p1q

′
1p2q2p3

∆2−→ p1q
′
1p2q

′
2p3

and p1q1p2q2p3
∆′

2−→ p1q1p2q
′
2p3

∆′

1−→ p1q
′
1p2q

′
2p3,

then in the braid group B the following equality holds: Φ(∆1)Φ(∆2) =

Φ(∆′
2)Φ(∆′

1).

(c) (Injectivity) If w
∆1−→ . . .

∆n−→ w is a reduced diagram representing an element

of D(P , w), and n 6= 0, then in the braid group B we have Φ(∆1) . . .Φ(∆n) 6=

1.

In order to clarify condition (b) we remark that two “distant” cells are not exactly

sent to commuting braids – in fact, condition (b) will turn into an exact commu-

tation condition only in the special case that |top(∆1)| = |bot(∆1)| (where | . |

denotes the length of a word).

Constructing braids Φ(∆) for every type of cell ∆ (i.e. for every element of R)

satisfying conditions (a), (b), and (c) is sufficient in order to prove proposition 2.1.

Thus the rest of the proof is divided into two parts: firstly, the construction, and

secondly, the proof that this construction satisfies (a), (b) and (c).

The idea of the construction is to send a cell p′qp′′
∆
−→ p′q′p′′ to a product

of three braids: the first one is an “extremely complicated” braid which moves

only particles in the columns corresponding to the subword q; more precisely, it is

supported in the region (|p′|, |p′| + |q| + 1) × R+ of R+ × R+. The second braid

redistributes the particles in those same columns over |q′| columns, while moving

all particles in columns number |p′|+ |q|+k (k > 1) rigidly to the right or left. The

third braid is another “very complicated” braid, this time moving particles in the

columns corresponding to the subword q′.

It is plausible that if the “very complicated” braids are chosen sufficiently com-

plicated and sufficiently different from each other, then the injectivity condition (c)

will be satisfied. The details of the construction and the proof, however are quite

involved. Our braids Φ(∆) will be products of certain other braids, which we define

first, and which will be called βi,j , εi, and δi,j .

We recall that the set R has r elements, all of them being relations of the form

qi → q′i, where qi and q′i are words in the alphabet Σ. We define the width W of

the presentation P to be W :=
∑r

i=1 |qi| + |q′i|. So W is the sum of the lengths of

all the words appearing in the relations of the semigroup presentation.

We start by defining a family α1, . . . , αW of pseudo-Anosov elements of the

classical three-string braid group B3, which we identify with the mapping class

group of a disk with three punctures lined up on a vertical axis. In order to make

this definition we need some facts concerning the space of measured foliations,

which can be found in [9]. We choose arbitrarily some pseudo-Anosov elements

α′
1, . . . , α

′
W of B3 such that the stable and unstable measured foliations of each

automorphism is distinct from both the stable and unstable foliation of all other
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automorphisms. After replacing each element by a high enough power, we can

assume that they are all pure braids. We can also assume that the measured

foliations are reduced, in the sense that there are no bigons enclosed between any

leaves of the foliation and the vertical line or one of the three horizontal lines

through the punctures. Let us consider, for each of the three punctures πi (i ∈

{1, 2, 3}) and for each automorphism α′
j , the leaves of the stable and of the unstable

foliation of α′
j with endpoint at πi. We denote these leaves Si,j and Ui,j , respectively.

Since the 2W foliations are pairwise distinct, there exist finite terminal segments

Stm
i,j and U tm

i,j of these leaves such that for every fixed i ∈ {1, 2, 3} the curves

Stm
i,1 , . . . , S

tm
i,W , U tm

i,1 , . . . , U
tm
i,W intersect the vertical axis the same number of times

but are pairwise non-isotopic (in the sense that they have different sequences of

intersection with the four segments of the vertical line). Next, we recall that a

sufficiently high power of α′
j sends the whole space of measured foliations except for

an arbitrarily small neighbourhood of the unstable foliation of α′
j into an arbitrarily

small neighbourhood of the stable foliation. Therefore, if we take sufficiently high

powers of the automorphisms α′
1, . . . , α

′
W , we obtain automorphisms α1, . . . , αW

satisfying the following property:

Property If c is a reduced simple arc in the three-times punctured disk starting

on the boundary of the disk and ending in the ith puncture (i ∈ {1, 2, 3}), and if,

for some j0 ∈ {1, . . . ,W}, the curve c does not have a terminal segment isotopic as

a reduced curve to the arc U tm
i,j0

, then the action of αj0 sends c to an arc which has

a terminal segment isotopic to Stm
i,j0

. (In particular, this holds if c is either disjoint

from the vertical line through the punctures, or has a terminal segment which is

isotopic to one of the arcs Stm
i,j or U tm

i,j with j 6= j0.) Similarly, α−1
j0

sends any curve

not ending with Stm
i,j0

to a curve with a terminal segment which is isotopic to U tm
i,j0

.

We define, for every i ∈ N \ {0}, the ith column of the first quadrant R+ × R+

to consist of all particles with coordinates (i, n) for any n ∈ N \ {0}.

We are now ready to define the braids βi,j . For any i in N \ {0} and any j

in {1, . . . ,W} we define the braid βi,j by a simultaneous dance of all the particles

in the ith column, where each triple {πi,3k+1, πi,3k+2, πi,3k+3} (k ∈ N) of particles

performs the braid αj . All particles outside the ith column are fixed by the braid

βi,j . This is illustrated in figure 1(a).

We have to define, for every i ∈ N \ {0}, another braid εi ∈ B, which can be de-

scribed as an “expansion” around the ith column (c.f. figure 1(b)). A representative

particle dance is as follows:

– All particles πj,k with j < i are fixed,

– any particle πj,k with j > i+ 1 is moved along a straight line to the right, to

the point with coordinates (j + 1, k). Afterwards,

– the particles in the ith column, i.e. the particles πj,k with j = i are distributed

evenly over two columns, namely the ith column, and the newly vacated i+1st

column. For the sake of definiteness we give a precise description: the particles
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πi,k, with k even, move in a straight line one step to the right, to the position

(i + 1, k). Following this, the particles in the ith and i + 1st column move

down by simultaneous linear movements, until all integer lattice points are

again occupied by a particle.

(b)(a) (c)

α4

∆4

4

∆4

4

∆4

4

∆4

4

∆4

4

∆4

4

∆4

4α4

α4

Figure 1: (a) The braid β2,4 (second column, braid α4) (b) The braid ε2 (expanding
to the right of the second column) (c) The braid δ2,5 (tying together columns 2 to
5)

Finally, we need a third type of braid, called δk0,k1
, for any k0, k1 in N\{0} with

k0 < k1. We shall think of this braid as “horizontally tying together” the columns

number k0, k0 + 1, . . . , k+ 1. In each row we imagine a horizontal ellipse containing

the punctures in columns number k0, . . . , k1. In all these ellipses simultaneously, we

perform the fourth power of a Garside half twist ∆ (i.e. two full twists).

We are now ready to define the braids Φ(∆). These braids will be products

of braids of the type β±1
i,j , ε±1

i and δ±1
k,l . We start by performing the following

quite radical operation: from the words q1, q
′
1, . . . , qr, q

′
r we define new words

q̃1, q̃
′
1, . . . , q̃r, q̃

′
r in the letters {1, 2, . . . ,W} in the following way: q̃1 := 1 2 . . . (|q1|),

q̃′1 := (|q1| + 1) . . . (|q1| + |q′1|), and so on until q̃′r := (W − |q′r| + 1) . . . W .

Example 2.1. If Σ = {σ1, σ2, σ3} and R = {σ3σ2 ≡ σ1σ3, σ1σ2σ3 ≡ σ2σ1, }, then

r = 2, W = 9 and q̃1 = 1 2, q̃′1 = 3 4, q̃2 = 5 6 7, q̃′2 = 8 9.

Now if ∆ is a cell of the form p′qip
′′ ∆
−→ p′q′ip

′′, and q̃i = λ . . . µ and q̃′i = λ′ . . . µ′

(with λ, µ, λ′, µ′ ∈ N \ {0}, λ < µ < λ′ < µ′), then we define

Φ(∆) := β|p′|+1,λ · β|p′|+2,λ+1 · . . . · β|p′|+|qi|,µ·

δ|p′|+1,|p′|+|qi| · ε
|q′

i|−|qi|

|p′|+1 · δ|p′|+1,|p′|+|q′

i
|·

β|p′|+1,λ′ · β|p′|+2,λ′+1 · . . . · β|p′|+|q′

i
|,µ′

This means the following. We have a composition of five particle dances. The first

one consists of some pseudo-Anosov braids in the columns number |p′| + 1, . . . , |p′| + |qi|,
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i.e. in exactly the positions corresponding to the subword qi in p′qip
′′ (i.e. to

top(∆)). In the second dance we tie the columns corresponding to our subword

together – we recall that this subword has by hypothesis length at least two, as

assumed in the first paragraph of the proof. In the third dance, we expand or

retract about the |p′| + 1st column; more precisely, if bot(∆) is x letters longer

than top(∆), then we have to create exactly x new columns; similarly, if bot(∆) is

shorter than top(∆), then we have to get rid of the appropriate number of columns.

In the fourth dance, we tie the newly augmented or reduced set of columns together

once more (again, there are at least two of them), and in the very end we per-

form another β-type movement, just like the first dance, only corresponding to the

subword q′i rather than qi.

Example 2.1 (continued) In the above mentioned example, the word replacement

σ2σ1σ2σ3σ2 → σ2σ2σ1σ2 would be sent to the braid β2,5 β3,6 β4,7 · δ2,4 · ε
−1
2 · δ2,3 ·

β2,8 β3,9.

The braid Φ(∆−1) is, of course, defined by the formula Φ(∆−1) = (Φ(∆))−1.

This completes the definition of the mapping Φ.

It remains to check that Φ satisfies conditions (a), (b) and (c). The dipoles-

condition (a) holds by construction, the distant-cells condition (b) is very easy

to check, and the only condition whose verification needs work is the injectivity

condition (c).

We recall that our given representative w
∆1−→ . . .

∆n−→ w was supposed reduced;

so there is no subsequence
∆
−→ wj

∆j+1

−→ . . .
∆k−→ wk

∆−1

−→, where the cells ∆j+1, . . . ,∆k

do not affect any letters created by ∆, the jth cell of the diagram.

We suppose that w
∆1−→ w1

∆2−→ . . .
∆i−→ wi, with i < n, is an initial segment of

the given representative. For every letter of wi there are two possibilities: either

it comes directly from the initial word w, and was not involved in any of the word

replacements ∆1, . . . ,∆i, or it arises as a letter in bot(∆j) for a unique j 6 i. In

the first case, if say the kth letter of wi comes directly from the initial word w, then

during the dance Φ(∆1 · . . . · ∆i) the particles in the kth column were not involved

in any pseudo-Anosov type dance (coming from a braid βi,j) or a Garside-twist

type dance (coming from a braid δi), they were only subject to horizontal shifts

(coming from braids εi in columns to their left). In the second case, however, if the

kth letter of wi arose as a letter in bot(∆j), then the particles which are now in

the kth column recently performed a β-type dance coming from the last one of the

five factors of Φ(∆j), after which they were only moved rigidly by horizontal shifts.

In this case, let us suppose, for definiteness, that the last pseudo-Anosov action

on the particles which are now in the kth column was by the automorphism α±1
j0

(j0 ∈ {1, . . . ,W}) acting simultaneously on all triples of particles at height 3n+ 1,

3n+ 2, and 3n+ 3 (n ∈ N).

Claim (a) If the kth letter of wi comes directly from the initial word w, then no

curve of the curve diagram of Φ(∆1 · . . . · ∆i) intersects the vertical line {k} × R+

twice in a row without intersecting another vertical line {l}×R+ (l ∈ N \ {0, k}) in
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the mean time.

(b) If, on the other hand, the kth letter of wi arises in bot(∆j) as described

above, then the curve of the curve diagram of Φ(∆1 · . . . ·∆i) ending at the position

(k, 3n + r) (n ∈ N, r ∈ {1, 2, 3}) has a terminal segment which lies entirely in a

neighbourhood of the vertical line segment {k} × [3n + 1, 3n + 3] and is isotopic

to Stm
r,j0

(if it is the automorphism αj0 which is acting) or U tm
r,j0

(if it is the inverse

automorphism α−1
j0

).

The claim asserts that given the word wi and the curve diagram of the braid

Φ(∆1 · . . . ·∆i), we can reconstruct which were the word replacements (i.e. the cells)

that created each of the letters of wi in a reduced diagram. In particular, the curve

diagram of the full product Φ(∆1 ·. . .·∆n) is nontrivial. Therefore, the claim implies

proposition 2.1.

Part (a) of the claim is obvious. Part (b) is proved by induction on i. We

assume inductively that the claim holds for the curve diagram of Φ(∆1 · . . . · ∆i).

We now take one additional cell ∆i+1. Without loss of generality we can assume

that ∆i+1 is of the form wi = p′qip
′′ ∆i+1

−→ p′q′ip
′′, with Φ(∆) =

∏|qi|
m=1 β|p′|+m,λ+m ·

δ|p′|+1,|p′|+|qi| · ε
|q′

i|−|qi|

|p′|+1 · δ|p′|+1,|p′|+|q′

i
| ·

∏|q′

i|
m=1 β|p′|+m,λ′+m as before (the only other

possibility is that ∆i+1 might be the inverse of such a cell – in this case, a symmetric

argument works). We consider whether the claim still holds for the curve diagram

of Φ(∆1 · . . . · ∆i · ∆i+1). It certainly does in all columns corresponding to letters

of wi+1 which are not in bot(∆i+1).

We shall say that a curve of a reduced curve diagram terminating at the particle

in position (k, l) ends vertically if it has a terminal segment which intersects one of

the horizontal lines R+ × {l± 1} but not the line R+ × {l}. Similarly, a curve ends

horizontally if a terminal segment intersects a vertical line adjacent to the kth one,

but not the kth one itself. We remark that one and the same curve can end both

vertically and horizontally.

The crucial observations now are the following: if a curve of a curve diagram

ends horizontally at a particle (k, l), then after acting by the braid βk,j0 the curve

terminating at this particle ends vertically, and more precisely has a terminal seg-

ment isotopic to Stm
(l mod3,j0)

. Similarly, if a curve of a curve diagram ends vertically

at a particle (k, l), and if k0, k1 ∈ N \ {0} with k1 − k0 > 2 and k0 6 k 6 k1,

then after acting by the braid δk0,k1
we have that all curves of the curve diagram

terminating at a particle at position (k′, l) with k0 6 k′ 6 k1 end horizontally.

Since our diagram is, by hypothesis, reduced, the cell ∆i+1 does not cancel any

of the previous cells. In particular, there exists at least one position in top(∆i+1),

say the |p′| + lth one (l ∈ {1, . . . , |qi|}), such that β|p′|+l,λ+l is not the inverse

of the last pseudo-Anosov braid that acted on the |p′| + lth column during the

particle dance Φ(∆1 · . . . · ∆i). Therefore the curve diagram of Φ(∆1 · . . . · ∆i) ·

β|p′|+1,λ · . . . · β|p′|+|qi|,µ has the following property: the curve terminating at a

particle in the |p′|+ lth column, say at the position (|p′|+ l, 3n+ r), ends vertically,

and more precisely is has an terminal segment isotopic to Stm
r,λ+l. (It is not true
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in general that all the columns |p′| + 1, . . . , |p′| + |q′| of the curve diagram will

contain terminal segments of stable or unstable foliations, but the |p′| + lth one

will.) We now apply the braid δ|p′|+1,|p′|+|qi|, and consider the curve diagram of

Φ(∆1 · . . . · ∆i) ·
∏
β|p′|+m,λ+m · δ|p′|+1,|p′|+|qi|. Since |qi| > 2, we can apply the

above observation, and conclude that all curves terminating at particles in columns

number |p′|+1, . . . , |p′|+ |qi| end horizontally. Next we consider the effect of acting

by the braid ε
|q′

i|−|qi|

|p′|+1 , which, we recall, moves particles in columns number |p′| + 1

and |p′| + 2 in a predominantly vertical direction. It is easy to check that in the

curve diagram of Φ(∆1 · . . . · ∆i) ·
∏
β|p′|+m,λ+m · δ|p′|+1,|p′|+|qi| · ε

|q′

i|−|qi|

|p′|+1 , in every

row, except possibly the bottom one, the curve terminating at the particle in the

|p′| + 1st or |p′| + 2nd position ends vertically. Therefore, if we finally apply the

braid δ|p′|+1,|p′|+|q′

i
| to this curve diagram, then the curves of the resulting curve

diagram which terminate at particles in positions (k, l) with |p′|+1 6 k 6 |p′|+ |q′i|

and l > 1 end horizontally. About the particles in the bottom row we cannot make

such a strong statement, but at least we know that the curve ending in position

(k, 1) with |p′| + 1 6 k 6 |p′| + |q′i| does not have a terminal segment isotopic

to U tm
(1,j) for any j ∈ {1, . . . ,W}, for in order to do so it would have to intersect

the predominantly horizontal curves in the higher rows. Therefore, if we finally

act by the braid
∏|q′

i|
m=1 β|p′|+m,λ′+m, we can indeed apply the above observation;

we conclude that the curve of the curve diagram of Φ(∆1 · . . . · ∆i · ∆i+1) which

terminates at the particle in position (|p′| +m, 3n+ r) (with 1 6 m 6 |q′i|, n ∈ N,

r ∈ {1, 2, 3}) has a terminal segment isotopic to Stm
(l mod3,λ′+m). This concludes the

inductive step, and thus the proof of the claim and of proposition 2.1. �

3. The braid group B is left-orderable

Proposition 3.2. There exists a total order < on the group B which is invariant

under left multiplication.

Proof The proof is very similar in spirit to the proof in [4] using curve diagrams

that the classical braid groups (even those on infinitely many strings) are left-

orderable. Therefore we shall not go through all the details of the proof. (A wealth

of information about orderings of braid groups can be found in [2].)

Let β ∈ B be a nontrivial braid; we want to define whether β > 1 or β < 1.

Our definition should have the property that the product of positive braids is again

positive – once this condition is satisfied, we can extend our ordering to a left-

invariant total order on B by the rule β1 < β2 :⇐⇒ β−1
2 β1 < 1.

We start by fixing, once and for all, an enumeration of the set of pairs (i, j)

with i, j ∈ N \ {0} – this yields, in particular, an enumeration of the set of line

segments from (x, 0) to the particles. Since the two curve diagrams D and β(D)

are not homotopic, we can choose (i, j) so that Di,j is the first line segment in

our enumeration for which Di,j and β(Di,j) are not homotopic. (Here β(Di,j)

denotes the reduced curve obtained from Di,j by the action of a homeomorphism

representing β.)
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Let us compare the two curves Di,j and β(Di,j). After a further homotopy of β

we can assume that Di,j and β(Di,j) are tight with respect to each other, meaning

that they only intersect transversely, and that any bigon enclosed by one arc of

Di,j and one arc of β(Di,j) contains at least one particle. Once the two curves are

in such a tight position, we consider arbitrarily small initial segments of the two

curves at the point (x, 0). If an initial segment of β(Di,j) has a greater angle than

Di,j with the ray (x,∞) × {0}, i.e. if the curve β(Di,j) “goes more to the left than

the curve Di,j”, then we say β > 1; otherwise we say β < 1. The proof that this

yields a well-defined, and left-invariant ordering of B is completely analogue to the

proof in the classical case [4]. �

Remark 3.1. In order to prove that diagram groups are bi-orderable, it would

suffice to prove that they all embed in the pure analogue of the braid group B, and

that this latter group is bi-orderable. The second step should be relatively easy

using techniques similar to [11], but the first step may be quite difficult.

As an alternative approach, it would be interesting to know if diagram groups

embed in the group of PL homeomorphisms of a closed interval of the real line,

which is well-known to be bi-orderable. One might send a cell wi
∆i−→ wi+1 to a PL

homeomorphism [0, |wi|] → [0, |wi+1|].

Acknowledgement I thank John Crisp for helpful conversations.
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