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Reducible braids and Garside theory

JUAN GONZALEZ-MENESES
BERT WIEST

We show that reducible braids which are, in a Garside-thigailesense, as simple
as possible within their conjugacy class, are also as siagpessible in ageometric
sense. More precisely, if a braid belongs to a certain sudisest conjugacy class
which we call the stabilized set of sliding circuits, andtifd reducible, then its
reducibility is geometrically obvious: it has a round or akhround reducing
curve. Moreover, for any given braid, an element of its dizdad set of sliding
circuits can be found using the well-known cyclic slidingeoation. This leads to
a polynomial time algorithm for deciding the Nielsen-Thorstype of any braid,
modulo one well-known conjecture on the speed of converg@fidhe cyclic
sliding operation.

20F36, 20F10; 20F65

1 Introduction

There are currently two known approaches to the problem tefraéning algorithmi-
cally the Nielsen-Thurston type of a given braid, i.e. de@dvhether it is reducible,
periodic, or pseudo-AnosoW®, 7, 11]. Since periodicity of braids is fast and easy to
detect [L9], the main difficulty is to determine whether a given braiddducible.

One approach is due to Bestvina and Han@glgnd uses the theory of train tracks.
The algorithmic complexity of the Bestvina-Handel alganitis still mysterious — this
is particularly regrettable since it seems to be fast inteacat least generically.

The second approach, which was initiated by Benardeteéei and Niteckif], and
developed by Lee and Le&(], uses the Garside structure, as expose®jndn the
braid group. Indeed, it is shown id][that round reduction curves are preserved by
cycling and decycling. As a consequence, if a given brai B, is reducible, then
there is at least one element of its super summit%eivhich has a round reduction
curve, and whose reducibility is thus easy to to detect. The/ldack of this approach
is that the algorithm has to compute the complete super stisendf x, and this is
very slow [15].
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In order to have any hope of obtaining a polynomial time atgor from the second
approach, we would need to replace the super summit setih another set satisfying
the following properties: (1) Itis an invariant of the cogacy class ok, (2) an element
in this subset can be computed efficiently, and (3)e\aeryelement in this subset, the
reducibility or irreducibility can be detected rapidly. (8 summit sets satisfy the first
two properties, but not the third.

In the special case of the four-strand braid group, the ssym@mit set can actually do
the job [6]. In the general case of the braid groBp (with n € N), the ultra summit
set defined in15] can do the job, but only under certain conditions. It is shaw[20]
that if a braid is reducible and thexternal componeris simpler (from the Garside
theoretical point of view) than the whole braid, then one regoidly detect reducibility
of any given element in its ultra summit set, as every elenretttis set has a round
reduction curve. Hence, under this hypothesis, the ultnansiti set satisfies (1) and
(3) above. Itis a well-known conjectur8][that it also satisfies (2).

The aim of the present paper is to construct a subset of anugamy class which
satisfies (1) and (3) above, and is conjectured to also wd@3f just like Lee and
Lee’s subset0], but without their technical hypothesis. In particulare ywrove the
existence of a polynomial time algorithm for deciding théueibility or irreducibility
of a given braid, modulo a well-known conjecture (Conjeetu5), again concerning
(2) above, which we leave open.

Where Benardete, Gaétirez and Nitecki talk about round curves, we have to admit a
somewhat larger family of reducing curves which we edhost round curvesAlso,

the subset of the conjugacy class for which our result halaeither the super summit
set nor the ultra summit set, but a slightly more complicateds, which we call then
times stabilised set of sliding circuits, denot®@™ (x), wherem is a positive integer.

We will show that one can conjugate a given elemeot B, to an element irs3™(x),

by applying iteratively a special kind of conjugation cdl®yclic sliding This iterated
cyclic sliding procedure is a Garside-theoretic tool wisahplifies (from an algebraic
point of view) the braid within its conjugacy class, and whias already been used to
solve the conjugacy problem in braid groups and Garsidepgr{i6, 17].

Further, we will show the following result (wherA denotes the half twist of all
strands, so thatA|| = n(n — 1)/2):

Theorem 3.4 Let x € B, be a non-periodic, reducible braid. There is somesm
[|A[]® — ||A[|? such that every elementq SG™(x) admits an essential reduction
curve which is either round or almost round.
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Reducible braids and Garside theory 1003

TheorenB.4is telling us that cyclic sliding not only simplifies braidein the algebraic,
but also from the geometric point of view, since the redurctorves, which can be
terribly tangled inx, become either round or almost round after iterative appbas
of cyclic slidings.

Moreover, we prove that it can be efficiently checked whetihere are round or almost
round curves which are preserved by a brailike in the statement of Theoref4.
More precisely, invariant round curves can be efficientlieded by 1]. For almost
round curves the situation is not the same: as the numberabf surves grows
exponentially with respect to the number of strands, it tsengood idea to try to check
them one by one. To bypass this difficulty, we show the follayyarticular case:

Theorem 2.9 There is an algorithm which decides whether a given poshiragd x
of length/ with n strands preserves an almost-round curve whose ortstrands do
not cross. Moreover, this algorithm takes timé/On*).

Notice that Theorer.9 cannot immediately be applied to detect the reduction curve
promised by TheorerB.4, for two reasons: firstly, none of these curves are necégsari
x-invariant (they may be permuted By, and secondly, even if they were, there would
be no guarantee that their interior strands do not crossed@r,x is not necessarily
positive (although this can be easily achieved just by mlyitig x by a suitable power
of A?). There is, however, a situation which can be reduced toaBescthat can be
checked using Theorer@.9. This is the situation where the given braidigid [3].

Theorem5.16 Let 5 € B, be a non-periodic, reducible braid which is rigid. Then
there is some positive integerdkn such that one of the following conditions holds:

(1) B preserves a round essential curve, or

(2) inf(8%) and sup(3¥) are even, and eitheA~ (39 gk or 3—kASUPE") s a pos-
itive braid which preserves an almost round essential rédaccurve whose
corresponding interior strands do not cross.

In particular, some essential reduction curve fotis either round or almost round.

The powerk < n in the above statement is needed to pass from invaféamniiies of
curvesto invariantcurves which is what is detected in Theore&2rd, and also to assure
that inf(8X) and supg®) are even. We then see that if the braidinder studly is rigid
and admits essential reduction curves, we can find them irobtiee following two
ways: If one these curves is round, we can apply the well knalgorithm in H4].
Otherwise, we will find them by applying Theoret®to A~ (39 gk (where inf(3)
is even) and to3—KASWPEY) (where supg¥) is even) fork = 1,....n, as these braids
have the same essential reduction curves.as
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The next aim is to construct, for any givgre SGNI(x), a rigid braid whose reducing
curves are also reducing curvesyof This serves two purposes at once: it allows us
to use Theorer2.9to search for reducing curves in polynomial time, and it @ses
the key to proving Theorer8.4.

In order to do so, we will, for every braige SGN(x), define itspreferred conjugator
P(y), which commutes witly. We will prove:

Lemma5.15 Let x € B, be a non-periodic, reducible braid. Let N [|A[2—||A[[2.
For every element ¢ SGN(x) there is some n N such that either ¥ is rigid, or
P(y™) is rigid, admits essential reduction curves, and all itsezg®@l reduction curves
are essential reduction curves of y.

From the above results, we obtain the following algorithrdgtermine whether a given
element ofB;, is periodic, reducible or pseudo-Anosov:

Algorithm 1 To determine the geometric type of a braid.

Input: x € By.
(1) If x*1 or x" is a power ofA, return ‘x is periodic¢ and stop.
(2) Compute an elemente SGNI(x), whereN = ||A[|® — [|A][2.

(3) If y preserves a family of round curves, returnis reducible, non-periodi@and
stop.

(4) Form=1,...,N do the following:
If either y™ is rigid or P(y™) is rigid, apply the algorithm in Theore&9to the
braids mentioned in Theorem162), with 3 = y™ or 8 = P(y™), respectively.
If an almost round reduction curve is found, retuxris reducible, non-periodic
and stop.

(5) Return X is pseudo-Anosav

Notice that in the first step we check whether the braig periodic or not. If it is not,
we only need to know whetheris reducible or pseudo-Anosov, the former being true if
and only ifx preserves some family of disjoint non-degenerate cunearfh already
excluded the periodic case). If the braid is reducible, Lerbrit5 Theoremb.16and
Theorem2.9 ensure that we will find some essential invariant curve foowgr y™ of

a conjugatey of x, by applying steps 2, 3 and 4 of the algorithm. Finding suctiraec
also implies thaty has an invariant family of essential curves, thus so doeldence
one will find such a curve if and only i is reducible. Therefore, if the curve is not
found, in step 5 we declare thatis pseudo-Anosov.
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Reducible braids and Garside theory 1005

The computational complexity of each step of this algorithbounded by a polynomial
in the length and the number of strandsxgfwith one exception: the second step of
this algorithm (conjugating to y € SGN(x)) is not currently known to be doable in
polynomial time, but it is conjectured to be so (c.f. Conjeet3.5).

The plan of the paper is as follows. In Sectidnwe introduce the basic notions of
reducible braids and reduction curves, including the pfoTheorem?2.9, and of
Theorem3.4in the case where the interior braid is trivial. In Sect®we switch to
the algebraic viewpoint, explaining the notion of cycliedslg and sliding circuits,
and introducing the se8G™(x). Exploring the relation between sliding circuits and
the powers of a braid, in Sectiegh we show how to compute one elementSa™ (x)

for everyx and m. We then proceed to study, in Sectibnthe relation between the
reduction curves, on the geometric side, and the sets @figlaircuits, on the algebraic
side. At the end of this section, we show that TheoB#holds in general if it holds
for the special case ofgid braids. Sectior® treats the case of reducible rigid braids,
finishing the proof of Theorer8.4 by showing that if a rigid, reducible braid has some
interior braid which is pseudo-Anosov, then its correspiogdeduction curve is round.

Acknowledgements:We wish to thank Volker Gebhardt for many useful discussions
on this and related problems. Juan Galez-Meneses was partially supported by
the Spanish Projects MTM2007-66929, MTM2010-19355, PQ@4F5112, FEDER,
and under Australian Research Council’s Discovery Prsjaaiding scheme (project
number DP1094072).

2 Round and almost round reduction curves

2.1 Definitions and notations
2.1.1 Canonical reduction system and complexity of curves

Let B, be the braid group om strands, where we fix as base points the Ret=
{1,...,n} € C. Every elemen € B, can be seen as an automorphismDgf =
D?\P,, whereD? denotes the disk if© with diameter [n+ 1]. Thereforex induces
an action on the isotopy classes of 1-manifold®in

We will consider the action of braids on isotopy classes ofpde curvesfrom the
right. That is, we will denote the isotopy class of a simple cwiviey [C], and we will
write [C]*, meaning the isotopy class of the curve obtained firafter applyingx
considered as an automorphism of théimes punctured disk. By abuse of vocabulary,
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1006 Juan Gonalez-Meneses and Bert Wiest

we shall often say “curves” when we really mean “isotopy s#ssof curves”. However,
we shall carefully distinguish the notatiodsand [].

A simple closed curveg in D?\P;, is said to benon-degeneratéf it encloses more
than one and less thampoints of P,, and it is said to beound if it is homotopic to

a geometric circle. Itis clear that non-degeneracy anddoess are properties which
depend only on the isotopy class of a curve, so we can natwal that some isotopy
class ] is non-degenerate, or is round. A braide B, is said to bereducibleif
[C]®™) = [C], for some positive integem and some non-degenerate cue Such

a curve( is said to be aeduction curvefor x. We say that a reduction cune is
essentialf every other reduction curve forcan be isotoped to have empty intersection
with C [5].

The set of isotopy classes of essential reduction curves lwk@ x is called the
canonical reduction systeati x, and is denote€RX). Itis wellknownthatCREx) =

() if and only if x is either periodic or pseudo-Anosdy]| In other words,CRx) # ()

if and only if x is reducible and non-periodic. Since itis very easy to deitee whether

a given braidx € B, is periodic (it suffices to check if eithe¢'* or x" is equal to a
power of the half twistA), the question of determining the geometric type of a braid
reduces to the study of its canonical reduction system. Vidlvein be interested in
reducible, non-periodic braids, and in their essentialicédn curves.

We will say that a non-degenerate simple cuévén D?\P, is almost roundif there
exists a simple elemerg (a permutation braid) such tha€]f is round. This is
equivalent to say that can be isotoped iD?\P, to a curve whose projection to the
real line has exactly one local maximum and one local minimum

There is an alternative characterization of almost rourglesuwhich will also allow
us to introduce a notion afomplexityof a simple closed curve in the punctured disc.
Notice that a curve(] can always be transformed into a round curve by a suitable
automorphism of the punctured disc, that is, by a suitabéedby. Since the full
twist A2 preserves any given curve, it follows thAP¥S also transforms(] into a
round curve, for every integel. Hence we can assume thats a positive braid, as
every braid becomes positive after multiplication by a sigfitly high power ofAZ?.

It is shown in R0] that given a familyF of mutually disjoint simple closed curves in
D?\P,, there is auniquepositive braidy € B, such that F]¥ is a family of round
curves, and such that has minimal length among all positive braids satisfying thi
property (actuallyy is a prefix of any other positive braid satisfying this prdper
This braidy is called theminimal standardizeof F. If F consists of a single cun@,

we will call y the minimal standardizeof C.
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Reducible braids and Garside theory 1007

Now recall that thesimple braidgor permutation braids) are those positive braids for
which every pair of strands cross at most once, and4hat the canonical length of

a braidx, is the minimal number of simple factors into whighcan be decomposed,
not counting factors equal to the half twiat — see also SectioB Alternatively, the
canonical length(x) is the number of factors different fror in the left normal form

of x.

Definition 2.1 Given a simple closed curvé in the punctured disc, we define the
complexityof C to be the canonical length of the minimal standardizef of

In other words, the complexity of is the smallest possible canonical length of a
positive braid sending(] to a round curve. Notice that this definition could be
equivalently expressed the other way around: the complefitC is the smallest
possible canonical length of a positive braid sending adaumve to (].

The curves of complexity O are the round curves, and the susfeomplexity 1 are
those which become round by the action of a simple elemeptetlare precisely the
almost round, not round curves.

2.1.2 Decomposition of a braid along a family of curves

Reduction curves allow us to decompose a braid into simpkdd$. In fact, several
procedures for specifying such a decomposition are coablgy but we shall use the
procedure given inl{8], which we briefly explain now.

Let x € By, and letF be a family of disjoint simple closed curves DF\P,,. Lety
be the minimal standardizer &f, and letx = y~1xy =: ¥ and 7 = FY. Notice that
if X preserves F], thenX preservesf] = [F]Y, which is a family of round curves.
However, even ik does not preserver]], it can still happen thak sends ﬁ =[F)

to a family of round curves (not necessaril?‘][itself). In this case we can define for
every curveC € F U {0(D?)}, a braidx;cc 71, called thecomponent of x associated
to C in F, as follows.

For every subset C {1,...,n}, we can define theubbraid (X), to be the braid on
#(1) strands obtained frork by keeping only those strands which startl atNotice
that this yields a well-defined element B, even if the strands starting atdo not
end atl — we just require the strands of)( to cross in the same way as the strands in
X starting atl, for details see]8].

Now given a curveC € F U {9(D?)}, let Xc be the only connected component of
D2\ F which is enclosed bg, and such tha c Xc. Then definedDe = XcUC, which
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is homeomorphic to a punctured disc. Notice tBat\D¢ is a family of points and
curves, namely the outermost curves enclosed gnd the points which are enclosed
by C but not enclosed by the mentioned curves.

Similarly, we letX be the only connected component[aﬁ\f‘ which is enclosed by
C, and such thaf C X5. Then defineD; = X;UC. This is a closed round disk with
some points and some closed round disks removed from itsantélso, D;\D; is a
family of points and round curves.

Definition 2.2 [18] Let x € By and letF be a family of disjoint simple closed curves
in D?\P,,, whose minimal standardizer ys Let X = y~xy, and suppose that sends
[F] = [F]Y to a family of round curves. Lef € F U {d(D?)}. Letl C {1,...,n}
consist of the indices of

« those punctures that appeardp\D, and
o for each curve inD_CA\DCA, exactly one puncture chosen arbitrarily among the
punctures enclosed by that curve.

Then we defineqec 77, the component o associated t@ in F, as the subbraidx]; .
If 7 = CRSX), the mentioned component is just denoied

We remark thatx,z) is usually called theexternal braidassociated tox, and is
denotedx®.

2.2 Canonical reduction curves of reducible, positive brads with trivial
interior braids are either round or almost round

The aim of this section is to prove the following result:

Proposition 2.3 If C is an essential reduction curve for a positive brajdwith
[CT* = [C], and the strands of enclosed by do not cross each other, théns either
round or almost round.

In order to show this result, it suffices to prove that such eve@ cannot be of
complexity two, i.e., it cannot be the result of a round cuafter the action of a braid
of canonical length two, without being round or almost roaund

Our first aim is to understand what a curve of complexity twakklike (for detailed
discussion of more general questions s2&)[ We shall first study smooth arcs
a: | — D? in the diskD? defined on the unit interval = [0, 1]; we shall restrict
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our attention to smooth ares which start and end in puncture points, which may also
traverse some puncture points, but whose tangent direistiborizontal and pointing

to the right, at every puncture point. For brevity, we shall themarcs traversing
some puncture points horizontally

When studying diffeotopy classes of such arcs, we shally@waean diffeotopies
through families of arcs which are all supposed to travensepuncture points hori-
zontally. We shall say that a simple closed curve or an ak@tsing some puncture
points horizontally iseducedif it has the minimal possible number of intersections
with the horizontal line, and also the minimal possible nemdf vertical tangencies
in its diffeotopy class.

The action of the braid group on the set of diffeotopy clasdemcs traversing some
puncture points horizontally, specifically of a braién an ara, is defined as follows:
X induces a puncture dance, which in turn can be extended tieatdpy of « in such a
way that at every moment the intersection of the arc with thecfures is horizontal. At
the end of the dance we obtain a new arc traversing some parmiints horizontally,
which is well-defined up to diffeotopy. This is*.

For an arca traversing some puncture points horizontally, we define tédmgent
direction function ¢ : | — R/2Z as the angle of the tangent directioncohgainst the
horizontal, divided by—=. In particular, if the arc goes straight to the rightdt),
thent,(t) = 0+ 2Z, if it goes straight down thet, (t) = % + 27, and if it goes to the
left thent,(t) = 1+ 2Z.

For every arc traversing some puncture points horizontayhave a unique lifting of
the functiont,, to a functiont, : 1 — R with t,(0) = 0. Finally, ifr: R — Z denotes

the rounding function, which sends every real number to #agest integer (rounding
down n+ 3), then we define the function

Toi | = Z, t=r1oty(t)
which one might call the rounded lifted tangent directiondtion.
Notice that, if« is an arc such that, takes the value 0 in a neighbourhood of the

points where the arc traverses a puncture, then the same ifotrits imagen* under
the action of any braid.

In order to be able to characterize reduction curves of cerityl zero, one, and two,
we give now a detailed description of the puncture dancec&sdsol to a positive
permutation braid. In a first step, the punctures make a sredltal movement, with
the puncture in positiokk € Z moving to positionk — k- ¢ -i € C, for some small
e > 0. In a second step, the punctures make a horizontal movepemtuting their
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R-coordinates. In a third step, the punctures make again d gendcal movement,
lining them back up on the real line.

Now, reduction curveg of complexity zero can be characterized as curves enclosing
an arc which lies entirely in the real line, and which traesrall the punctures in the
interior of C. Notice thatC can be seen as the boundary of a regular neighborhood of
this arc.

Suppose now that a curv@ has complexity one. Then it is obtained from a round
curve(Cp by the action of a simple braisl We can assume that the punctures enclosed
by Co (which are consecutive) do not crosssnas those crossings could be removed
from s without modifying its action onCy. Hence, from the above description of
positive permutation braids, we see that reduction cuéve$ complexity one can be
characterized as follows: there exists a smoothadisjoint fromC, traversing all the
punctures in the interior component B?\C horizontally such that,, is the constant
function 0. (We are going to say such an arelimost horizonta)

The action by a positive permutation braid transforms ancamwith 7, = 0 into

an arco’/ which, after reduction, has the following property: by aotipy of D?
that moves then puncture points only in the vertical direction up or dowd, can

be transformed into an arc whose imaginary coordinate isotomically decreasing.
Therefore, reduction curvesof complexity two can be characterized as follows: there
exists a smooth ara’ disjoint from C but traversing horizontally all the punctures in
the interior component ob?\C, such thatr,. only takes the values 0 and 1 (for a
more detailed proof se@3J)).

One important property is that if a braidpreserves a curvé of complexity 2, and
the strands insid€ do not cross irx, then the mentioned arc is invariant ky

Lemma 2.4 Letx € B, and letC be a curve such thg€]* = [C]. Suppose that the
strands enclosed Hy do not cross irx. Let o be an arc traversing horizontally some
punctures enclosed §. Theno* = «.

Proof Let Co be around curve and Igte B, be such that@]Y = [Cp]. Consider the
braid z = y~1xy, and the areyy. Notice that o] = [Co]Y ™ = [C]¥Y = [C]Y = [Co].
Hencez preserves the round curé®. Moreover, as the punctures encloseddyo

not cross iny, we can find a representative ofin which the punctures enclosed by
Co do not cross. This implies thatcan be represented by a homeomorphism of the
punctured disc whose restriction to the component enclbged is trivial. As oY is

a curve enclosed by, one has ¢¥)? = o¥ and thena* = (a¥9Y " = (Y)Y = a,

as we wanted to show. O
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We saw above that a cuné of complexity 2 admits a smooth ar¢ disjoint from C
but traversing horizontally all the punctures in the irdecomponent oD?\C, such
that 7 only takes the values 0 and 1. Xfis a braid preserving in which the
strands enclosed hy do not cross, the above lemma shows that the smooth/aic
preserved byk. We shall call such an arcdescending invariant ard\otice thatC is
the boundary of a regular neighborhood«df

Lemma 2.5 Suppose that is a positive braid and that is an arc traversing horizon-
tally some puncture points. Suppose the arcs correspoidlitigese punctures do not
cross inx. If o* is the reduced image ef under the action of, then

max 7ox(t) > max () and min 7.x(t) > min 7,(t)
tel tel tel tel

Proof It suffices to prove this result for = o;, a single Artin generator. It is an easy
observation that for everty in |, we havet,.i(tg) = t,(tg) Or tuei(to) = to(to) + 1.
Some examples are given in Figure O

1

Figure 1: The labels, which represent the values of the fongt, , can grow under the action
by a generatos;, but never go down.

Lemma 2.6 If [C] is anx-invariant closed curve of complexity two, whexeis a
positive braid, and the strands wfenclosed by do not cross, then for any prefik
of x the curve[C]¥ is of complexity two.

Proof Let o be a descending invariant arc associated t®y Lemma2.4 we know
thato® = a.. Now, the image ofr, is equal to{0, 1}, so the same holds for the image
of 7,x. Thus Lemma.5implies that for any prefix’ of x one has

1=max7ex(t) = maxr ¢ (t) > max,(t) =1
tel tel tel

and
0 = min 7,x(t) = min 7_,(t) > min 7,(t) = 0.
tel tel tel

Hence the image of . is also equal to{0,1}. Therefore €]¥ has complexity
two. O
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Letus introduce some more notation. We shall supposentiga descending invariant
arc of some positive braid. We suppose also that' C « is a sub-arc whose two
extremities lie in two interior punctures. We say an exteponcture ideft-blocked

by o if there is no smooth path starting at this puncture poimmnieating on the
boundary of the disk, disjoint from the ar¢, and whose tangent direction has always
a negative real coordinate. #ght-blockedpuncture is defined symmetrically. We
define interior punctures to be both left and right blocked: SWall call the two interior
punctures at the two ends of the arcthe extremal(interior) punctures ofy’.

The proof of Propositior2.3 will be completed by proving that there are no blocked
exterior punctures at all, meaning that the cuévis of complexity 1. First we obtain
two partial results:

Lemma 2.7 LetC be an essential reduction curve for a positive braglich that the
strands ok enclosed by do not cross. Suppose that is a sub-arc of a descending
invariant arc ofx. Then there cannot be any exterior punctures which aréletiked
by o and to the left of both extremal puncturesf. Similarly, there cannot be a
right-blocked exterior puncture to the right of both extedipunctures.

Proof We shall prove the first statement, the proof of the secondsonery similar.
Moreover, we shall suppose that the starting point of thenargwhich in the picture
is “higher” than the end point) is to tHeft of the terminal point, see Figu2a). The
proof of the other case (where the starting point of the @rds to theright of the

end point, Figur&(b)) is similar, one simply has to consider the positive ¢hrav(x),

which is the image ok under the anti-isomorphism revB,, — B,, which sendss; to

itself for everyi = 1,...,n—1 (that is, revX) is equal tox written backwards).

We shall argue by contradiction: let us suppose that thes@ee left-blocked puncture
which is to the left of the left extremal interior punctureésFigure2(a)). We observe
that the corresponding strands cannot cross in the braicthdeed, if we think of the
braid x as a dance of the punctures, then during this dance theldeftdd puncture
cannot moveinderthe left extremal interior puncture, for this would requiraegative
crossing, and it cannot mowwer it, for this would turn the curvey into a curvea”
which possesses some points where the fundtiontakes the value 2. Thus the set
of punctures which are left-blocked lay and which lie to the left of both endpoints
of o/ is stable during the whole dance.

Now the vertical line through the left extremal interior pture, together with the
arc o/, cuts the disk into a number of connected components, at degsof which
contains some left-blocked punctures to the left of thedgfitemal puncture. L&t be
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Figure 2: (a) The starting point af’ (the bold line segment) is to the left of the end point. (b)
Vice versa.

the union of all the components containing left-blockedgtures. Let? be the union

of = with an initial segment of’ long enough to touch all the connected components
of =, but not all ofo’/. (So ¥ looks in general like some pearls on a thread, see
Figure3(a).) LetN(¥) be a regular neighbourhood @f. We observe thalN(V) is
preserved by the action af and so is its boundary, which we shall céll Moreover,

C' intersects the canonical reduction cusgwhich, we recall, was the boundary of
a regular neighbourhood af) twice. This contradicts the definition of a canonical
reduction curve. O

‘.LHﬁ;lg

Figure 3: Constructing invariant curves which interseetdbirvec: (a) In the case where there
is a left blocked puncture to the left of both extremal punesyand (b) in the other case.

Lemma 2.8 LetC be an essential reduction curve for a positive braglich that the
strands ok enclosed by do not cross. Suppose that is a sub-arc of a descending
invariant arca. of x. Also suppose that/ does not traverse any interior punctures
(except its two endpoints). Then there cannot be any exteuiactures blocked by’ .

Proof Again, we shall assume that the starting pointndfis to theleft of the end
point, with the other case being similar. Lem&d together with the hypothesis that
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o/ does not traverse any interior puncture imply that any lddgbunctures would have
to lie between the left and the right extremity®@f. Supposing, for a contradiction, that
such blocked punctures exist, then there must be a pair of, théth a right-blocked
puncture above a left-blocked one (see FigB(t®). Let us now look at the braid,
considered as a dance of the punctures.

We claim that the two punctures can never cross, and thatstlagybetween the two
extremal punctures at all times. Indeed, a crossing betweetwo punctures (while
they both lie between the extremal punctures) would transfibe arca’ into an arc

of complexity 3. Moreover, as soon as one of the two punctgress the region

between the two extremal punctures, it becomes a left-blbguncture to the left
of both extremal punctures, or a right-blocked puncturéhortght of both extremal
punctures, which is impossible by Lemi&. This proves the claim.

Thus any punctures which, at any moment during the punctaree] are blocked
by o and lie between the left and right extremal puncture/qfkeep these properties
throughout the puncture dance. This helps us to construatvaniant curve in the
following manner: we take the set of all points Bf which have points ofy’ both
above and below them (see Figu8@)). The punctures contained in this region are
precisely those which are left or right blocked &Y. A regular neighbourhood of the
closure of this set is a disk, or possibly a disjoint unionahg disks. The boundary
of each disk intersects’ in two points, and hence intersealsin at least two points.
However, the boundary of the diskXsinvariant, so we have a contradiction with the
requirement thaf’ belongs to the canonical reduction system. O

We are now ready to prove the main result in this section.

Proof of Proposition2.3. (see Figured). We recall that after an isotopy which
moves punctures only vertically, there is gfinvariant arca which contains all the
interior punctures (i.e. punctures inside the canonicduecgon curveC), which is
monotonically decreasing in height.

, right-blocked exterior punctur®

‘@ E; Q N

all interior punctures abov® ® all interior punctures below?
must be to the left of) ° must be to the right oP

S g
left-blocked exterior punctur®

to the left of and belowP

Figure 4: The arex and (bold) its subare’.
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Let us suppose, for a contradiction that there is a blockestiex punctureP — without
loss of generality we suppose itis a right-blocked one. Hremma2.7we know that
either all the interior punctures which leove Pmust lie to the right ofP, or all the
interior puncturedelow Pmust lie to the right ofP. Again without loss of generality
we suppose that the latter is the case.

On the other handP is right-blocked, so there must be a left-blocked punci@re
somewhere below and to the left Bf By the previous paragraph, this puncture must
be exterior. Again by Lemma.7, all the interior punctures abov@ must lie to the
left of Q.

But now we have an are’ starting at one of the interior punctures above and to the lef
of Q, ending at one of the interior punctures below and to the nfj®, not traversing
any interior punctures, and yet blocking bd®hand Q. This is in contradiction with
Lemmaz2.8, and terminates the proof of Propositiars. O

2.3 Detecting reducible braids with trivial interior braid s

Theorem 2.9 There is an algorithm which decides whether a given poskinagd x
of length ¢ with n strands preserves an almost-round curve whose interamdsgrdo
not cross. Moreover, this algorithm takes ti@Q§ - n*).

Proof In order to prove this theorem we only have to answer, in t@é- n%), the
following:

Question Does there exist an embedded ardn D, which has its two extremities
in two of the punctures, which is almost horizontal in thesgethat the functiorn,
defined in Sectior?.2is the constant functiom, = 0, and which is invariant undes
(i.e. o ~ )?

In order to answer this question for any given braiflvith n strands and of length),

we shall think of the braid as a dancerppunctures in the disk?, where each move of
the dance starts with all punctures lined up on the real éind,consists of an exchange

in a clockwise direction of two adjacent punctures. We sbiddin be working with the
closureXx of the braid, and this braid corresponds teegiodicdance of the punctures.
Notice that in the braid", every puncture performs at least one complete cycle, and
possibly more, of this periodic dance, in the sense thatferyepuncture there exists
an integerk between 1 anah such thatxX fixes that puncture.

If an almost horizontalx-invariant arc exists, then its deformed versions remaigs
almost horizontal during the whole dance, by Lenthfzagain. Thus a positive answer
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to the above question is equivalent to the existence of aosdlhorizontal arc, at every
point in time, connecting two of the punctures, which vadestinuously with time,
and which is invariant under applying one complete periodhefdance. The two
endpoints of the arc will be called thieterior punctures (because we think of them
as being inside an invariant circle). Notice that these twocpures can never cross
during the dance (because the interior strands do not cyolsgdmthesis), so it makes
sense to talk about tHeft and theright interior puncture

If an x-invariant, almost horizontal arc exists then, at any madiien any puncture
lying between the two endpoints of the arc, we have a welhéddfinotion of the
puncture lyingaboveor belowthe arc.

Lemma 2.10 Suppose we are given a braidtogether with a choice of two strands
(the “interior strands”) which are pure (i.e. start and ehtha same punctures) and
which do not cross each other. Thenxamvariant, almost horizontal arc connecting
the given two punctures exists if and only if there is a wayab#lling, at each of thé
timesteps, each puncture by a letter’ ‘br “b” (for “above” or “below”), or to leave
them unlabelled, so that the following restrictions arésfiet!:

(1) (a) Every puncture lying between the interior puncturestbasirry a label (&”
or “b”).
(b) Punctures not lying between the two interior puncturesualabelled.

(2) A puncture preserves its label & until its next crossings with an interior
puncture (and punctures which never cross any interior fpoadiave the same
label for all time).

(3) Rules concerning crossings involving an interior puncture
(a) If a puncture moves from left to right over the left interpuncture, then
afterwards it must be labelle@&"”. Similarly, if a puncture moves from right to
left under the right interior puncture, then afterwards itanbe labelled 5",
(b) A puncture labelledd” may not move from right to left under the left interior
puncture. Similarly, a puncture labelletd™ may not move from left to right
over the right interior puncture.

(4) A rule concerning crossings involving two punctures whiih between the
interior punctures: if a puncture labelle@™ crosses from right to left under
another puncture, then this puncture must also be labe#éd If a puncture
labelled ‘b” crosses from left to right over another puncture, then luiscture
must also be labelledd”.

(5) The invariance rule: the labelling before the first and atfver/th timestep is
the same.
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Proof of Lemma 2.10 If there is an invariant arc, then we obtain a labelling of the
punctures with the required properties by labelling puregwhich lie above the arc
by “a” and punctures which lie below the arc bip™

Conversely, if a labelling of the punctures with the reqdipFoperties is given, and

if we construct, at timg = 0, an almost horizontal arc going below the punctures
labelled “a” and above the punctures labelled™at that moment, then acting by any
initial segment of the puncture dance up to some tireT yields again an arc which

is almost horizontal and goes above the punctures labdliedrid below the punctures
labelled “a” at this momentt = T. O

Lemma 2.11 The statement of Lemna10remains true if restriction 1(a) is left out,
i.e. if punctures lying between the interior punctures ldtraks may remain unlabelled.

Proof of Lemma2.11 Given a labelling satisfying the restrictions of Lemtha0Oex-
cept restriction 1(a), we can construct a new labelling §irhp labelling all unlabelled
punctures between the two interior punctures.“It is an easy verification that this
extended labelling satisfies the complete list of restrdi O

Note that there aré‘% pairs of punctures, so in order to prove the theorem, it
suffices to construct an algorithm which, for any given pdipanctures, decides in
time O(¢ - n®) whether there exists a labelling, at each of théme steps, of the
punctures, respecting the restrictions of LenxiHl, with the two given punctures as
interior punctures.

The algorithm is very simple. We start with thepunctured disk, with two of the
punctures designated as the interior punctures but witbtlaér punctures still unla-
belled. We then performr2— 4 times the puncture dance associated to the brait
each of the (8 — 4) - ¢ timesteps we perform the labellings of punctures forcechby t
rules of Lemma.10, specifically by rules 1(b), 2, 3(a) and 4.

It may happen that applying these rules leads to a contradjcfor instance if a
puncture already labelleda” crosses from right to left under the left interior puncture
(rule 3(b) violated). A contradiction also arises if a pwmet has a label &” but
the puncture which sat in the same positiosteps previously was labelled”, or
vice versa (invariance rule violated). If such a contradicibccurs, we know that no
coherent labelling exists, so the two chosen puncturesatdrainterior punctures of
a reducible braid with trivial interior braid.

If, by contrast, after 2— 4 repetitions of the puncture dancexo$till no contradiction
has arisen, then, we claim, we have succeeded in finding lingbef x satisfying the
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restrictions of Lemma.10 (except number 1(a)), and this terminates the description
of the algorithm.

Let us now prove the claim we just made. What we need to protietghe labelling
that we wrote during the r2— 4th repetition of the puncture dance (i.e. during the
last ¢ steps) satisfies all the conditions of Lemea0 (except number 1(a)). In fact,
conditions 1(b) through 4 of Lemm2 10 are satisfied by construction, so the only
nontrivial claim is that the periodicity condition holdst dat any moment during the
last ¢ time steps a puncture was labellea’‘or “ b”, then the puncture which was in
the same placé steps previously was already labelled, with the same ldbedther
words, we have to show that during the 2 3rd repetition of the puncture dance no
label was found that was still unknown during the-2 4th iteration.

Let us first look at those punctures between the interior foas which correspond to
strands that have some crossing with the interior strandsolerve that after theth
repetition of the puncture dance, these punctures havadgirexperienced a crossing
with an interior puncture (the length of a cycle containihgde punctures is at most
n — 2). Thus all these punctures are already labelled aftepetitions of the dance.
There are at mosi—2 punctures left which never cross the interior puncturbduring
one repetition of the puncture dance none of these punateces/es a new label, then
none of them ever will in any further iteration of the punetudance. Conversely
once such a puncture is labelled, it will remain labelledlatimes during all future
iterations. Therefore after another— 2 iterations the labelling process is complete.
This terminates the proof of the last claim, and of Theo&n O

3 Sliding circuits

In this section we will introduce the special type of conjugas calledcyclic slidings
and state our main result, Theor&». Recall that the braid grouB, admits a lattice
order <, called theprefix order defined as follows: we say that< b if and only
if ac = b for some positive element € B,. Here positive means that it can be
written as a product of positive powers of the standard ggoeso, ..., 0,_1. Being
a lattice order,x determines a unique greatest common divisary and a unigue
least common multiplex vV y of every pair of braids,y € B,. There is also another
lattice order inBy,, denoted:=, and called theuffix order This time we say thah >= b

if a = cb for some positive brai¢t. The gcd and Icm determined by on a pair of
elementsq,y € B, will be denotedx Ary andx VRrY, respectively. Due to these lattice
structures B, is the main example of a Garside gro@. [
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Recall that each element € B,, admits aleft normal form(or left greedy normal
form) [10], that is, a unique way to decompose it)xas= APx;--- X, wherep € Z

is maximal and eacly; is a proper simple braid (a permutation braid different frbm
and A) such thatxix,1 is left-weighted. This latter property means that for every
k=1,...,n—1,if X, 1 can be written as a positive word starting &y, thenx; can

be written as a positive word ending by. This can also be described in terms of the
lattice properties oB,,: for a simple elemens, defined(s) = s ™A, the complement
of s. Thenx;x 1 being left-weighted means thafx) A x1 = 1. We recall that if the
left normal form ofx is as above, then the integgrsr andp + r are callednfimum
canonical lengthand supremunof X, respectively, and they are denoted i) f(¢(X)
and supx).

As usual, for every € B, we definer(x) = A~xA. We also define thinitial factor
of x to bes(X) = A A (XA~ "X) . That is, if the left normal form ok is APxy - - - X
andr > 0, one has(x) = 7 P(x1), and ifr = 0 one has(x) = 1. We also define
thefinal factor of x to be p(x) = (X A ASUPQ‘)‘l)_lx. That is, if the left normal form
of X is APx;---% andr > 0, one hasp(x) = %, and ifr = 0 one hasp(x) = A.
It is well known [3] that for everyx € By, one hasp(x)«(x"1) = A. In other words,

((x) = 0((9).

Definition 3.1 [16] Given x € By, its preferred prefixs the simple element

PO = 1) A (XY = () A D(p(x))-

Cyclic slidingof x means the conjugation ofby its preferred prefix, and its result is
denoteds(x). That is,s(X) = p(X)~x p(X).

Notice that for any braick we havep(x1) = p(x), sos(x1) = (s(x))~*. Itis
explained in 16] why the above definition is natural, and that cyclic slidilsga
conjugation which simplifies any given braid from the algébrpoint of view. For
instance, iterated application of cyclic sliding sends laraid x to a conjugat& which
belongs to its ultra summit setf]. In particular, the canonical length &fis minimal

in its conjugacy class. Iterated application of cyclic islgito an elemenk always
yields a repetition, so the orbit of unders becomes periodic. We call the set of
elements in that periodic orbit th&iding circuit associated tx. The union of all
sliding circuits in the conjugacy class &f is thus the set of elements that cannot be
improved in any sense by further applicationsofWe call it theset of sliding circuits
of X. More precisely:
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Definition 3.2 [16] Given x € By, let xBr be its conjugacy class. We define e of
sliding circuitsof x as follows:

SQx) = {y € xB; s™(y) = y for somem > 0}.

The main goal of this paper is to show that cyclic sliding asuoplifies braids from
the geometrical point of view. But in order to achieve thie need to study the
elements together with some of their powers. The main prolidehat ify belongs to
a sliding circuit,y? does not necessarily have the same property, and neithsrytloe
for arbitrary m. In order to consider elements which behave nicely with eesjo
cyclic sliding and (at least some) powers, we introduce dtlewing notion.

Definition 3.3 Givenx € B, and an integem > 0, we define thanth stabilized set
of sliding circuits

SAM(x) = {y € By; ¥ € SQx) fork =1,..., m}.

Notice that the elements @CG™(x) are precisely those that are conjugatextand
with the property that their firsin powers each belong to their own sliding circuit.
Clearly SG™(x) ¢ SA™(x) for everym > 0. The main result in this paper is the
following theorem.

Theorem 3.4 Let x € B, be a non-periodic, reducible braid. There is someg
I|A]]® — ||A|[? such that every elemeryt ¢ SC™(x) admits an essential reduction
curve which is either round or almost round.

We will show in Sectiort that SG™ (x) is nonempty for everyn > 0 (so Theoren3.4
has not a trivial statement), and we will give an algorithm fiading an element in
SAM(x). Moreover, ifmis bounded by a polynomial in and/(x), then the complexity
of the algorithm will be polynomial im and ¢(x), provided the following well-known
conjecture is true:

Conjecture 3.5 [16] Givenx € By, of canonical lengtlt, lett be the minimal positive
integer such thas*(x) = s'(x) for somek with 0 < k < t. Thent is bounded by a
polynomial in¢ andn.

Together with Theorer.9this yields an algorithm (Algorithm 1 in the Introduction)

to determine whether a given elementBy is periodic, reducible or pseudo-Anosov.
This algorithm will be polynomial im and /¢ if Conjecture3.5is true.
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4  Sliding circuits and powers

This section is devoted to the study of the S€™(x) defined in the previous section.

We will show that for everyx € By (actually, in every Garside group), and for
everym > 0, the setSA™(x) is nonempty. Furthermore, we shall give a simple
procedure to compute one elemenS@™ (x), starting fromx.

In order to achieve these goals, we shall need the followesglt:
Theorem 4.1 [16] Letx,z a,b € By. If z 2, 2 € SQX), thenZ"" € SQXx).

Definition 4.2 Giveny € By, we define thepreferred conjugator B) of y as the

product of conjugating elements corresponding to iteray@tic sliding until the first

repetition. That is, if we denotgl) = s'(y) for i > 0 and ift is the smallest positive
integer such thas!(y) = s'(y) for somei < t, then:

P(y) = p(y) ) py@) - - py D).

Notice that if one conjugateg by P(y), one obtains an element By). Notice also
that if y € SAXx) for somex, thenP(y) is the conjugating element along the whole
sliding circuit ofy. In particular, ify € SQx) thenP(y) commutes withy.

Definition 4.3 Given x € By, we definexg = x, and for everym > 0 we define
recursively:

m+-1
Xm] = (X)),

Notice thatx is a conjugate ok for everyi > 0, since in order to compubtgm, 1
we are just conjugatingjy . The conjugating element is precisely the one that sends
the m+ 1st power ofxy to a sliding circuit.

The proof of the following result gives a simple algorithmctmmpute one element in
SAM . This parallels Proposition 2.23 i8]]

Proposition 4.4 Letx € B, andm > 0. Thenxyy € SC™(x). In particular,SC™ (x)
is nonempty.

Proof We will show the result by induction om. For m = 1, one hasxy =
(Xo7) ") = xP®  which by definition ofP(x) belongs taSQx) = SCY(x).

Now assume thakyy € SG™(x) for somem > 0. That is, km) € SQX) for
i =1,...,m. Them-+ 1st power (<[m])m+1 does not, a priori, belong to a sliding

Algebraic & GeometricTopology XX (20XX)



1022 Juan Gonalez-Meneses and Bert Wiest

circuit. Butif we conjugate our braigy by the eIemenP((x[m])m“) to obtainXm1j,
its m+ 1st power becomes the conjugate gf{)™ by P((Xm)™), so it belongs
to a sliding circuit as desired. The question to be answer@dhether smaller powers
of Xim¢1) still belong to a sliding circuit or not. That is, we have tashthat for

i =1,...,m, the conjugate of{m)' by P((Xm)™"*) belongs taSQX).

First we claim that ify is a braid such thay € SQx) for i = 1,...,m, then the
conjugate ofy by p(y™1) also belongs t&Qx), fori = 1,...,m. In order to prove
this claim, we recall from Theoresh 1that if z, a, b € B, are braids such that 2 and

2° belong to a sliding circuit, ther™'\P also belongs to a sliding circuit. In the situation
of the claim, we have/ € SQX), and p(y™?1) = «(y™1) A «(y ™ 1). Recall that
(™) = (y™1AS) A A for some integes. Since the conjugate of by y™1AS is
75(y") € SQX'), and the conjugate of by A is 7(y') € SAX'), Theorem4.1 shows
that the conjugate of by «(y™1) belongs to a sliding circuit. The same argument
shows that its conjugate hyy—™1) also belongs to a sliding circuit. Hence, applying
Theoremd.lagain, the claim is shown.

As an aside, we remark that conjugationgfy™ 1) performs a cyclic sliding oy™t?*,
but it does not perform a cyclic sliding oy for i < m+ 1. Nevertheless, we just
showed that the conjugate §f by p(y™1), even if it is not necessarily the cyclic
sliding of y', belongs to a sliding circuit (which is not necessarily thens sliding
circuit y' belonged to).

Now, in our situationP((x[m])m+1) is the product of several preferred prefixes, those of
iterated cyclic slidings of(m)™1, so conjugation by((xm)™"?) is the composition

of several conjugations, by;, ..., at, say. We can then apply the above claim several
times, takingy = X ““"* for k=1,...,t. Atthe first stepy = Xny, soy € SQx)
fori=1,...,m,anda; = p((Xm)™?) = p(y™?1) by definition. By the claim, y**)!
belongs to its own sliding circuit for = 1,...,m. By induction, ify = x[c“nl]]'"ak*1
for somek > 1, andy belongs to its own sliding circuit for = 1,...,m, then
the conjugate of/ by ax also belongs to its own sliding circuit, ag = p(y™1).

Fork = t, asX & = xym+1], this means that the firsh powers ofxm1) belong to

(m]
their own sliding circuit. Since then+ 1st power also belongs to its sliding circuit by
construction, the result follows. D

Recall Conjecture8.5 above. LetT = T,, be an upper bound for the number of
cyclic slidings necessary to obtain a repetition, starfingn a braid inB,, of canonical
length £. This boundT, . is thus conjectured to be a polynomialmrand /. We also
recall from [LQ] that if x andy are two braids, given in left normal form, of canonical
length /1 and ¢», respectively, the left normal form ofy can be computed in time
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O(¢1¢2nlogn). This comes from the fact that the gcd of two simple elemeatsbe
computed in timeO(nlogn) [10], and from the way in which left normal forms are
computed.

Corollary 4.5 Givenx € By, written as a product df simple elements and its inverses,
and givenm > 0, there is an algorithm that computes an elemer8@(x) in time

m
O(Sinlogn), whereS="Y "i Tpje.
i=1

Proof The algorithm computeﬁ’(xi[i_ll) and conjugatesi_1; by this element (ob-
taining xgjp), fori =1,...,m.

We start withx written as a product of simple elements and its inverses, and compute
its left normal form, which takes tim@®(¢?nlogn) [10]. Now we apply iterated cyclic
sliding to x until the first repetition, which is(;;. At each step, we have to compute
the preferred prefix of an element, and conjugatex by it. Notice that a preferred
prefix is the greatest common divisor of two permutationdsaif « = APay - --

is in left normal form andr > 0, thenp(a) = 77 P(a1) A d(cy). If the left normal
form of « is known, the computation af P(«1) and d(«;) takes timeO(n) [10], and
computing their gcd takes tim@(nlogn) [10]. Now « is an iterated cyclic sliding
of x, where cyclic sliding never increases the canonical lergthn element 16].
Hence the canonical length of is at most/. The algorithm takesy in left normal
form, and computes the left normal form of its conjugatepfyy). As p(«) is a simple
element, andv has canonical length at mai&tthis last step takes tim@(¢nlogn) [10].
Thus computingy (), conjugatinga by it, and calculating the left normal form of the
result takes timeO(¢/nlogn). This is repeated, , times, sox(y) is computed in time
O(Th,¢ fnlogn).

In the following steps of the algorithm, one hgs_1; and xi[i‘_lll written in left normal
form (the case of the previous paragraph is 1). Notice that the canonical length
o_f xi[i‘_ll] is at most { — 1)¢. The algorithm then computes the left normal form of
Xji_1y- This computation, obtained from the product of the leftmakforms ofxji_1
and xi[i‘_lll , takes timeO((i — 1)/?nlogn). Now the algorithm computes iterated cyclic
slidings of Xl[i—l] until the first repetition. More precisely, the _algorithnar$$ with

a = Xj—1j, and at each step it computes the preferred prgfix), and conjugates
both o and o' by this prefix. The conjugate af is set as the new value of, and
the loop is repeated. The loop ends at the first repetition' of The complexity of
this computation is the same as that of the previous parhgtap applied to a braid
of canonical lengthi/, instead of/. Hence, the computation of;; and xi[i] from
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Xi—1 and xi[i‘_ll] takes timeO(T, i, i/nlogn). Adding up the complexities of each
loop, we obtain that the whole algorithm takes ti@¢&2n logn) + O(S/nlogn). As
¢ < Tnhe < S, the result follows. ]

We remark that if Conjectur@.5holds, that is, ifTj, ; is a polynomial inn and/, then
the complexity of the algorithm in Corollad.5is polynomial inn, £ andm. As we
shall only need to compute one elementS@™(x) for m < ||A|]2 = n3(n — 1)3/8
(see Theoren3.4), the complexity in this case will be polynomial mand/, always
provided Conjectur&.5holds.

5 Sliding circuits and reduction curves

5.1 Sliding circuits and round curves

In this section we shall investigate the properties of teengints belonging t83™ (x),
with respect to their canonical reduction systems. The lgistgase occurs when this
reduction system is made of round curves. The followingltessures the existence
of these examples

Theorem 5.1 [1] (see also 20]) Let x € B, be a positive braid whose left normal
formisxy---% . If [C] is a round curve such th&]* is also round, thefC]**"™* is
round fori=1,...,r.

In other words, if the roundness of a curve is preserved bgid &t then it is preserved
by each factor in the left normal form af SinceA*! preserves the roundness of every
curve, the above result can be applied to every braid, nassacily positive. This is
used in [l] to show that, if a braid preserves a round curve, its cydind its decycling
also preserve round curves. This immediately implies thia¢¥ery reducible braid,
there is some element in its super summit$8&x) which preserves a round curvg |
Clearly, one can replacBS®) by USSx) in the previous statement. Even better,
one can replace it b$pQx), as we will now see, but the proof of this fact is slightly
different. we need to show the following result, concernimgariant families of round
curves.

Proposition 5.2 Letx € By, and letF be a family round curves such tHat|* = [ F].

Then[F]*Y s also a family of round curves. Hencexifpreserves a family of round
curves, then so doegx).
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Proof We can assume > 0. Let APx;---Xx be the left normal form ok. By
Theorem5.1 applied to each particular curve &, one has thatF]2™ is a family
of round curves, and sinc&Px; = 7 P(x;)AP, it follows that the curves of ]™ ")
are round. LetF, be a family of curves such tha#p] = [F]7 "®0). In the same way,
Theorem5.1tells us that the curves ofF]2™%-1 are round. LetF; be such that

[F1] = [F]A™4%-1. Notice that [F3]¥ = [F]@Pa%-% — [ F]* = [F].

We then have Fi]*7 "®) = [F,], where F; and F, are families of round curves.
Now, by definition, the left normal form o7~ P(x;) is equal toy;y,, wherey; =
Xp(X). By Theorem5.1 again, we obtain that the curves oFj]** are round. But
[Fi"r = [Fo*® = [F]PX¥, hence [F]*™ is a family of round curves, as we wanted
to show. O

Corollary 5.3 For every reducible braid € B, and everym > 0, there is some
y € SG™(x) such thalCRSy) consists of round curves. Moreover, all elements in the
sliding circuit ofy satisfy the same property.

Proof The canonical reduction systeGRSXx) is a family of disjoint simple curves on
the punctured disc. Hence some orientable automorphishe gittnctured disc relative
to the boundary, will send it to a collection of (possibly tee§ round curves. This
automorphism corresponds to a braid= B,. In other words, there is some € By,
such that CRYX)]” consists of round curves. It is well known thaERX)]" =
[CRYXY)], hencez = X is a conjugate ofx whose canonical reduction system
consists of round curves.

Recall thatzy , which is the conjugate afby P(2P((z1))?)P((z21)%) - - - P(Zm-1)™),
belongs taSA™(z) = SA™(x). We will now show that all the curves iBRSzn) are
round circles, by induction om. We know that this is true fom = 0 sincezyq = z,
so we assum€R{zm_1)) consists of round curves for some> 0.

In order to computezy), we conjugatezm-1; by P((zm-17)™). Recall that the
canonical reduction system of an element coincides witlc#m®nical reduction sys-
tem of each nonzero power, henGR(zm-1))™) consists of round curves. Ap-
plying iterated cyclic sliding to Zn_1))™ until the first repetition, that is, conju-
gating it by P((zm-1))™), one obtains #)™. By Proposition5.2, all curves in

CRS(zm-1))™) keep their roundness after each applicatios oHence all curves in
CRS%(zm)™) = CRSznm) are round, as we wanted to show.

We have then shown that there is sojme SG™(x) all of whose reduction curves
are round. By Propositioh.2 again, the same happens for every element obtained by
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applying iterated cyclic sliding tg, that is, for every element in the sliding circuit
of y. O

Notice that the above proof does not provide an algorithmni ¥i, since we do not
know a priori which is the braid that conjugatex to z. Nevertheless, sinc8G™ (x)

is a finite set, one can compute the whB8I8™ (x) and check for each element whether
it preserves some family of round curves. In this way one aaahdi reduction curve
for y, and then forx.

The computation of the whole s&3™(x), starting from a single element, parallels
the usual constructions given i,[3, 16], so we will skip it here. For our purposes, it
suffices to know that there is one elemgrin SG™(x) all of whose essential curves
are round. Such elements have a particularly nice behaviibr respect to normal
forms, as it is shown ing0] and [18].

Lemmab5.4 (see forinstance]) Lety € By, and letF be a family of round curves
such thatFY is also round. Suppose thats a positive braid, and lgt; - - -y, be its left
normal form, where some of the initial factors may be equdktolLetC € F U J(D).
Fori =1,...,r,denotdCi] = [C]*"Y-1 and[F] = [F]*¥-t. Then the left normal
form of yice 7y is preciselyyiic,c 7,1 Y2(c,e 7 Yricier] - [N this normal form, some
of the initial factors could be half twists, and some of thelfilactors could be trivial.

Lemma 5.5 Let x,y € B, be braids, letF be a family of round curves, and let
[C] € [F] U O(D). Suppose thaF* and F¥ are round. The®*" s also round, and

(XA Yicer] = Xcer] N Yicer] -
Proof The first sentence is shown by Lee and L2@,[and the second one ia§]. O

Lemma 5.6 [18] Lety € By, and letF be a family of round curves such thz¥
is also round. LetC € F U (D). Then.(y) preserves the roundness [0f], and
L(Y)icer) Is either a half twist or equal tdyjcc 7).

Proposition 5.7 [18] Lety € By, and letF be a family of round curves such that
[F)Y = [F]. Consider the preferred prefiXy), and letC € FUO(D). Thenp(y)icer
is either a half twist, or equal t(yjcer)), Or to u(Yjcer]), OF tO L(y[‘clE f]) .
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5.2 Rigidity, sliding circuits and preferred conjugators

The key ingredient for showing the main theorem will be thapgirties of the preferred
conjugatorP(y) of a braidy which preserves a family of round curves. In fact, we
won't be able to gain sufficient control ov&(y), and we have to study the preferred
conjugatorP(y¥) for some suitable powe® of y instead. The need of taking powers
to obtain a better behavior of the preferred conjugator ésrdason why we have to
work with the setS3™(x), rather than simply the set of sliding circu&x).

The property we will require for a power gf € SQ(X) involves the notion ofigidity
introduced in 8], which measures how the left normal form of an element gasiben
taking its square. More preciselypif= APxy - - - X, is in left normal form withr > 0,
one could expect that the left normal form xf is AZ7P(xq) - - - 7P(X)X1 - - - X, but
in general this is not the case. We say that the rigiditx @ R(x) = k/r if k is the
biggest integer in{0,1,...,r} such that the first |p| + k factors in the left normal
form of x2 are A%P7P(x1) - - - 7P(xc). The two extreme cases aRyx) = 0, in which all
factors in the left normal form ok are modified when considering, andR(x) = 1,
in which no factor is modified, and the left normal formysfis the expected one we
saw above. In this latter case we say thad rigid.

We will be interested in the case in whidd(x) > 0 andR(x~1) > 0. This kind of
elements are characterized by the following result.

Lemma 5.8 [3, Lemmas 3.4, 3.5 and Corollary 3.6¢t x € B, with ¢(x) > 0. The

following conditions are equivalent:
1) R(X >o0.

(2) inf(x?) = 2inf(X) andu(x®) = ¢(x).

(3) Inf(x™ = minf(x) and.(x™) = «(X) for everym > 0.
The following conditions are also equivalent:

(1) R(x1) >o0.

(2) supk?) = 2supg) andp(x?) = ¢(X).

(3) sup&™ = msup§) andp(X™) = ¢(x) for everym > 0.

These equalities of infima, suprema, initial and final faxtgeld a good behavior of
the preferred conjugators, as we shall see. Moreover, dridition is preserved by
cyclic sliding, if the element is in its super summit set:

Lemma 5.9 Letx € B, andy € SS&) with ¢(y) > 0. ThenR(s(y)) > R(y) and
Ris()™) = Ry ).
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Proof Letr = £(y) > 0. Sincey € SS$) one hasi(y) € SS¥), hencel(s(y)) =r.
Notice that the propert{R(y) > k/r can be rewritten ag? A AZPHK = (y A APTK)AP,
One can apply to this equality the transport map based[a6]. This map sendy
to s(y), A to itself, and preserves products and greatest commorodivigience one
obtainss(y)? A AZPHK = (s(y) A APTK)AP, which is equivalent toR(s(y)) > k/r.
Hence R(y) > k/r implies R(s(y)) > k/r for everyk € {0O,...,r}, so one has
R(s(y)) = R(Y).

Replacingy by y~1, whichis also in its super summit set, one RG(y 1)) > R(y1).
The result follows as(y1) = s(y)~* (see the argument that follows Definiti@nl).
O

The elements in a sliding circuit that fulfill the requiredidity conditions also satisfy
the following important property: their preferred conjtmyais rigid.

Proposition 5.10 Let x € B, andy € SQx) with ¢(y) > 0. If R(y) > 0 and
R(y1) > 0, then the produci(y)p(s(y)) is left-weighted, andP(y) is rigid.

Proof Let us first prove thatp(y) p(s(y)) is left-weighted. Consider the biggest
elementa < p(s(y)) such thatp(y)a is simple. LetAPy; ---y; be the left normal
form of y. Notice thatp(s(y)) < «(s(y)) < s(Y)A™P = p(y) " typ(y)A~P. Hence
p(y) p(s(y)) < yp(Y)A~P < y?A~%_ Sincey satisfies the required rigidity conditions,
Lemmab.8tells us that inf§?) = 2p, hence the initial factor of?A~?" is precisely
(y?), which is equal ta(y), again by Lemm&.8. Since we are assuming thady)ca

is a simple prefix ofp(y) p(s(y)), it follows that p(y)ar < t(y?) = «(y). In the same
way, asp(y 1) = «(y 1) A u(y) = p(y) one hasp(s(y 1)) = p(s(y) 1) = p(s(y)), we
can apply the above argumentyo! and it follows thatp(y)a < «(y~1). Therefore
p(Y)o < uy) A uly ™) = p(y), soa = 1, and the first half of the proposition is proven.

Now, if the hypotheses of Propositi@l0are satisfied by, then by Lemmd&.9they
are also satisfied by*(y) for everyk > 0. So not only the produgt(y) p(s(y)) is left-
weighted as written, but alsp(s'(y)) p(s't1(y)) is left-weighted for everyi > 0.
It follows that the left normal form ofP(y) is precisely p(y)p(y™®) - - - p(yN—b),
where N is the length of the sliding circuit of). Moreover, asy™ = vy, the
product p(yN=D)p(y) is also left-weighted, hence the left normal form Rfy)? is

pPYD) - pyN"Dpy)py D) - - - p(yN-Y), which means thal(y) is rigid. O

Once we have seen that R(y) > 0 and R(y"1) > 0 thenP(y) is rigid, we are
interested in finding elements which satisfy these rigidiiynditions, so we can gain
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sufficient control over their preferred conjugator. In tlextnresult,we will see that if
N = ||A[2—]|A|[?, every element 8GN (x) has a power which satisfies the required
rigidity conditions.

Proposition 5.11 Letx € By, and letN = ||A]|® — ||A]|?. Giveny € SGN(x), there
is an integem with 0 < m < N such thatR(y™) > 0 andR(y—™) > 0.

Proof In [21] it is shown that for every € B, there exists som& < ||A[|? such
that every element iSS$X¥) is periodically geodesic. That is, for everye SSEK)
one has inff) =t -inf(2) and supf) =t - supg) for all t > 0. In particular, since
y € SAN(x) andk < N, one hasy € SQx) ¢ SS#), so y¥ is periodically
geodesic. This means that igf{) = t - inf(y<) and supgt) = t - sup¢X) forall t > 0.

OnceyX is known to be periodically geodesic, one has a chgif) < (y*) < «(y¥) <
... (the initial factor ofy* is a prefix of the initial factor of/t1X). Notice that this
chain stabilizes at the first repetition, hence it must $ibin less than||A|| steps.
In the same way, sincg is periodically geodesic one has a chain = p(y*) =
oY) = o(¥) (the final factor ofy is a suffix of the final factor of/{*+1K), which
must also stabilize in less thap\|| steps. Therefore, for some< ||A|| — 1 one has
uy®) = o(y?¥) and p(y*) = ¢(y?¥). We can takem = kt < [|A[]® — ||A|]? and we
will have, on the one hand, inf™M) = 2inf(y™ and.(y>™) = «(y™ (thusR(y™ > 0),
and on the other hand syg) = 2 sup¢™) andp(y?*™) = p(y™ (thusR(y~™)) > 0),
so the result follows. O

Now we will place ourselves in the case in which a braid SQX) satisfies the above
rigidity conditions, that isR(y) > 0 andR(y~ ') > 0 (by Propositiorb.11we know
how to find a braid which fulfill these requirements). We sawroposition5.10that

in this caseP(y) is rigid. We will now see that, if for some reason we need tasider
some power o, this makes no harm, as every powerafatisfies the same properties
(even the property of belonging to a sliding circuit).

Proposition 5.12 Let x € B, andy € SQX) with /(y) > 0. If R(y) > 0 and
Ry 1) > 0, then for everym > 1 one hasy € SGM(X) (that is,y" € SQX™)),
RY™ > 0, R(y ™) > 0, andP(y) is a positive power oP(y™).

Proof We recall from B, Proposition 3.9] that ify € US§x) and ¢(y) > O, then
R(Y) < R(y™ for all m > 1. Hence, ify € SQX) is such thatR(y) > 0 and
R(y~1) > 0, the same happens for every poweof
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By Lemma5.8, (y™) = w(y) and o(y™) = »(y). Hencep(y™) = «(y™) A d(e(y™)) =
t(y) A 9(e(y)) = p(y). Therefores(y™) = (s(y))™. By Lemmab.9, s(y) also satisfies

the required rigidity conditions, that isR(s(y)) > 0 and R(s(y)~!) > 0. Hence
p(s(™) = p(s(y)) and thens*(y™) = s(s(y™) = s(s(y)™) = (s*(y))™ for everym > 0.
Iterating this argument, one obtaipg(s'(y))™) = p(s'(y)) ands'(y™) = (s'(y))™ for
everyt,m > 0. In other words, applying iterated cyclic sliding ¥ is the same
thing as applying iterated cyclic sliding oand then taking thenth power, since the
conjugating elements coincide. Asis in a sliding circuit, applying iterated cyclic
sliding leads back ty, and the same happensy8. That is,y™ is also in a sliding
circuit, as we wanted to show. Moreover, some positive p@f/&(y™) equalsP(y) as
the preferred prefixes along the circuitsyofnd y™ coincide. Actually, we will have
P(y™) = P(y), unless there is somein the sliding circuit ofy such thatz" = y™, in
which caseP(y™) will be shorter tharP(y), but continuing along the sliding circuit of
y™ one will obtain several repetitions &(y™) being equal tdP(y). O

We end this section with a result about preferred conjugatdrich we shall need
soon. It says that the preferred conjugators of any two elsnea the same set of
sliding circuits are conjugate, up to raising those prefronjugators to some suitable
powers. This will allow us to obtain information concerniB(y), for somey € SQx),
just by comparingP(y) with P(2), for some otherz € SQ)xX). This time we do not
require any rigidity condition.

Lemma5.13 Letx € B, andy, z € SQX). ThenP(y)S is conjugate tdP(2)' for some
s,t > 0, and one can take as conjugating element any hraidnjugatingy to z.

Proof Let N and M be the lengths of the sliding circuits gfand z, respectively.
That is,sN(y) = y andsM(2) = z. Let o be such thatr—tya = z. We can apply tax

the transport map defined idg]. If one applies this transport maptimes toa, we
obtain an element denoted®, which is a conjugating element frogf(y) to sX(2).

Namely,

W a® = (p)peO) - pEY) o (b@p6@) - ) -

In [16, Lemma 8] it is shown that, in this situation,c SQX) if and only if N = o
for somes > 0. This means that conjugatessSN(y) = y to sN(2), but since the
conjugate ofy by « is preciselyz, it follows that sN(z) = z hencesN = tM for
somet > 0. But then Equality 1), replacingk by sN, readsa = (P(y)$) 1 o P(2)! or,
in other words,a~1P(y)%a = P(2)". ]
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5.3 Sliding circuits and canonical reduction systems

Proposition 5.14 Letx € B, andy € SQx). If R(y) > 0 andR(y %) > 0, then
CR3P(y)) € CRYy).

Proof Notice that the result holds ¥ is periodic, since the only periodic elements
satisfying the rigidity hypothesis are powers®df and therP(y) = 1, so both canonical
reduction systems are empty. Wfis pseudo-Anosov the result also holds, sif{g)

is in the centralizer ofy so it must be either pseudo-Anosov or periodi€][ and in
either caseCRP(y)) = ) = CRSy). We can then assume thais non-periodic and
reducible, that isCRSy) # 0. And of course we can assume tt@GRIP(y)) # 0,
otherwise the result is trivially true.

By Proposition5.12 we can make the further assumption tiias pure, since/™ will
satisfy the same hypothesis gsand the canonical reduction systemsyadnd of its
preferred conjugator are preserved by taking powerg dleplacingP(y) by a power
if necessary in the following discussion, we will also assuimatP(y) is pure.

Let F = CR]y) U {0(D?)}, and let us assume for a moment that all curve&iare
round. SinceP(y) is pure and commutes with, P(y) sendsF to itself, curve-wise.
This implies that an essential reduction curvé§f) either belongs toF (as we want to
show) or can be isotoped to be disjoint fraf In the latter case, it would correspond
to an essential reduction curve B{y);cc ) for some ] € F. Thus we must show
that P(y);cc 7 does not admit an essential reduction curve, for evéhy[ 7.

Let then ] € 7. We know thatyjcc 7 is either periodic or pseudo-Anosov, and
that the braidP(y)iccr) commutes withyjce 7). If Ycer) iS pseudo-Anosov, then
P(y)icer; must be either pseudo-Anosov or periodic, hence it admitessential
curves. Ifycer is periodic, it has to be a power of the full twist, singds pure.
But in this case Propositio.7 tells us thatp(y)ccr) is either trivial or a half twist
(here we use thaF consists of round curves). Hence, applying cyclic slidimg twe
obtain a braid whose component associated ts also a power of the half twist, and
we can repeat the argument until one gets back, ttm conclude thaP(y)cer is a
(possibly trivial) power ofA. HenceP(y);ccr) does not admit an essential curve, also
in this case. Therefore, all essential reduction curva®(gf are essential curves gf
that is, CRYP(y)) C CRSy) if CRS]y) is a family of round curves.

Now we show the general case, in which the curve€€Ry) are not necessarily
round. We cannot apply the above argument as we do not knowpm, that the
components oP(y) corresponding to the periodic componentsyaire powers ofA.
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Nevertheless, we will be able to show this by comparing preteprefixes with the aid
of Lemmab.13 We just need to find a suitable braid whose reduction cumessoand
and which satisfies the hypothesis of Proposifot, that is, it belongs to a sliding
circuit, and both the braid and its inverse have nonzerditigi

By Corollary5.3, for everyN > 0 there is some elementc SGN/(y) whose essential
curves are all round. We can then take= ||A||® — ||A||> and use Propositiof.11

to conclude that for somm with 0 < m < N we haveR(Z") > 0 andR(z ™) > 0.

As m < N, we also have™ € SQy™). Notice that the canonical reduction systems
of z and Z" coincide, soz™ is a braid whose canonical reduction system is made
of round curves, which belongs to a sliding circuit, and stiedt R(Z") > 0 and
R(z™ > 0, soZ" is the braid we were looking for. To simplify notation, we a#ic
from Proposition5.12that the result will be shown foy if it is shown for y", so we
can replacey by y", and this will replacez by zZ". We can then assume thats a
braid whose canonical reduction system is made of roundesuwhich belongs to a
sliding circuit, and such thaR(2) > 0 andR(z 1) > 0.

As the result is shown for elements whose canonical redusiistem is made of round
curves,CRSP(2)) ¢ CRS2. But recall from Lemmd.13that P(2)° is conjugate to
P(y)! for somes,t > 0, and that a conjugating elemertis precisely a conjugating
element fromz to y. Since the essential curves Bfz) and P(2)° coincide, we have
CRSP(2°) = CRSYP(2)) c CRY2). Conjugating botHP(z)* andz by «, corresponds
to applyinga to their essential curves, hence it follows t@RIP(y)') ¢ CRSy). As
the essential curves ¢(y)' and P(y) coincide, this mean€RSP(y)) ¢ CRYy), as
we wanted to show. O

We have now assembled most of the ingredients for showingaimamain result,
Theorem3.4, follows from the rigid case. The key lemma for this reductio the rigid
case is as follows.

Lemma5.15 Letx € B, be a non-periodic, reducible braid. ét= ||A[|2—||A]?.
For every elemeny € SGNI(x) there is somen < N such that eithey™ is rigid, or
P(y™) is rigid, admits essential reduction curves, and all iteesal reduction curves
are essential reduction curvesyof

Proof Let x € B, be a non-periodic, reducible braity = ||A[® — [|A]]? and

y € SGN(x). By Proposition5.11 there is some powey™ with m < N such that
R(Y™ > 0 andR(y ™) > 0. Notice also thay™ € SQx™). Hencey™ satisfies the
hypothesis of Propositiortis10and5.14, soP(y™") is rigid andCREP(y™) ¢ CRy™).

If CRP(Y™)) # 0, the result follows.
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Suppose on the contrary theRP(y™) = (). This means thaP(y™) must be either
periodic or pseudo-Anosov. It cannot be pseudo-Anosovi asmmutes with the
non-periodic, reducible braig™, while pseudo-Anosov elements can only commute
with pseudo-Anosov or periodic ones. Herleg/™) is periodic. Notice thaP(y™)
cannot be a nontrivial power ak, since by Propositio®.10the left normal form of
P(y™ is a product of preferred prefixes, each of them not equdl tby definition.

As the only rigid, periodic braids are the powersf it follows that P(y™) must be
trivial. This is equivalent to saying that" is rigid. O

The following result tells us how to deal with the rigid casg/e assume for the
moment; it will be shown in the next section:

Theorem 5.16 Let 8 € B, be a non-periodic, reducible braid which is rigid. Then
there is some positive integkr< n such that one of the following conditions holds:

(1) B preserves a round essential curve, or

(2) inf(8%) andsup(3¥) are even, and eithek— (5" gk or B—KASWPE) js 4 pos-
itive braid which preserves an almost round essential temucurve whose
corresponding interior strands do not cross.

In particular, some essential reduction curvefois either round or almost round.

We can finally show our main result, assuming that Thedself holds.

Proof of Theorem 3.4 Let x € B, be a non-periodic, reducible braity, = ||A[|® —
||A[]? andy € SGN(x). Let m < N be the integer given by Lemn@15 If y" is
rigid, then by Theorens.16 CRSy™) contains a curve which is either round or almost
round. AsCRYy™) = CRSgy), the result follows in this case.

If y™ is not rigid, then by Lemmd.15 P(y™) is rigid and ) # CRIP(Y™) C
CRYy™) = CRY]y). By Theoremb.16again, some curve i€RFP(y™), and thus in
CRSgy), is either round or almost round.

This shows that every element 8GN (x) admits an essential reduction curve which
is either round or almost round. This implies the result. O

6 Reducible rigid braids

This section is devoted to the proof of Theorériia
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Let 8 € By be a non-periodic, reducible braid which is rigid. Thérbelongs to a
sliding circuit (ass(3) = ), also/(3) > 0 andCRSp) # 0. Also, any power3¥

of 5 is also non-periodic, reducible and rigid, and has the samertdcal reduction
system as3. Notice that for every curv€ € CRSp), there is somé < n/2 such
that [C]ﬁt = [C]. Replacing3! by its square if necessary, it follows that for every
C € CRSX) there is some evek < n such thatsk preserves(], and both inf(¥)
and supg¥) are even.

Fix an innermost curve& € CRS3) and considers® for some everk < n such
that [c]% = [C]. Let A%x,---x be the left normal form of3k, and denotex =
X1 % = A~k Notice thatCRg3) = CRESX) = CRIAPX) = CRSX),
as A? preserves every simple closed curve of the punctured disorederx =
X1 - -+ X% IS non-periodic, reducible and rigid.

DenoteF = CRYx) = CRY3) # 0. AsC is an innermost curve of , the component
XiceF] Must be either periodic or pseudo-Anosov. Recall that ieotal definexicc 7
one conjugatex by the minimal standardizer of to obtainy = X, and the curve
corresponding tc&, namely@, is an innermost essential curve piwhich is round.
By [20, Theorem 4.9}y belongs to its Ultra Summit Set provideddoes. It is not
difficult to modify the proof in RQ] to show thaty belongs toSOX) providedx does.
This is the case, asis rigid. But it is shown in 16] that, if x is rigid, SOX) consists
precisely of the rigid conjugates a&f Hencey is rigid. Moreover, ax preserves(],
Yice A is a conjugate okjcc 7, Which is either periodic or pseudo-Anosov.

Supposq[gef] is periodic. Asy is arigid, positive braid, whose left normal form has
the formyy - --y;, one has thay,y; is left weighted as written. But the left normal
form of Yiée A is determined by the left normal form ¢f, in the sense explained in
Lemmab.4. Hencey[@e]fj must be a rigid, positive braid whose left normal form is the
product ofr (possibly trivial) simple elements. Since the only pertodgid elements
are powers ofA, it follows that eithery[CAE ] is trivial, or Yicer] = Ay (wherek is

the number of strands insid@).

If Y6 7, i trivial, the interior braid ok = A~ (5™ gM associated t@ must also be
trivial, as it is a conjugate 0;1[56]?]. By Proposition2.3 C is either round or almost
round, so TheorerB.16holds in this case.

Suppose thay[(?e]f1 = Al, and notice that = sup(@™) — inf(s™) is even. Let us
consider then-strand braids< andy such thatxX = A" andyy = A". We remark
thatx’ andy are basically the inverses rfandy, multiplied by some even power df

so that their infimum becomes 0. Hendeandy' are positive, rigid braids of infimum
0 and canonical length, whose canonical reduction systems coincide with those of
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andy, respectively. Letrv be such thatv 'xa = y. Sincea A'a = A" asr is
even, we obtain that X a =y . Moreover,)/[éeﬁ is trivial. Hence, the strands af
interior toC do not cross. By Propositiad 3, C is either round or almost round. Now
notice thatX' = x 1A" = g~MAN(EM+r — g3-mAsupE™)  Hence Theorens.16also
holds in this case.

It only remains to prove Theorem16in the case in whiclhxcc 7} is pseudo-Anosov.

Lemma 6.1 Letx € B,. Given two elementy,z € SQX), there is a sequence of
conjugations
y:a1Aa2i>Q3...i>ar+1:Z

such that for every = 1,...,r one hasniy1 = of € SQX), and eithers < «(«j) or
s < o h).

Proof This proof follows the ideas 9] 13, 4]. First, we can assume théfy) > 0,
otherwise SQx) = {AP} for somep, and the result becomes trivial 3s= z.
Now y andz are conjugate since they belong$&(x). Multiplying any conjugating
element by a sufficiently large power &, it follows thatz = y* for some positive
elementa. This conjugating element can obviously be decomposed into a product
of indecomposableonjugating elements, thatis,= s; - - - &, whereaj 1 = y*S €
SQx) fori = 1,...,r, ands is positive and cannot be decomposed as a product
of two nontrivial positive elements, = ab such thata? € SQXx). Notice thats
must be simple, otherwise we could take= 5 A A (which by Theoren.1 satisfies
of € SQx)) to decompose; . We must show that such an indecomposable element
must be a prefix of either(cy) or (o 2).

Denotet = s A 1(at). We claim that ¢;)! € SQx). Indeed, by definition, one has
o) = AN (o LA @) | Sincea; € SAX), itis clear thain® € SQ() and that
pfortanme ) € SQx). By Theorem4.1, QD) (AN TaT ) € SQX).
But o = aj1 € SQX), so applying Theorem.1again one ha&f(arl)AS = (i)t €
SQX), as we wanted to show.

We then have a positive prefik < s such that ¢;)! € SQx). Sinces is an
indecomposable conjugator, it follows that eitier 5 ort = 1. In the former case
s =t =5 Ao 1), which impliess < «(a;1), hence the result holds in this case.
Suppose then that = 1. This means(o; ) A's = d(p(ai)) A's = 1, which is
equivalent to say thap(aj)s is left weighted as written. Lef\Pa; - - - a; be the left
normal form ofoj. We have then shown that s is left weighted as written, so
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APa; - - - a5 is the left normal form ofeys. But we know thatai,; = S tais €
SQX). In particularf(ajy1) = r, whereajy 1 = q—lApal---as. This implies that
7P(s) < a1 - - - &S, where the right hand side is in left normal form and the lefdh
side is a simple element, hene&(s) < a;, thatis,s < 7 P(a1) = ¢(«), So the result
also holds in this case. O

Finally, here is the result that completes the proof of Thets.16

Proposition 6.2 Letx be a reducible rigid braid, and Iét be an invariant curve of
whose corresponding interior braid is pseudo-Anosov. Thénround.

Proof We know from [L6] that SAX) is the set of rigid conjugates of, hence
x € SAX), and we know from Corollarp.3that there is an elemefitc SQx) whose
reduction curves are all round. By Lemrd there is a chain of conjugations

. t t t
X=a1 — ap —23 g+ —= arp1 = X

such that for every = 1,...,r one hasaj, 1 = af € SQX), and eithert; < () or
ti < o h).

Suppose thaf is not round. This means that the cui®eof X corresponding t@ is
a round curve which loses its roundness after the applicatid; - - - t;. This implies
that there must be two rigid braidsz € SQ)X) (preciselya; and a1 for somei),
conjugate by a simple elemest{(preciselyt;), a round invariant curv€y of y whose
corresponding interior braid is pseudo-Anosov, and theesponding invariant curve
of z, [C;] = [Cy]®, whichis not round. Moreovesis either a prefix oi(y) or a prefix of
u(y~1) (ass = tj). Since the inverse of a pseudo-Anosov braid is also ps&undsov,
and the rigidity and reduction curves of a braid are presebyetaking inverses, we
can replacey andz by y~* andz ! if necessary, so we can assume thig a prefix

of oy~ ).

Since taking powers and multiplying rigid braids By are operations which do not
affect their rigidity, their initial factors, their invaant curves or the geometric type of
their corresponding interior braids, we can further asstiraty andz are pure braids,
and that inf¢) = inf(2) = 0.

Suppose that some nontrivial positive prefix< s is such that (Ey]g is round, and
denote byp the minimal positive element such that< p andy” is rigid (equivalently,
y? € SAX)). Sinces is an indecomposable conjugator, we must have s. But we
will now see thatp sends (] to a round curve, whiledy]” = [Cy]° = [C/] is not
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round. A contradiction that will imply thas' = 1. Indeed, by ]7, Algorithm 2, step
3(b)], p can be computed in the following way: first, whije ¢ SS¥), replaces’ by

g (1 v (yS) LAY oy A—S“W) .

Notice that the three elements 37§ A"Y andy¥ A=SU» send {,]° to a round
curve. In the terminology ofZ0], the three elements belong to teandardizerof
[Cy]d. Since it is shown inZ0] that the standardizer of a curve is closed undeiit
follows that each step of this procedure replagésy a bigger element, which belongs
to the standardizer ofC[]. Hence we can assume thgf € SS®). The second
step to compute, explained in 16, Theorem 2], consists of applying iterated sliding
to y¢ until one reaches a rigid element. Multiplyirgyon the right by all conjugating
elements, one obtaing. But each conjugating element for sliding maintains the
roundness of our distinguished curve, from Proposifich Therefore,p sendsCy to

a round curve, butdy]” = [C;] is not round. A contradiction. It follows that = 1,

or in other words, there is no nontrivial prefix< s is such that (Ey]g is round.

Let p,p+ 1,...,q be the punctures insidg,. We will collect the strands o into
three setsL = {1,...,p— 1}, ={p,p+1,...,9} andR={q+ 1,9+ 2,...,n},
depending whether they start to the left, inside or to thatrgf Cy. Since every
prefix of s must deform the round curvg,, and the braids is simple, it follows that
the strands irL (resp. inl and inR) do not cross each other & since this would
imply that two consecutive strands in(resp. inl and inR) would cross ins, and
the corresponding crossing would be a prefixsgireserving the roundness 6§, a
contradiction. Also, no strand &fin L can crossll the strands if, since this would
imply that the strangb — 1 would cross all the strands In and thenop_10p - - - 0g—1
would be a prefix ofs preserving the roundness 6§, a contradiction. In the same
way, no strand of in R can crossall the strands in. In summary,s is a simple
braid of a very particular form: some strandslLoimay cross some (but not all) strands
of I, some strands dR may cross some (but not all) strandslofind any two strands
belonging to the same group (I, or R) never cross.

Recall thaty and z are rigid, and lety; - - - y; andz - - - z. be their left normal forms.
Fori=0...,r, we denote(y;] = [C,P’*"¥ and [C;;] = [C]*"%. By Theoremb.1,
Cy,i is round for every, and by the rigidity ofz it follows thatC,; is not round for any.
Now, fori = 0,...,r, consider the braig = (y;*-- -yl‘l)s(zl -+-Z), which is theith
transport ofs under cycling (seelfp]). Notice thatsy = s = s. As transport under
cycling preserves prefixes, products, greatest commoasatiyi and the positivity and
simplicity of braids [L5], it follows thats is a simple element far=0...,r. Hences
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is a simple element that conjugates the rigid brgid - - - y;y1 - - - y; to the rigid braid
Zy1--%7Z1---Z, and sends the round cur@; to the non-round curvé,;.

We claim that fori = O,...,r, the elements is an indecomposable conjugator.
Indeed, if this is not the case, we have a decomposkien ajb;, wherea, andb; are
nontrivial simple braids, such thaf (yi11---yry1- - - Vi)a is arigid braid, whose left
normal form will have the formwi 1 ---wywy ---w;. We can apply transport under
cycling to & [15] and we obtainwijrlla;yprl. As g is conjugating a rigid braid to
another rigid braid, the second transport&fwill be a.(Z) = wijrlzwijrlla;yi+1yi+2.
Iterating this process, it follows that theth transport ofa; under cycling will be
a” =t wrtwe e wsh)aiiey Yy oY) = @& Soa is preserved byth
transport. This implies that no transportafcan be trivial (since the transport of the
trivial braid is trivial). In particular ther(—i)th transport ofg;, that we will denotea, ,

is not trivial. In the same way, theth transport ofb;, that we will denoteby, is not
trivial. Hence, by the properties of transpoat, and b, are simple, nontrivial braids
such that® isrigid, anda;b; = s (asabj = 5 and transport preserves products). This
contradicts the indecomposability ef and shows thag must be an indecomposable
conjugator fori = 0,...,r.

Recall thats sends the round curvéy; to the non-round curve,;. As s is an
indecomposable conjugator, an argument analogous to theverused fors, tells us
that no prefix ofs can sendCy; to a round curve. Hence, eashis a very special
simple braid which has the same form, with respeditg ass has with respect t6y.

Notice that we have the equalities:

@ Gr-w)s =1 Y-1)s-az) == 1 ¥)s@E41---z) =

= Sz 7).
We are now going to deal with the strands in the factars..,y; andsy,...,S. In
order to avoid confusion, we will refer to the strands in eatlthese factors by the
position they have at the beginning of the brgid - - y;s, or any of the alternative
factorizations shown ird). For instance, if we refer to the strakdf s, we mean the
strand ofs which starts at positiok at the beginning ofy; - - - vi)s(z+1 - - - z). Notice
that, asy is pure, there is no ambiguity with the names of the strands-of) = 5.

Since [’;] = [C,]® is not round, some strand afin either L or R must cross some
strand inl. Suppose that some strandlindoes (the other case is symmetric). Then
the rightmost strand of in L, that is, the strangh — 1 of s, must cross some strands
in 1. Let us define the sdp to be the set of strands inwhich are crossed is by the
strandp — 1. In the same way, define for= 1, . .., r, the setl; to be the set of strands
insideCy; which are crossed, ig, by the rightmost strand that starts to the lefCof.
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We will show thatl; C I;41 fori =0,...,r — 1. Indeed, since is rigid, one has
AUY ™) =yiAuy ) =1, and sinces < «(y 1), one also hag; As = 1 (applying
transport under cycling to this equality one hyag s_1 = 1 for all i). Now the strand
p — 1 of s crosses some strandslinin particular, the strands — 1 andp cross ins,
hence they do not cross . Asy, preserves the roundness@f, this implies that
the strandp — 1 of y; crosses no strand ih (since either it crosses all of them or it
crosses none).

We claim thatysA A = y15;. Indeed, by definitiors; = yl‘lszl, that isy;s; = sz.
Recall thats < «(y~1) = 9(y;), which means thay;s is simple. The transport under
cycling (based ay;y; - - - ¥y 1) of this simple braid is precisely;s1, SOy1S1 = Sz is
simple. Theny;s1 =y1SIAA =Sz AA =SZAA)ANA =SZASAANA =SZANA =
ysA A, showing the claim.

Now recall that the strangd— 1 of y; crosses no strand in As s~lys= zis a positive
braid, s < ys. Sinces is simple,s < ysA A = y15 by the above claim. This means
that the strands crossed lpy— 1 in s must also be crossed s, but they are not
crossed iny;, hence they are crossedsn. Notice that the strang — 1 of s does not
need to be the rightmost strand to the lefipf at the beginning o§;. Nevertheless,
since neither the strands to the left@f; nor the strands insid&, ; cross ins, if some
of the strands to the left afy ; crosses an interior strand, then the rightmost strand to
the left of Cy ; also crosses it. Therefore, the strands which are cross@d-b¥ in s
are crossed by the rightmost strand to the lefCpf in s;. In other words,lo C 5.
Applying the same argument to the rigid braigs- - y;y1---yi_1 fori =2,...,r, it
follows thatlyg C 11 C --- C I,. Since by definitionl, = lp, we have the equality
li =1 foralli,je{0,...,r}.

Notice that 0< #(lp) < q— p+ 1, that is,lp contains some interior strands but not
all of them. Let us now defindy = I\lp. We will see that no strand df crosses a
strand ofJp in the whole braidy. Indeed, since the strands lin= 1y are the strands
in s crossed by the rightmost strand to the left@f;, it follows that they are the
leftmost #(o) strands insideCy; at the beginning of eack, that is, at the end of
eachy,_1. Therefore, fori = 1,...,r, the leftmost #() strands insidey; at the
end of eachy; are always the same, meaning that they never crogswiith the other
interior strands, that is, with the strandsJdf But this implies that the interior braid
of y corresponding ty is split, that is, the generatary,) does not appear in any
positive word representing that interior braid. This cadtcts the fact that the interior
braid is pseudo-Anosov, since a pseudo-Anosov braid caer mevsplit. O
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