
Algebraic & GeometricTopology XX (20XX) 1001–999 1001

Reducible braids and Garside theory

JUAN GONZÁLEZ-MENESES

BERT WIEST

We show that reducible braids which are, in a Garside-theoretical sense, as simple
as possible within their conjugacy class,are also as simpleas possible in a geometric
sense. More precisely, if a braid belongs to a certain subsetof its conjugacy class
which we call the stabilized set of sliding circuits, and if it is reducible, then its
reducibility is geometrically obvious: it has a round or almost round reducing
curve. Moreover, for any given braid, an element of its stabilized set of sliding
circuits can be found using the well-known cyclic sliding operation. This leads to
a polynomial time algorithm for deciding the Nielsen-Thurston type of any braid,
modulo one well-known conjecture on the speed of convergence of the cyclic
sliding operation.

20F36, 20F10; 20F65

1 Introduction

There are currently two known approaches to the problem of determining algorithmi-
cally the Nielsen-Thurston type of a given braid, i.e. deciding whether it is reducible,
periodic, or pseudo-Anosov [12, 7, 11]. Since periodicity of braids is fast and easy to
detect [19], the main difficulty is to determine whether a given braid isreducible.

One approach is due to Bestvina and Handel [2], and uses the theory of train tracks.
The algorithmic complexity of the Bestvina-Handel algorithm is still mysterious – this
is particularly regrettable since it seems to be fast in practice, at least generically.

The second approach, which was initiated by Benardete, Gutiérrez and Nitecki [1], and
developed by Lee and Lee [20], uses the Garside structure, as exposed in [9], on the
braid group. Indeed, it is shown in [1] that round reduction curves are preserved by
cycling and decycling. As a consequence, if a given braidx ∈ Bn is reducible, then
there is at least one element of its super summit set [9] which has a round reduction
curve, and whose reducibility is thus easy to to detect. The drawback of this approach
is that the algorithm has to compute the complete super summit set of x, and this is
very slow [15].
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In order to have any hope of obtaining a polynomial time algorithm from the second
approach, we would need to replace the super summit set ofx with another set satisfying
the following properties: (1) It is an invariant of the conjugacy class ofx, (2) an element
in this subset can be computed efficiently, and (3) foreveryelement in this subset, the
reducibility or irreducibility can be detected rapidly. Super summit sets satisfy the first
two properties, but not the third.

In the special case of the four-strand braid group, the supersummit set can actually do
the job [6]. In the general case of the braid groupBn (with n ∈ N), the ultra summit
set defined in [15] can do the job, but only under certain conditions. It is shown in [20]
that if a braid is reducible and theexternal componentis simpler (from the Garside
theoretical point of view) than the whole braid, then one canrapidly detect reducibility
of any given element in its ultra summit set, as every elementin this set has a round
reduction curve. Hence, under this hypothesis, the ultra summit set satisfies (1) and
(3) above. It is a well-known conjecture [3] that it also satisfies (2).

The aim of the present paper is to construct a subset of any conjugacy class which
satisfies (1) and (3) above, and is conjectured to also satisfy (2), just like Lee and
Lee’s subset [20], but without their technical hypothesis. In particular, we prove the
existence of a polynomial time algorithm for deciding the reducibility or irreducibility
of a given braid, modulo a well-known conjecture (Conjecture 3.5), again concerning
(2) above, which we leave open.

Where Benardete, Gutiérrez and Nitecki talk about round curves, we have to admit a
somewhat larger family of reducing curves which we callalmost round curves. Also,
the subset of the conjugacy class for which our result holds is neither the super summit
set nor the ultra summit set, but a slightly more complicatedclass, which we call them
times stabilised set of sliding circuits, denotedSC[m](x), wherem is a positive integer.

We will show that one can conjugate a given elementx of Bn to an element inSC[m](x),
by applying iteratively a special kind of conjugation called cyclic sliding. This iterated
cyclic sliding procedure is a Garside-theoretic tool whichsimplifies (from an algebraic
point of view) the braid within its conjugacy class, and which has already been used to
solve the conjugacy problem in braid groups and Garside groups [16, 17].

Further, we will show the following result (where∆ denotes the half twist of all
strands, so that||∆|| = n(n− 1)/2):

Theorem 3.4 Let x ∈ Bn be a non-periodic, reducible braid. There is some m6
||∆||3 − ||∆||2 such that every element y∈ SC[m](x) admits an essential reduction
curve which is either round or almost round.
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Theorem3.4is telling us that cyclic sliding not only simplifies braids from the algebraic,
but also from the geometric point of view, since the reduction curves, which can be
terribly tangled inx, become either round or almost round after iterative applications
of cyclic slidings.

Moreover, we prove that it can be efficiently checked whetherthere are round or almost
round curves which are preserved by a braidy like in the statement of Theorem3.4.
More precisely, invariant round curves can be efficiently detected by [1]. For almost
round curves the situation is not the same: as the number of such curves grows
exponentially with respect to the number of strands, it is not a good idea to try to check
them one by one. To bypass this difficulty, we show the following particular case:

Theorem 2.9 There is an algorithm which decides whether a given positivebraid x
of lengthℓ with n strands preserves an almost-round curve whose interior strands do
not cross. Moreover, this algorithm takes time O(ℓ · n4).

Notice that Theorem2.9cannot immediately be applied to detect the reduction curves
promised by Theorem3.4, for two reasons: firstly, none of these curves are necessarily
x-invariant (they may be permuted byx), and secondly, even if they were, there would
be no guarantee that their interior strands do not cross. Moreover,x is not necessarily
positive (although this can be easily achieved just by multiplying x by a suitable power
of ∆2). There is, however, a situation which can be reduced to the cases that can be
checked using Theorem2.9. This is the situation where the given braid isrigid [3].

Theorem 5.16 Let β ∈ Bn be a non-periodic, reducible braid which is rigid. Then
there is some positive integer k6 n such that one of the following conditions holds:

(1) βk preserves a round essential curve, or

(2) inf(βk) and sup(βk) are even, and either∆− inf(βk)βk or β−k∆sup(βk) is a pos-
itive braid which preserves an almost round essential reduction curve whose
corresponding interior strands do not cross.

In particular, some essential reduction curve forβ is either round or almost round.

The powerk 6 n in the above statement is needed to pass from invariantfamilies of
curvesto invariantcurves, which is what is detected in Theorem2.9, and also to assure
that inf(βk) and sup(βk) are even. We then see that if the braidβ under study is rigid
and admits essential reduction curves, we can find them in oneof the following two
ways: If one these curves is round, we can apply the well knownalgorithm in [4].
Otherwise, we will find them by applying Theorem2.9to ∆− inf(βk)βk (where inf(βk)
is even) and toβ−k∆sup(βk) (where sup(βk) is even) fork = 1, . . . ,n, as these braids
have the same essential reduction curves asβ .
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The next aim is to construct, for any giveny ∈ SC[N](x), a rigid braid whose reducing
curves are also reducing curves ofy. This serves two purposes at once: it allows us
to use Theorem2.9 to search for reducing curves in polynomial time, and it alsogives
the key to proving Theorem3.4.

In order to do so, we will, for every braidy ∈ SC[N](x), define itspreferred conjugator
P(y), which commutes withy. We will prove:

Lemma 5.15 Let x∈ Bn be a non-periodic, reducible braid. Let N= ||∆||3−||∆||2 .
For every element y∈ SC[N](x) there is some m6 N such that either ym is rigid, or
P(ym) is rigid, admits essential reduction curves, and all its essential reduction curves
are essential reduction curves of y.

From the above results, we obtain the following algorithm todetermine whether a given
element ofBn is periodic, reducible or pseudo-Anosov:

Algorithm 1 To determine the geometric type of a braid.

Input: x ∈ Bn.

(1) If xn−1 or xn is a power of∆, return ‘x is periodic’ and stop.

(2) Compute an elementy ∈ SC[N](x), whereN = ||∆||3 − ||∆||2 .

(3) If y preserves a family of round curves, return ‘x is reducible, non-periodic’ and
stop.

(4) For m= 1, . . . ,N do the following:
If either ym is rigid or P(ym) is rigid, apply the algorithm in Theorem2.9to the
braids mentioned in Theorem5.16(2), with β = ym or β = P(ym), respectively.
If an almost round reduction curve is found, return ‘x is reducible, non-periodic’
and stop.

(5) Return ‘x is pseudo-Anosov’.

Notice that in the first step we check whether the braidx is periodic or not. If it is not,
we only need to know whetherx is reducible or pseudo-Anosov, the former being true if
and only if x preserves some family of disjoint non-degenerate curves (having already
excluded the periodic case). If the braid is reducible, Lemma5.15, Theorem5.16and
Theorem2.9ensure that we will find some essential invariant curve for a power ym of
a conjugatey of x, by applying steps 2, 3 and 4 of the algorithm. Finding such a curve
also implies thaty has an invariant family of essential curves, thus so doesx. Hence
one will find such a curve if and only ifx is reducible. Therefore, if the curve is not
found, in step 5 we declare thatx is pseudo-Anosov.
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The computational complexity of each step of this algorithmis bounded by a polynomial
in the length and the number of strands ofx, with one exception: the second step of
this algorithm (conjugatingx to y ∈ SC[N](x)) is not currently known to be doable in
polynomial time, but it is conjectured to be so (c.f. Conjecture3.5).

The plan of the paper is as follows. In Section2 we introduce the basic notions of
reducible braids and reduction curves, including the proofof Theorem2.9, and of
Theorem3.4 in the case where the interior braid is trivial. In Section3 we switch to
the algebraic viewpoint, explaining the notion of cyclic sliding and sliding circuits,
and introducing the setSC[m](x). Exploring the relation between sliding circuits and
the powers of a braid, in Section4, we show how to compute one element inSC[m](x)
for every x and m. We then proceed to study, in Section5, the relation between the
reduction curves, on the geometric side, and the sets of sliding circuits, on the algebraic
side. At the end of this section, we show that Theorem3.4holds in general if it holds
for the special case ofrigid braids. Section6 treats the case of reducible rigid braids,
finishing the proof of Theorem3.4by showing that if a rigid, reducible braid has some
interior braid which is pseudo-Anosov, then its corresponding reduction curve is round.

Acknowledgements:We wish to thank Volker Gebhardt for many useful discussions
on this and related problems. Juan González-Meneses was partially supported by
the Spanish Projects MTM2007-66929, MTM2010-19355, P09-FQM-5112, FEDER,
and under Australian Research Council’s Discovery Projects funding scheme (project
number DP1094072).

2 Round and almost round reduction curves

2.1 Definitions and notations

2.1.1 Canonical reduction system and complexity of curves

Let Bn be the braid group onn strands, where we fix as base points the setPn =

{1, . . . ,n} ∈ C. Every elementx ∈ Bn can be seen as an automorphism ofDn =

D2\Pn, whereD2 denotes the disk inC with diameter [0,n+ 1]. Thereforex induces
an action on the isotopy classes of 1-manifolds inDn.

We will consider the action of braids on isotopy classes of simple curvesfrom the
right. That is, we will denote the isotopy class of a simple curveC by [C], and we will
write [C]x , meaning the isotopy class of the curve obtained fromC after applyingx
considered as an automorphism of then-times punctured disk. By abuse of vocabulary,
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we shall often say “curves” when we really mean “isotopy classes of curves”. However,
we shall carefully distinguish the notationsC and [C].

A simple closed curveC in D2\Pn is said to benon-degenerateif it encloses more
than one and less thann points of Pn, and it is said to beround if it is homotopic to
a geometric circle. It is clear that non-degeneracy and roundness are properties which
depend only on the isotopy class of a curve, so we can naturally say that some isotopy
class [C] is non-degenerate, or is round. A braidx ∈ Bn is said to bereducible if
[C](xm) = [C], for some positive integerm and some non-degenerate curveC . Such
a curveC is said to be areduction curvefor x. We say that a reduction curveC is
essentialif every other reduction curve forx can be isotoped to have empty intersection
with C [5].

The set of isotopy classes of essential reduction curves of abraid x is called the
canonical reduction systemof x, and is denotedCRS(x). It is well known thatCRS(x) =
∅ if and only if x is either periodic or pseudo-Anosov [5]. In other words,CRS(x) 6= ∅

if and only if x is reducible and non-periodic. Since it is very easy to determine whether
a given braidx ∈ Bn is periodic (it suffices to check if eitherxn−1 or xn is equal to a
power of the half twist∆), the question of determining the geometric type of a braid
reduces to the study of its canonical reduction system. We will then be interested in
reducible, non-periodic braids, and in their essential reduction curves.

We will say that a non-degenerate simple curveC in D2\Pn is almost roundif there
exists a simple elements (a permutation braid) such that [C]s is round. This is
equivalent to say thatC can be isotoped inD2\Pn to a curve whose projection to the
real line has exactly one local maximum and one local minimum.

There is an alternative characterization of almost round curves which will also allow
us to introduce a notion ofcomplexityof a simple closed curve in the punctured disc.
Notice that a curve [C] can always be transformed into a round curve by a suitable
automorphism of the punctured disc, that is, by a suitable braid y. Since the full
twist ∆2 preserves any given curve, it follows that∆2kβ also transforms [C] into a
round curve, for every integerk. Hence we can assume thaty is a positive braid, as
every braid becomes positive after multiplication by a sufficiently high power of∆2.
It is shown in [20] that given a familyF of mutually disjoint simple closed curves in
D2\Pn, there is auniquepositive braidy ∈ Bn such that [F ]y is a family of round
curves, and such thaty has minimal length among all positive braids satisfying this
property (actuallyy is a prefix of any other positive braid satisfying this property).
This braidy is called theminimal standardizerof F . If F consists of a single curveC ,
we will call y theminimal standardizerof C .
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Reducible braids and Garside theory 1007

Now recall that thesimple braids(or permutation braids) are those positive braids for
which every pair of strands cross at most once, and thatℓ(x), the canonical length of
a braidx, is the minimal number of simple factors into whichx can be decomposed,
not counting factors equal to the half twist∆ – see also Section3. Alternatively, the
canonical lengthℓ(x) is the number of factors different from∆ in the left normal form
of x.

Definition 2.1 Given a simple closed curveC in the punctured disc, we define the
complexityof C to be the canonical length of the minimal standardizer ofC .

In other words, the complexity ofC is the smallest possible canonical length of a
positive braid sending [C] to a round curve. Notice that this definition could be
equivalently expressed the other way around: the complexity of C is the smallest
possible canonical length of a positive braid sending a round curve to [C].

The curves of complexity 0 are the round curves, and the curves of complexity 1 are
those which become round by the action of a simple element: these are precisely the
almost round, not round curves.

2.1.2 Decomposition of a braid along a family of curves

Reduction curves allow us to decompose a braid into simpler braids. In fact, several
procedures for specifying such a decomposition are conceivable, but we shall use the
procedure given in [18], which we briefly explain now.

Let x ∈ Bn, and letF be a family of disjoint simple closed curves inD2\Pn. Let y
be the minimal standardizer ofF , and letx̂ = y−1xy=: xy and F̂ = Fy. Notice that
if x preserves [F ], then x̂ preserves [̂F ] = [F ]y , which is a family of round curves.
However, even ifx does not preserve [F ], it can still happen that̂x sends [̂F ] = [F ]y

to a family of round curves (not necessarily [F̂ ] itself). In this case we can define for
every curveC ∈ F ∪ {∂(D2)}, a braidx[C∈F ] , called thecomponent of x associated
to C in F , as follows.

For every subsetI ⊂ {1, . . . ,n}, we can define thesubbraid (̂x)I to be the braid on
#(I ) strands obtained from̂x by keeping only those strands which start atI . Notice
that this yields a well-defined element ofB#(I) , even if the strands starting atI do not
end atI – we just require the strands of (x̂)I to cross in the same way as the strands in
x̂ starting atI , for details see [18].

Now given a curveC ∈ F ∪ {∂(D2)}, let XC be the only connected component of
D2\F which is enclosed byC , and such thatC ⊂ XC . Then defineDC = XC∪C , which
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is homeomorphic to a punctured disc. Notice thatDC\DC is a family of points and
curves, namely the outermost curves enclosed byC , and the points which are enclosed
by C but not enclosed by the mentioned curves.

Similarly, we letX
Ĉ

be the only connected component ofD2\F̂ which is enclosed by

Ĉ , and such that̂C ⊂ X
Ĉ

. Then defineD
Ĉ
= X

Ĉ
∪ Ĉ . This is a closed round disk with

some points and some closed round disks removed from its interior. Also, D
Ĉ
\D

Ĉ
is a

family of points and round curves.

Definition 2.2 [18] Let x ∈ Bn and letF be a family of disjoint simple closed curves
in D2\Pn, whose minimal standardizer isy. Let x̂ = y−1xy, and suppose that̂x sends
[F̂ ] = [F ]y to a family of round curves. LetC ∈ F ∪ {∂(D2)}. Let I ⊂ {1, . . . ,n}
consist of the indices of

• those punctures that appear inD
Ĉ
\D

Ĉ
, and

• for each curve inD
Ĉ
\D

Ĉ
, exactly one puncture chosen arbitrarily among the

punctures enclosed by that curve.

Then we definex[C∈F ] , the component ofx associated toC in F , as the subbraid (x̂)I .
If F = CRS(x), the mentioned component is just denotedxC .

We remark thatx∂(D2) is usually called theexternal braidassociated tox, and is
denotedxext.

2.2 Canonical reduction curves of reducible, positive braids with trivial
interior braids are either round or almost round

The aim of this section is to prove the following result:

Proposition 2.3 If C is an essential reduction curve for a positive braidx, with
[C]x = [C] , and the strands ofx enclosed byC do not cross each other, thenC is either
round or almost round.

In order to show this result, it suffices to prove that such a curve C cannot be of
complexity two, i.e., it cannot be the result of a round curveafter the action of a braid
of canonical length two, without being round or almost round.

Our first aim is to understand what a curve of complexity two looks like (for detailed
discussion of more general questions see [23]). We shall first study smooth arcs
α : I → D2 in the diskD2 defined on the unit intervalI = [0,1]; we shall restrict
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our attention to smooth arcsα which start and end in puncture points, which may also
traverse some puncture points, but whose tangent directionis horizontal and pointing
to the right, at every puncture point. For brevity, we shall call themarcs traversing
some puncture points horizontally.

When studying diffeotopy classes of such arcs, we shall always mean diffeotopies
through families of arcs which are all supposed to traverse the puncture points hori-
zontally. We shall say that a simple closed curve or an arc traversing some puncture
points horizontally isreducedif it has the minimal possible number of intersections
with the horizontal line, and also the minimal possible number of vertical tangencies
in its diffeotopy class.

The action of the braid group on the set of diffeotopy classesof arcs traversing some
puncture points horizontally, specifically of a braidx on an arcα, is defined as follows:
x induces a puncture dance, which in turn can be extended to a diffeotopy ofα in such a
way that at every moment the intersection of the arc with the punctures is horizontal. At
the end of the dance we obtain a new arc traversing some puncture points horizontally,
which is well-defined up to diffeotopy. This isαx .

For an arcα traversing some puncture points horizontally, we define thetangent
direction function tα : I → R/2Z as the angle of the tangent direction ofα against the
horizontal, divided by−π . In particular, if the arc goes straight to the right inα(t),
then tα(t) = 0+ 2Z, if it goes straight down thentα(t) = 1

2 + 2Z, and if it goes to the
left then tα(t) = 1+ 2Z.

For every arc traversing some puncture points horizontally, we have a unique lifting of
the functiontα to a functioñtα : I → R with t̃α(0) = 0. Finally, if r : R → Z denotes
the rounding function, which sends every real number to the nearest integer (rounding
down n+ 1

2 ), then we define the function

τα : I → Z, t 7→ r ◦ t̃α(t)

which one might call the rounded lifted tangent direction function.

Notice that, ifα is an arc such thatτα takes the value 0 in a neighbourhood of the
points where the arc traverses a puncture, then the same is true for its imageαx under
the action of any braid.

In order to be able to characterize reduction curves of complexity zero, one, and two,
we give now a detailed description of the puncture dance associated to a positive
permutation braid. In a first step, the punctures make a smallvertical movement, with
the puncture in positionk ∈ Z moving to positionk − k · ǫ · i ∈ C, for some small
ǫ > 0. In a second step, the punctures make a horizontal movement, permuting their
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1010 Juan Gonźalez-Meneses and Bert Wiest

R-coordinates. In a third step, the punctures make again a small vertical movement,
lining them back up on the real line.

Now, reduction curvesC of complexity zero can be characterized as curves enclosing
an arc which lies entirely in the real line, and which traverses all the punctures in the
interior of C . Notice thatC can be seen as the boundary of a regular neighborhood of
this arc.

Suppose now that a curveC has complexity one. Then it is obtained from a round
curveC0 by the action of a simple braids. We can assume that the punctures enclosed
by C0 (which are consecutive) do not cross ins, as those crossings could be removed
from s without modifying its action onC0. Hence, from the above description of
positive permutation braids, we see that reduction curvesC of complexity one can be
characterized as follows: there exists a smooth arcα disjoint fromC , traversing all the
punctures in the interior component ofD2\C horizontally such thatτα is the constant
function 0. (We are going to say such an arc isalmost horizontal.)

The action by a positive permutation braid transforms an arcα with τα ≡ 0 into
an arcα′ which, after reduction, has the following property: by an isotopy of D2

that moves then puncture points only in the vertical direction up or down,α′ can
be transformed into an arc whose imaginary coordinate is monotonically decreasing.
Therefore, reduction curvesC of complexity two can be characterized as follows: there
exists a smooth arcα′ disjoint from C but traversing horizontally all the punctures in
the interior component ofD2\C , such thatτα′ only takes the values 0 and 1 (for a
more detailed proof see [23]).

One important property is that if a braidx preserves a curveC of complexity 2, and
the strands insideC do not cross inx, then the mentioned arc is invariant byx:

Lemma 2.4 Let x ∈ Bn and letC be a curve such that[C]x = [C] . Suppose that the
strands enclosed byC do not cross inx. Let α be an arc traversing horizontally some
punctures enclosed byC . Thenαx = α.

Proof Let C0 be a round curve and lety ∈ Bn be such that [C]y = [C0]. Consider the
braid z= y−1xy, and the arcαy. Notice that [C0]z = [C0]y−1xy = [C]xy = [C]y = [C0].
Hencez preserves the round curveC0. Moreover, as the punctures enclosed byC do
not cross iny, we can find a representative ofz in which the punctures enclosed by
C0 do not cross. This implies thatz can be represented by a homeomorphism of the
punctured disc whose restriction to the component enclosedby C0 is trivial. As αy is
a curve enclosed byC0, one has (αy)z = αy and thenαx = (αyz)y−1

= (αy)y−1
= α,

as we wanted to show.
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We saw above that a curveC of complexity 2 admits a smooth arcα′ disjoint from C

but traversing horizontally all the punctures in the interior component ofD2\C , such
that τα′ only takes the values 0 and 1. Ifx is a braid preservingC in which the
strands enclosed byC do not cross, the above lemma shows that the smooth arcα′ is
preserved byx. We shall call such an arc adescending invariant arc. Notice thatC is
the boundary of a regular neighborhood ofα′ .

Lemma 2.5 Suppose thatx is a positive braid and thatα is an arc traversing horizon-
tally some puncture points. Suppose the arcs correspondingto these punctures do not
cross inx. If αx is the reduced image ofα under the action ofx, then

max
t∈I

ταx(t) > max
t∈I

τα(t) and min
t∈I

ταx(t) > min
t∈I

τα(t)

Proof It suffices to prove this result forx = σi , a single Artin generator. It is an easy
observation that for everyt0 in I , we havetασi (t0) = tα(t0) or tασi (t0) = tα(t0) + 1.
Some examples are given in Figure1.

0

2

3

3
3

3

3
43

0
1

0
−1 0

1 1

0 0

1 1

σi σi σi

σi σi σi

Figure 1: The labels, which represent the values of the function tα , can grow under the action
by a generatorσi , but never go down.

Lemma 2.6 If [C] is an x-invariant closed curve of complexity two, wherex is a
positive braid, and the strands ofx enclosed byC do not cross, then for any prefixx′

of x the curve[C]x′ is of complexity two.

Proof Let α be a descending invariant arc associated toC . By Lemma2.4we know
thatαx = α. Now, the image ofτα is equal to{0,1}, so the same holds for the image
of ταx . Thus Lemma2.5implies that for any prefixx′ of x one has

1 = max
t∈I

ταx(t) > max
t∈I

ταx′ (t) > max
t∈I

τα(t) = 1

and
0 = min

t∈I
ταx(t) > min

t∈I
ταx′ (t) > min

t∈I
τα(t) = 0.

Hence the image ofταx′ is also equal to{0,1}. Therefore [C]x′ has complexity
two.
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Let us introduce some more notation. We shall suppose thatα is a descending invariant
arc of some positive braidx. We suppose also thatα′ ⊂ α is a sub-arc whose two
extremities lie in two interior punctures. We say an exterior puncture isleft-blocked
by α′ if there is no smooth path starting at this puncture point, terminating on the
boundary of the disk, disjoint from the arcα′ , and whose tangent direction has always
a negative real coordinate. Aright-blockedpuncture is defined symmetrically. We
define interior punctures to be both left and right blocked. We shall call the two interior
punctures at the two ends of the arcα′ theextremal(interior) punctures ofα′ .

The proof of Proposition2.3 will be completed by proving that there are no blocked
exterior punctures at all, meaning that the curveC is of complexity 1. First we obtain
two partial results:

Lemma 2.7 Let C be an essential reduction curve for a positive braidx such that the
strands ofx enclosed byC do not cross. Suppose thatα′ is a sub-arc of a descending
invariant arc ofx. Then there cannot be any exterior punctures which are left-blocked
by α′ and to the left of both extremal punctures ofα′ . Similarly, there cannot be a
right-blocked exterior puncture to the right of both extremal punctures.

Proof We shall prove the first statement, the proof of the second oneis very similar.
Moreover, we shall suppose that the starting point of the arcα′ (which in the picture
is “higher” than the end point) is to theleft of the terminal point, see Figure2(a). The
proof of the other case (where the starting point of the arcα′ is to theright of the
end point, Figure2(b)) is similar, one simply has to consider the positive braid rev(x),
which is the image ofx under the anti-isomorphism rev :Bn → Bn which sendsσi to
itself for everyi = 1, . . . ,n− 1 (that is, rev(x) is equal tox written backwards).

We shall argue by contradiction: let us suppose that there issome left-blocked puncture
which is to the left of the left extremal interior puncture (see Figure2(a)). We observe
that the corresponding strands cannot cross in the braidx – indeed, if we think of the
braid x as a dance of the punctures, then during this dance the left-blocked puncture
cannot moveunderthe left extremal interior puncture, for this would requirea negative
crossing, and it cannot moveover it, for this would turn the curveα′ into a curveα′′

which possesses some points where the functiontα′′ takes the value 2. Thus the set
of punctures which are left-blocked byα′ and which lie to the left of both endpoints
of α′ is stable during the whole dance.

Now the vertical line through the left extremal interior puncture, together with the
arc α′ , cuts the disk into a number of connected components, at least one of which
contains some left-blocked punctures to the left of the leftextremal puncture. LetΞ be
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0
1

1
0

0
1

right extremal puncture ofα′

left of both endpoints ofα′

(a)

α′

α

not left-blocked byα′

(b)

α

α′

right-blocked puncture to the
right of both extremal punctures ofα′

left-blocked puncture to the

Figure 2: (a) The starting point ofα′ (the bold line segment) is to the left of the end point. (b)
Vice versa.

the union of all the components containing left-blocked punctures. LetΨ be the union
of Ξ with an initial segment ofα′ long enough to touch all the connected components
of Ξ, but not all of α′ . (So Ψ looks in general like some pearls on a thread, see
Figure3(a).) Let N(Ψ) be a regular neighbourhood ofΨ. We observe thatN(Ψ) is
preserved by the action ofx, and so is its boundary, which we shall callC′ . Moreover,
C′ intersects the canonical reduction curveC (which, we recall, was the boundary of
a regular neighbourhood ofα) twice. This contradicts the definition of a canonical
reduction curve.

(a)(a) (b)

α′

α′

Figure 3: Constructing invariant curves which intersect the curvec: (a) In the case where there
is a left blocked puncture to the left of both extremal punctures, and (b) in the other case.

Lemma 2.8 Let C be an essential reduction curve for a positive braidx such that the
strands ofx enclosed byC do not cross. Suppose thatα′ is a sub-arc of a descending
invariant arcα of x. Also suppose thatα′ does not traverse any interior punctures
(except its two endpoints). Then there cannot be any exterior punctures blocked byα′ .

Proof Again, we shall assume that the starting point ofα′ is to theleft of the end
point, with the other case being similar. Lemma2.7 together with the hypothesis that
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α′ does not traverse any interior puncture imply that any blocked punctures would have
to lie between the left and the right extremity ofα′ . Supposing, for a contradiction, that
such blocked punctures exist, then there must be a pair of them, with a right-blocked
puncture above a left-blocked one (see Figure3(b)). Let us now look at the braidx,
considered as a dance of the punctures.

We claim that the two punctures can never cross, and that theystay between the two
extremal punctures at all times. Indeed, a crossing betweenthe two punctures (while
they both lie between the extremal punctures) would transform the arcα′ into an arc
of complexity 3. Moreover, as soon as one of the two puncturesquits the region
between the two extremal punctures, it becomes a left-blocked puncture to the left
of both extremal punctures, or a right-blocked puncture to the right of both extremal
punctures, which is impossible by Lemma2.7. This proves the claim.

Thus any punctures which, at any moment during the puncture dance, are blocked
by α′ and lie between the left and right extremal puncture ofα′ , keep these properties
throughout the puncture dance. This helps us to construct aninvariant curve in the
following manner: we take the set of all points ofD2 which have points ofα′ both
above and below them (see Figure3(b)). The punctures contained in this region are
precisely those which are left or right blocked byα′ . A regular neighbourhood of the
closure of this set is a disk, or possibly a disjoint union of some disks. The boundary
of each disk intersectsα′ in two points, and hence intersectsC in at least two points.
However, the boundary of the disk isx-invariant, so we have a contradiction with the
requirement thatC belongs to the canonical reduction system.

We are now ready to prove the main result in this section.

Proof of Proposition2.3. (see Figure4). We recall that after an isotopy which
moves punctures only vertically, there is anx-invariant arcα which contains all the
interior punctures (i.e. punctures inside the canonical reduction curveC ), which is
monotonically decreasing in height.

to the left of and belowP

right-blocked exterior punctureP
α′

all interior punctures belowP
must be to the right ofPmust be to the left ofQ

all interior punctures aboveQ

left-blocked exterior punctureQ

Figure 4: The arcα and (bold) its subarcα′ .
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Let us suppose, for a contradiction that there is a blocked exterior punctureP – without
loss of generality we suppose it is a right-blocked one. FromLemma2.7we know that
either all the interior punctures which lieabove Pmust lie to the right ofP, or all the
interior puncturesbelow Pmust lie to the right ofP. Again without loss of generality
we suppose that the latter is the case.

On the other hand,P is right-blocked, so there must be a left-blocked punctureQ
somewhere below and to the left ofP. By the previous paragraph, this puncture must
be exterior. Again by Lemma2.7, all the interior punctures aboveQ must lie to the
left of Q.

But now we have an arcα′ starting at one of the interior punctures above and to the left
of Q, ending at one of the interior punctures below and to the right of P, not traversing
any interior punctures, and yet blocking bothP and Q. This is in contradiction with
Lemma2.8, and terminates the proof of Proposition2.3. �

2.3 Detecting reducible braids with trivial interior braid s

Theorem 2.9 There is an algorithm which decides whether a given positivebraid x
of length ℓ with n strands preserves an almost-round curve whose interior strands do
not cross. Moreover, this algorithm takes timeO(ℓ · n4).

Proof In order to prove this theorem we only have to answer, in timeO(ℓ · n4), the
following:

Question Does there exist an embedded arcα in Dn which has its two extremities
in two of the punctures, which is almost horizontal in the sense that the functionτα
defined in Section2.2 is the constant functionτα ∼= 0, and which is invariant underx
(i.e. αx ≃ α)?

In order to answer this question for any given braidx (with n strands and of lengthℓ),
we shall think of the braid as a dance ofn punctures in the diskD2, where each move of
the dance starts with all punctures lined up on the real line,and consists of an exchange
in a clockwise direction of two adjacent punctures. We shalloften be working with the
closurex̃ of the braid, and this braid corresponds to aperiodicdance of the punctures.
Notice that in the braidxn , every puncture performs at least one complete cycle, and
possibly more, of this periodic dance, in the sense that for every puncture there exists
an integerk between 1 andn such thatxk fixes that puncture.

If an almost horizontal,x-invariant arc exists, then its deformed versions remain always
almost horizontal during the whole dance, by Lemma2.5again. Thus a positive answer
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to the above question is equivalent to the existence of an almost horizontal arc, at every
point in time, connecting two of the punctures, which variescontinuously with time,
and which is invariant under applying one complete period ofthe dance. The two
endpoints of the arc will be called theinterior punctures (because we think of them
as being inside an invariant circle). Notice that these two punctures can never cross
during the dance (because the interior strands do not cross by hypothesis), so it makes
sense to talk about theleft and theright interior puncture.

If an x-invariant, almost horizontal arc exists then, at any moment, for any puncture
lying between the two endpoints of the arc, we have a well-defined notion of the
puncture lyingaboveor belowthe arc.

Lemma 2.10 Suppose we are given a braidx together with a choice of two strands
(the “interior strands”) which are pure (i.e. start and end at the same punctures) and
which do not cross each other. Then anx-invariant, almost horizontal arc connecting
the given two punctures exists if and only if there is a way of labelling, at each of theℓ
timesteps, each puncture by a letter “a” or “ b” (for “above” or “below”), or to leave
them unlabelled, so that the following restrictions are satisfied:

(1) (a) Every puncture lying between the interior punctures hasto carry a label (“a”
or “b”).
(b) Punctures not lying between the two interior punctures are unlabelled.

(2) A puncture preserves its label iñx until its next crossings with an interior
puncture (and punctures which never cross any interior puncture have the same
label for all time).

(3) Rules concerning crossings involving an interior puncture:
(a) If a puncture moves from left to right over the left interior puncture, then
afterwards it must be labelled “a”. Similarly, if a puncture moves from right to
left under the right interior puncture, then afterwards it must be labelled “b”.
(b) A puncture labelled “a” may not move from right to left under the left interior
puncture. Similarly, a puncture labelled “b” may not move from left to right
over the right interior puncture.

(4) A rule concerning crossings involving two punctures which lie between the
interior punctures: if a puncture labelled “a” crosses from right to left under
another puncture, then this puncture must also be labelled “a”. If a puncture
labelled “b” crosses from left to right over another puncture, then thispuncture
must also be labelled “b”.

(5) The invariance rule: the labelling before the first and afterthe ℓth timestep is
the same.
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Proof of Lemma 2.10 If there is an invariant arc, then we obtain a labelling of the
punctures with the required properties by labelling punctures which lie above the arc
by “a” and punctures which lie below the arc by “b”.

Conversely, if a labelling of the punctures with the required properties is given, and
if we construct, at timet = 0, an almost horizontal arc going below the punctures
labelled “a” and above the punctures labelled “b” at that moment, then acting by any
initial segment of the puncture dance up to some timet = T yields again an arc which
is almost horizontal and goes above the punctures labelled “b” and below the punctures
labelled “a” at this momentt = T .

Lemma 2.11 The statement of Lemma2.10remains true if restriction 1(a) is left out,
i.e. if punctures lying between the interior punctures at all times may remain unlabelled.

Proof of Lemma 2.11 Given a labelling satisfying the restrictions of Lemma2.10ex-
cept restriction 1(a), we can construct a new labelling simply by labelling all unlabelled
punctures between the two interior punctures “a”. It is an easy verification that this
extended labelling satisfies the complete list of restrictions.

Note that there aren·(n−1)
2 pairs of punctures, so in order to prove the theorem, it

suffices to construct an algorithm which, for any given pair of punctures, decides in
time O(ℓ · n2) whether there exists a labelling, at each of theℓ time steps, of the
punctures, respecting the restrictions of Lemma2.11, with the two given punctures as
interior punctures.

The algorithm is very simple. We start with then-punctured disk, with two of the
punctures designated as the interior punctures but with allother punctures still unla-
belled. We then perform 2n− 4 times the puncture dance associated to the braidx. At
each of the (2n− 4) · ℓ timesteps we perform the labellings of punctures forced by the
rules of Lemma2.10, specifically by rules 1(b), 2, 3(a) and 4.

It may happen that applying these rules leads to a contradiction, for instance if a
puncture already labelled “a” crosses from right to left under the left interior puncture
(rule 3(b) violated). A contradiction also arises if a puncture has a label “a” but
the puncture which sat in the same positionℓ steps previously was labelled “b”, or
vice versa (invariance rule violated). If such a contradiction occurs, we know that no
coherent labelling exists, so the two chosen punctures cannot be interior punctures of
a reducible braid with trivial interior braid.

If, by contrast, after 2n−4 repetitions of the puncture dance ofx still no contradiction
has arisen, then, we claim, we have succeeded in finding a labelling of x satisfying the
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restrictions of Lemma2.10(except number 1(a)), and this terminates the description
of the algorithm.

Let us now prove the claim we just made. What we need to prove isthat the labelling
that we wrote during the 2n − 4th repetition of the puncture dance (i.e. during the
last ℓ steps) satisfies all the conditions of Lemma2.10(except number 1(a)). In fact,
conditions 1(b) through 4 of Lemma2.10 are satisfied by construction, so the only
nontrivial claim is that the periodicity condition holds: if at any moment during the
last ℓ time steps a puncture was labelled “a” or “ b”, then the puncture which was in
the same placeℓ steps previously was already labelled, with the same label.In other
words, we have to show that during the 2n− 3rd repetition of the puncture dance no
label was found that was still unknown during the 2n− 4th iteration.

Let us first look at those punctures between the interior punctures which correspond to
strands that have some crossing with the interior strands. We observe that after thenth
repetition of the puncture dance, these punctures have already experienced a crossing
with an interior puncture (the length of a cycle containing these punctures is at most
n− 2). Thus all these punctures are already labelled aftern repetitions of the dance.
There are at mostn−2 punctures left which never cross the interior punctures. If during
one repetition of the puncture dance none of these puncturesreceives a new label, then
none of them ever will in any further iteration of the puncture dance. Conversely
once such a puncture is labelled, it will remain labelled at all times during all future
iterations. Therefore after anothern− 2 iterations the labelling process is complete.
This terminates the proof of the last claim, and of Theorem2.9.

3 Sliding circuits

In this section we will introduce the special type of conjugations calledcyclic slidings
and state our main result, Theorem3.4. Recall that the braid groupBn admits a lattice
order4, called theprefix order, defined as follows: we say thata 4 b if and only
if ac = b for some positive elementc ∈ Bn. Here positivemeans that it can be
written as a product of positive powers of the standard generatorsσ1, . . . , σn−1. Being
a lattice order,4 determines a unique greatest common divisorx ∧ y and a unique
least common multiplex∨ y of every pair of braidsx, y ∈ Bn. There is also another
lattice order inBn, denoted<, and called thesuffix order. This time we say thata < b
if a = cb for some positive braidc. The gcd and lcm determined by< on a pair of
elementsx, y ∈ Bn will be denotedx∧Ry andx∨R y, respectively. Due to these lattice
structures,Bn is the main example of a Garside group [8].
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Recall that each elementx ∈ Bn admits aleft normal form(or left greedy normal
form) [10], that is, a unique way to decompose it asx = ∆px1 · · · xr , wherep ∈ Z

is maximal and eachxi is a proper simple braid (a permutation braid different from1
and ∆) such thatxixi+1 is left-weighted. This latter property means that for every
k = 1, . . . ,n− 1, if xi+1 can be written as a positive word starting byσk , thenxi can
be written as a positive word ending byσk . This can also be described in terms of the
lattice properties ofBn: for a simple elements, define∂(s) = s−1∆, the complement
of s. Thenxixi+1 being left-weighted means that∂(xi )∧xi+1 = 1. We recall that if the
left normal form ofx is as above, then the integersp, r andp+ r are calledinfimum,
canonical lengthandsupremumof x, respectively, and they are denoted inf(x), ℓ(x)
and sup(x).

As usual, for everyx ∈ Bn we defineτ (x) = ∆−1x∆. We also define theinitial factor
of x to be ι(x) = ∆ ∧ (x∆− inf(x)). That is, if the left normal form ofx is ∆px1 · · · xr

and r > 0, one hasι(x) = τ−p(x1), and if r = 0 one hasι(x) = 1. We also define
thefinal factorof x to beϕ(x) =

(
x∧∆sup(x)−1

)−1
x. That is, if the left normal form

of x is ∆px1 · · · xr and r > 0, one hasϕ(x) = xr , and if r = 0 one hasϕ(x) = ∆.
It is well known [3] that for everyx ∈ Bn, one hasϕ(x)ι(x−1) = ∆. In other words,
ι(x−1) = ∂(ϕ(x)).

Definition 3.1 [16] Given x ∈ Bn, its preferred prefixis the simple element

p(x) = ι(x) ∧ ι(x−1) = ι(x) ∧ ∂(ϕ(x)).

Cyclic slidingof x means the conjugation ofx by its preferred prefix, and its result is
denoteds(x). That is,s(x) = p(x)−1x p(x).

Notice that for any braidx we havep(x−1) = p(x), so s(x−1) = (s(x))−1 . It is
explained in [16] why the above definition is natural, and that cyclic slidingis a
conjugation which simplifies any given braid from the algebraic point of view. For
instance, iterated application of cyclic sliding sends anybraidx to a conjugatẽx which
belongs to its ultra summit set [15]. In particular, the canonical length ofx̃ is minimal
in its conjugacy class. Iterated application of cyclic sliding to an elementx always
yields a repetition, so the orbit ofx under s becomes periodic. We call the set of
elements in that periodic orbit thesliding circuit associated tox. The union of all
sliding circuits in the conjugacy class ofx, is thus the set of elements that cannot be
improved in any sense by further application ofs. We call it theset of sliding circuits
of x. More precisely:
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Definition 3.2 [16] Given x ∈ Bn, let xBn be its conjugacy class. We define theset of
sliding circuitsof x as follows:

SC(x) = {y ∈ xBn; sm(y) = y for somem> 0}.

The main goal of this paper is to show that cyclic sliding alsosimplifies braids from
the geometrical point of view. But in order to achieve this, we need to study the
elements together with some of their powers. The main problem is that if y belongs to
a sliding circuit,y2 does not necessarily have the same property, and neither does ym

for arbitrary m. In order to consider elements which behave nicely with respect to
cyclic sliding and (at least some) powers, we introduce the following notion.

Definition 3.3 Given x ∈ Bn and an integerm> 0, we define themth stabilized set
of sliding circuits

SC[m](x) = {y ∈ Bn; yk ∈ SC(xk) for k = 1, . . . ,m}.

Notice that the elements ofSC[m](x) are precisely those that are conjugate tox and
with the property that their firstm powers each belong to their own sliding circuit.
Clearly SC[m+1](x) ⊂ SC[m](x) for every m > 0. The main result in this paper is the
following theorem.

Theorem 3.4 Let x ∈ Bn be a non-periodic, reducible braid. There is somem 6

||∆||3 − ||∆||2 such that every elementy ∈ SC[m](x) admits an essential reduction
curve which is either round or almost round.

We will show in Section4 thatSC[m](x) is nonempty for everym> 0 (so Theorem3.4
has not a trivial statement), and we will give an algorithm for finding an element in
SC[m](x). Moreover, ifm is bounded by a polynomial inn andℓ(x), then the complexity
of the algorithm will be polynomial inn andℓ(x), provided the following well-known
conjecture is true:

Conjecture 3.5 [16] Given x ∈ Bn of canonical lengthℓ, let t be the minimal positive
integer such thatsk(x) = st(x) for somek with 0 6 k < t . Then t is bounded by a
polynomial inℓ andn.

Together with Theorem2.9 this yields an algorithm (Algorithm 1 in the Introduction)
to determine whether a given element ofBn is periodic, reducible or pseudo-Anosov.
This algorithm will be polynomial inn andℓ if Conjecture3.5 is true.
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4 Sliding circuits and powers

This section is devoted to the study of the setSC[m](x) defined in the previous section.
We will show that for everyx ∈ Bn (actually, in every Garside group), and for
every m > 0, the setSC[m](x) is nonempty. Furthermore, we shall give a simple
procedure to compute one element inSC[m](x), starting fromx.

In order to achieve these goals, we shall need the following result:

Theorem 4.1 [16] Let x, z,a,b ∈ Bn. If z, za, zb ∈ SC(x), thenza∧b ∈ SC(x).

Definition 4.2 Given y ∈ Bn, we define thepreferred conjugator P(y) of y as the
product of conjugating elements corresponding to iteratedcyclic sliding until the first
repetition. That is, if we denotey(i) = si(y) for i > 0 and if t is the smallest positive
integer such thatst(y) = si(y) for somei < t , then:

P(y) = p(y) p(y(1)) p(y(2)) · · · p(y(t−1)).

Notice that if one conjugatesy by P(y), one obtains an element inSC(y). Notice also
that if y ∈ SC(x) for somex, then P(y) is the conjugating element along the whole
sliding circuit of y. In particular, ify ∈ SC(x) thenP(y) commutes withy.

Definition 4.3 Given x ∈ Bn, we definex[0] = x, and for everym > 0 we define
recursively:

x[m+1] = (x[m])
P((x[m] )m+1).

Notice thatx[i] is a conjugate ofx for every i > 0, since in order to computex[m+1]

we are just conjugatingx[m] . The conjugating element is precisely the one that sends
the m+ 1st power ofx[m] to a sliding circuit.

The proof of the following result gives a simple algorithm tocompute one element in
SC[m] . This parallels Proposition 2.23 in [3].

Proposition 4.4 Let x ∈ Bn andm> 0. Thenx[m] ∈ SC[m](x). In particular,SC[m](x)
is nonempty.

Proof We will show the result by induction onm. For m = 1, one hasx[1] =

(x[0])P(x[0] ) = xP(x) , which by definition ofP(x) belongs toSC(x) = SC[1](x).

Now assume thatx[m] ∈ SC[m](x) for somem > 0. That is, (x[m])i ∈ SC(xi ) for
i = 1, . . . ,m. The m+ 1st power (x[m])m+1 does not, a priori, belong to a sliding
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circuit. But if we conjugate our braidx[m] by the elementP((x[m])m+1) to obtainx[m+1] ,
its m+ 1st power becomes the conjugate of (x[m])m+1 by P((x[m])m+1), so it belongs
to a sliding circuit as desired. The question to be answered is whether smaller powers
of x[m+1] still belong to a sliding circuit or not. That is, we have to show that for
i = 1, . . . ,m, the conjugate of (x[m])i by P((x[m])m+1) belongs toSC(xi ).

First we claim that ify is a braid such thatyi ∈ SC(xi) for i = 1, . . . ,m, then the
conjugate ofyi by p(ym+1) also belongs toSC(xi ), for i = 1, . . . ,m. In order to prove
this claim, we recall from Theorem4.1that if z,a,b ∈ Bn are braids such thatz, za and
zb belong to a sliding circuit, thenza∧b also belongs to a sliding circuit. In the situation
of the claim, we haveyi ∈ SC(xi ), and p(ym+1) = ι(ym+1) ∧ ι(y−m−1). Recall that
ι(ym+1) =

(
ym+1∆s

)
∧∆ for some integers. Since the conjugate ofyi by ym+1∆s is

τ s(yi) ∈ SC(xi ), and the conjugate ofyi by ∆ is τ (yi) ∈ SC(xi ), Theorem4.1 shows
that the conjugate ofyi by ι(ym+1) belongs to a sliding circuit. The same argument
shows that its conjugate byι(y−m−1) also belongs to a sliding circuit. Hence, applying
Theorem4.1again, the claim is shown.

As an aside, we remark that conjugation byp(ym+1) performs a cyclic sliding onym+1,
but it does not perform a cyclic sliding onyi for i < m+ 1. Nevertheless, we just
showed that the conjugate ofyi by p(ym+1), even if it is not necessarily the cyclic
sliding of yi , belongs to a sliding circuit (which is not necessarily the same sliding
circuit yi belonged to).

Now, in our situation,P((x[m])m+1) is the product of several preferred prefixes, those of
iterated cyclic slidings of (x[m])m+1, so conjugation byP((x[m])m+1) is the composition
of several conjugations, byα1, . . . , αt , say. We can then apply the above claim several
times, takingy = xα1···αk−1

[m] for k = 1, . . . , t . At the first stepy = x[m] , so yi ∈ SC(xi )
for i = 1, . . . ,m, andα1 = p((x[m])m+1) = p(ym+1) by definition. By the claim, (yα1)i

belongs to its own sliding circuit fori = 1, . . . ,m. By induction, if y = xα1···αk−1
[m]

for somek > 1, and yi belongs to its own sliding circuit fori = 1, . . . ,m, then
the conjugate ofyi by αk also belongs to its own sliding circuit, asαk = p(ym+1).
For k = t , asxα1···αk

[m] = x[m+1] , this means that the firstm powers ofx[m+1] belong to
their own sliding circuit. Since them+ 1st power also belongs to its sliding circuit by
construction, the result follows.

Recall Conjecture3.5 above. LetT = Tn,ℓ be an upper bound for the number of
cyclic slidings necessary to obtain a repetition, startingfrom a braid inBn of canonical
length ℓ. This boundTn,ℓ is thus conjectured to be a polynomial inn andℓ. We also
recall from [10] that if x andy are two braids, given in left normal form, of canonical
length ℓ1 and ℓ2, respectively, the left normal form ofxy can be computed in time
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O(ℓ1ℓ2n logn). This comes from the fact that the gcd of two simple elementscan be
computed in timeO(n logn) [10], and from the way in which left normal forms are
computed.

Corollary 4.5 Givenx ∈ Bn written as a product ofℓ simple elements and its inverses,
and givenm > 0, there is an algorithm that computes an element inSC[m](x) in time

O(Sℓn logn), whereS=

m∑

i=1

i Tn,iℓ .

Proof The algorithm computesP(xi
[i−1]) and conjugatesx[i−1] by this element (ob-

taining x[i] ), for i = 1, . . . ,m.

We start withx written as a product ofℓ simple elements and its inverses, and compute
its left normal form, which takes timeO(ℓ2n logn) [10]. Now we apply iterated cyclic
sliding to x until the first repetition, which isx[1] . At each step, we have to compute
the preferred prefix of an elementα, and conjugateα by it. Notice that a preferred
prefix is the greatest common divisor of two permutation braids: if α = ∆pα1 · · ·αr

is in left normal form andr > 0, thenp(α) = τ−p(α1) ∧ ∂(αr ). If the left normal
form of α is known, the computation ofτ−p(α1) and∂(αr ) takes timeO(n) [10], and
computing their gcd takes timeO(n logn) [10]. Now α is an iterated cyclic sliding
of x, where cyclic sliding never increases the canonical lengthof an element [16].
Hence the canonical length ofα is at mostℓ. The algorithm takesα in left normal
form, and computes the left normal form of its conjugate byp(α). As p(α) is a simple
element, andα has canonical length at mostℓ, this last step takes timeO(ℓn logn) [10].
Thus computingp(α), conjugatingα by it, and calculating the left normal form of the
result takes timeO(ℓn logn). This is repeatedTn,ℓ times, sox[1] is computed in time
O(Tn,ℓ ℓn logn).

In the following steps of the algorithm, one hasx[i−1] andxi−1
[i−1] written in left normal

form (the case of the previous paragraph isi = 1). Notice that the canonical length
of xi−1

[i−1] is at most (i − 1)ℓ. The algorithm then computes the left normal form of
xi

[i−1] . This computation, obtained from the product of the left normal forms ofx[i−1]

andxi−1
[i−1] , takes timeO((i − 1)ℓ2n logn). Now the algorithm computes iterated cyclic

slidings of xi
[i−1] until the first repetition. More precisely, the algorithm starts with

α = x[i−1] , and at each step it computes the preferred prefixp(αi ), and conjugates
both α andαi by this prefix. The conjugate ofα is set as the new value ofα, and
the loop is repeated. The loop ends at the first repetition ofαi . The complexity of
this computation is the same as that of the previous paragraph, but applied to a braid
of canonical lengthiℓ, instead ofℓ. Hence, the computation ofx[i] and xi

[i] from
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x[i−1] and xi−1
[i−1] takes timeO(Tn,iℓ iℓn logn). Adding up the complexities of each

loop, we obtain that the whole algorithm takes timeO(ℓ2n logn) + O(Sℓn logn). As
ℓ < Tn,ℓ 6 S, the result follows.

We remark that if Conjecture3.5holds, that is, ifTn,ℓ is a polynomial inn andℓ, then
the complexity of the algorithm in Corollary4.5 is polynomial inn, ℓ andm. As we
shall only need to compute one element inSC[m](x) for m 6 ||∆||3 = n3(n − 1)3/8
(see Theorem3.4), the complexity in this case will be polynomial inn andℓ, always
provided Conjecture3.5holds.

5 Sliding circuits and reduction curves

5.1 Sliding circuits and round curves

In this section we shall investigate the properties of the elements belonging toSC[m](x),
with respect to their canonical reduction systems. The simplest case occurs when this
reduction system is made of round curves. The following result assures the existence
of these examples

Theorem 5.1 [1] (see also [20]) Let x ∈ Bn be a positive braid whose left normal
form is x1 · · · xr . If [C] is a round curve such that[C]x is also round, then[C]x1···xi is
round for i = 1, . . . , r .

In other words, if the roundness of a curve is preserved by a braid x, then it is preserved
by each factor in the left normal form ofx. Since∆±1 preserves the roundness of every
curve, the above result can be applied to every braid, not necessarily positive. This is
used in [1] to show that, if a braid preserves a round curve, its cyclingand its decycling
also preserve round curves. This immediately implies that for every reducible braidx,
there is some element in its super summit setSSS(x) which preserves a round curve [1].
Clearly, one can replaceSSS(x) by USS(x) in the previous statement. Even better,
one can replace it bySC(x), as we will now see, but the proof of this fact is slightly
different: we need to show the following result, concerninginvariant families of round
curves.

Proposition 5.2 Let x ∈ Bn, and letF be a family round curves such that[F ]x = [F ] .
Then [F ]p(x) is also a family of round curves. Hence, ifx preserves a family of round
curves, then so doess(x).
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Proof We can assumer > 0. Let ∆px1 · · · xr be the left normal form ofx. By
Theorem5.1 applied to each particular curve ofF , one has that [F ]∆

px1 is a family
of round curves, and since∆px1 = τ−p(x1)∆p , it follows that the curves of [F ]τ

−p(x1)

are round. LetF2 be a family of curves such that [F2] = [F ]τ
−p(x1) . In the same way,

Theorem5.1 tells us that the curves of [F ]∆
px1···xr−1 are round. LetF1 be such that

[F1] = [F ]∆
px1···xr−1 . Notice that [F1]xr = [F ](∆px1···xr−1)xr = [F ]x = [F ].

We then have [F1]xrτ
−p(x1) = [F2], whereF1 andF2 are families of round curves.

Now, by definition, the left normal form ofxrτ
−p(x1) is equal toy1y2 , wherey1 =

xrp(x). By Theorem5.1 again, we obtain that the curves of [F1]y1 are round. But
[F1]y1 = [F1]xrp(x) = [F ]p(x) , hence [F ]p(x) is a family of round curves, as we wanted
to show.

Corollary 5.3 For every reducible braidx ∈ Bn and everym > 0, there is some
y ∈ SC[m](x) such thatCRS(y) consists of round curves. Moreover, all elements in the
sliding circuit of y satisfy the same property.

Proof The canonical reduction systemCRS(x) is a family of disjoint simple curves on
the punctured disc. Hence some orientable automorphism of the punctured disc relative
to the boundary, will send it to a collection of (possibly nested) round curves. This
automorphism corresponds to a braidγ ∈ Bn. In other words, there is someγ ∈ Bn

such that [CRS(x)]γ consists of round curves. It is well known that [CRS(x)]γ =

[CRS(xγ)], hence z = xγ is a conjugate ofx whose canonical reduction system
consists of round curves.

Recall thatz[m] , which is the conjugate ofz by P(z)P((z[1] )2)P((z[2] )3) · · ·P((z[m−1])m),
belongs toSC[m](z) = SC[m](x). We will now show that all the curves inCRS(z[m]) are
round circles, by induction onm. We know that this is true form= 0 sincez[0] = z,
so we assumeCRS(z[m−1]) consists of round curves for somem> 0.

In order to computez[m] , we conjugatez[m−1] by P((z[m−1])m). Recall that the
canonical reduction system of an element coincides with thecanonical reduction sys-
tem of each nonzero power, henceCRS((z[m−1])m) consists of round curves. Ap-
plying iterated cyclic sliding to (z[m−1])m until the first repetition, that is, conju-
gating it by P((z[m−1])m), one obtains (z[m])m. By Proposition5.2, all curves in
CRS((z[m−1])m) keep their roundness after each application ofs. Hence all curves in
CRS((z[m])m) = CRS(z[m]) are round, as we wanted to show.

We have then shown that there is somey ∈ SC[m](x) all of whose reduction curves
are round. By Proposition5.2again, the same happens for every element obtained by
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applying iterated cyclic sliding toy, that is, for every element in the sliding circuit
of y.

Notice that the above proof does not provide an algorithm to find y, since we do not
know a priori which is the braidγ that conjugatesx to z. Nevertheless, sinceSC[m](x)
is a finite set, one can compute the wholeSC[m](x) and check for each element whether
it preserves some family of round curves. In this way one can find a reduction curve
for y, and then forx.

The computation of the whole setSC[m](x), starting from a single element, parallels
the usual constructions given in [9, 3, 16], so we will skip it here. For our purposes, it
suffices to know that there is one elementy in SC[m](x) all of whose essential curves
are round. Such elements have a particularly nice behavior with respect to normal
forms, as it is shown in [20] and [18].

Lemma 5.4 (see for instance [20]) Let y ∈ Bn, and letF be a family of round curves
such thatFy is also round. Suppose thaty is a positive braid, and lety1 · · · yr be its left
normal form, where some of the initial factors may be equal to∆. Let C ∈ F ∪ ∂(D).
For i = 1, . . . , r , denote[Ci ] = [C]y1···yi−1 and[Fi ] = [F ]y1···yi−1 . Then the left normal
form of y[C∈F ] is preciselyy1[C1∈F1] y2[C2∈F2] · · · yr [Cr∈Fr ] . In this normal form, some
of the initial factors could be half twists, and some of the final factors could be trivial.

Lemma 5.5 Let x, y ∈ Bn be braids, letF be a family of round curves, and let
[C] ∈ [F ] ∪ ∂(D). Suppose thatFx andFy are round. ThenFx∧y is also round, and
(x∧ y)[C∈F ] = x[C∈F ] ∧ y[C∈F ] .

Proof The first sentence is shown by Lee and Lee [20], and the second one in [18].

Lemma 5.6 [18] Let y ∈ Bn, and letF be a family of round curves such thatFy

is also round. LetC ∈ F ∪ ∂(D). Then ι(y) preserves the roundness of[F ] , and
ι(y)[C∈F ] is either a half twist or equal toι(y[C∈F ]).

Proposition 5.7 [18] Let y ∈ Bn, and letF be a family of round curves such that
[F ]y = [F ] . Consider the preferred prefixp(y), and letC ∈ F ∪∂(D). Thenp(y)[C∈F ]

is either a half twist, or equal top(y[C∈F ]), or to ι(y[C∈F ]), or to ι(y−1
[C∈F ]).
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5.2 Rigidity, sliding circuits and preferred conjugators

The key ingredient for showing the main theorem will be the properties of the preferred
conjugatorP(y) of a braid y which preserves a family of round curves. In fact, we
won’t be able to gain sufficient control overP(y), and we have to study the preferred
conjugatorP(yk) for some suitable poweryk of y instead. The need of taking powers
to obtain a better behavior of the preferred conjugator is the reason why we have to
work with the setSC[m](x), rather than simply the set of sliding circuitsSC(x).

The property we will require for a power ofy ∈ SC(x) involves the notion ofrigidity
introduced in [3], which measures how the left normal form of an element varies when
taking its square. More precisely, ifx = ∆px1 · · · xr is in left normal form withr > 0,
one could expect that the left normal form ofx2 is ∆2pτp(x1) · · · τp(xr )x1 · · · xr , but
in general this is not the case. We say that the rigidity ofx is R(x) = k/r if k is the
biggest integer in{0,1, . . . , r} such that the first 2|p| + k factors in the left normal
form of x2 are∆2pτp(x1) · · · τp(xk). The two extreme cases areR(x) = 0, in which all
factors in the left normal form ofx are modified when consideringx2, andR(x) = 1,
in which no factor is modified, and the left normal form ofx2 is the expected one we
saw above. In this latter case we say thatx is rigid.

We will be interested in the case in whichR(x) > 0 andR(x−1) > 0. This kind of
elements are characterized by the following result.

Lemma 5.8 [3, Lemmas 3.4, 3.5 and Corollary 3.6]Let x ∈ Bn with ℓ(x) > 0. The
following conditions are equivalent:

(1) R(x) > 0.

(2) inf(x2) = 2 inf(x) and ι(x2) = ι(x).

(3) inf(xm) = minf(x) and ι(xm) = ι(x) for everym> 0.

The following conditions are also equivalent:
(1) R(x−1) > 0.

(2) sup(x2) = 2 sup(x) andϕ(x2) = ϕ(x).

(3) sup(xm) = msup(x) andϕ(xm) = ϕ(x) for everym> 0.

These equalities of infima, suprema, initial and final factors yield a good behavior of
the preferred conjugators, as we shall see. Moreover, this condition is preserved by
cyclic sliding, if the element is in its super summit set:

Lemma 5.9 Let x ∈ Bn and y ∈ SSS(x) with ℓ(y) > 0. ThenR(s(y)) > R(y) and
R(s(y)−1) > R(y−1).
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Proof Let r = ℓ(y) > 0. Sincey ∈ SSS(x) one hass(y) ∈ SSS(x), henceℓ(s(y)) = r .
Notice that the propertyR(y) > k/r can be rewritten asy2 ∧∆2p+k = (y∧∆p+k)∆p.
One can apply to this equality the transport map based aty [16]. This map sendsy
to s(y), ∆ to itself, and preserves products and greatest common divisors. Hence one
obtainss(y)2 ∧ ∆2p+k = (s(y) ∧ ∆p+k)∆p, which is equivalent toR(s(y)) > k/r .
HenceR(y) > k/r implies R(s(y)) > k/r for every k ∈ {0, . . . , r}, so one has
R(s(y)) > R(y).

Replacingy by y−1, which is also in its super summit set, one hasR(s(y−1)) > R(y−1).
The result follows ass(y−1) = s(y)−1 (see the argument that follows Definition3.1).

The elements in a sliding circuit that fulfill the required rigidity conditions also satisfy
the following important property: their preferred conjugator is rigid.

Proposition 5.10 Let x ∈ Bn and y ∈ SC(x) with ℓ(y) > 0. If R(y) > 0 and
R(y−1) > 0, then the productp(y)p(s(y)) is left-weighted, andP(y) is rigid.

Proof Let us first prove thatp(y) p(s(y)) is left-weighted. Consider the biggest
elementα 4 p(s(y)) such thatp(y)α is simple. Let∆py1 · · · yr be the left normal
form of y. Notice thatp(s(y)) 4 ι(s(y)) 4 s(y)∆−p = p(y)−1yp(y)∆−p . Hence
p(y) p(s(y)) 4 yp(y)∆−p 4 y2∆−2p. Sincey satisfies the required rigidity conditions,
Lemma5.8 tells us that inf(y2) = 2p, hence the initial factor ofy2∆−2p is precisely
ι(y2), which is equal toι(y), again by Lemma5.8. Since we are assuming thatp(y)α
is a simple prefix ofp(y) p(s(y)), it follows that p(y)α 4 ι(y2) = ι(y). In the same
way, asp(y−1) = ι(y−1) ∧ ι(y) = p(y) one hasp(s(y−1)) = p(s(y)−1) = p(s(y)), we
can apply the above argument toy−1 and it follows thatp(y)α 4 ι(y−1). Therefore
p(y)α 4 ι(y) ∧ ι(y−1) = p(y), soα = 1, and the first half of the proposition is proven.

Now, if the hypotheses of Proposition5.10are satisfied byy, then by Lemma5.9they
are also satisfied bysk(y) for everyk > 0. So not only the productp(y) p(s(y)) is left-
weighted as written, but alsop(si (y)) p(si+1(y)) is left-weighted for everyi > 0.
It follows that the left normal form ofP(y) is precisely p(y)p(y(1)) · · · p(y(N−1)),
where N is the length of the sliding circuit ofy. Moreover, asy(N) = y, the
product p(y(N−1))p(y) is also left-weighted, hence the left normal form ofP(y)2 is
p(y)p(y(1)) · · · p(y(N−1))p(y)p(y(1)) · · · p(y(N−1)), which means thatP(y) is rigid.

Once we have seen that ifR(y) > 0 andR(y−1) > 0 then P(y) is rigid, we are
interested in finding elements which satisfy these rigidityconditions, so we can gain
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sufficient control over their preferred conjugator. In the next result,we will see that if
N = ||∆||3−||∆||2, every element inSC[N](x) has a power which satisfies the required
rigidity conditions.

Proposition 5.11 Let x ∈ Bn, and letN = ||∆||3 − ||∆||2. Giveny ∈ SC[N](x), there
is an integerm with 0 < m< N such thatR(ym) > 0 andR(y−m) > 0.

Proof In [21] it is shown that for everyx ∈ Bn there exists somek 6 ||∆||2 such
that every element inSSS(xk) is periodically geodesic. That is, for everyz ∈ SSS(xk)
one has inf(zt) = t · inf(z) and sup(zt) = t · sup(z) for all t > 0. In particular, since
y ∈ SC[N](x) and k < N, one hasyk ∈ SC(xk) ⊂ SSS(xk), so yk is periodically
geodesic. This means that inf(ykt) = t · inf(yk) and sup(ykt) = t · sup(yk) for all t > 0.

Onceyk is known to be periodically geodesic, one has a chainι(yk) 4 ι(y2k) 4 ι(y3k) 4
· · · (the initial factor ofyik is a prefix of the initial factor ofy(i+1)k ). Notice that this
chain stabilizes at the first repetition, hence it must stabilize in less than||∆|| steps.
In the same way, sinceyk is periodically geodesic one has a chain· · · < ϕ(y3k) <

ϕ(y2k) < ϕ(yk) (the final factor ofyik is a suffix of the final factor ofy(i+1)k ), which
must also stabilize in less than||∆|| steps. Therefore, for somet 6 ||∆|| − 1 one has
ι(ytk) = ι(y2tk) andϕ(ytk) = ϕ(y2tk). We can takem = kt 6 ||∆||3 − ||∆||2 and we
will have, on the one hand, inf(y2m) = 2 inf(ym) andι(y2m) = ι(ym) (thusR(ym) > 0),
and on the other hand sup(y2m) = 2 sup(ym) andϕ(y2m) = ϕ(ym) (thusR(y−m)) > 0),
so the result follows.

Now we will place ourselves in the case in which a braidy ∈ SC(x) satisfies the above
rigidity conditions, that is,R(y) > 0 andR(y−1) > 0 (by Proposition5.11we know
how to find a braid which fulfill these requirements). We saw inProposition5.10that
in this caseP(y) is rigid. We will now see that, if for some reason we need to consider
some power ofy, this makes no harm, as every power ofy satisfies the same properties
(even the property of belonging to a sliding circuit).

Proposition 5.12 Let x ∈ Bn and y ∈ SC(x) with ℓ(y) > 0. If R(y) > 0 and
R(y−1) > 0, then for everym ≥ 1 one hasy ∈ SC[m](x) (that is, ym ∈ SC(xm)),
R(ym) > 0, R(y−m) > 0, andP(y) is a positive power ofP(ym).

Proof We recall from [3, Proposition 3.9] that ify ∈ USS(x) and ℓ(y) > 0, then
R(y) 6 R(ym) for all m > 1. Hence, ify ∈ SC(x) is such thatR(y) > 0 and
R(y−1) > 0, the same happens for every power ofy.
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By Lemma5.8, ι(ym) = ι(y) andϕ(ym) = ϕ(y). Hencep(ym) = ι(ym) ∧ ∂(ϕ(ym)) =
ι(y) ∧ ∂(ϕ(y)) = p(y). Therefores(ym) = (s(y))m. By Lemma5.9, s(y) also satisfies
the required rigidity conditions, that is,R(s(y)) > 0 andR(s(y)−1) > 0. Hence
p(s(y)m) = p(s(y)) and thens2(ym) = s(s(ym)) = s(s(y)m) = (s2(y))m for everym> 0.
Iterating this argument, one obtainsp((st(y))m) = p(st(y)) and st(ym) = (st(y))m for
every t,m > 0. In other words, applying iterated cyclic sliding toym is the same
thing as applying iterated cyclic sliding toy and then taking themth power, since the
conjugating elements coincide. Asy is in a sliding circuit, applying iterated cyclic
sliding leads back toy, and the same happens toym. That is,ym is also in a sliding
circuit, as we wanted to show. Moreover, some positive powerof P(ym) equalsP(y) as
the preferred prefixes along the circuits ofy andym coincide. Actually, we will have
P(ym) = P(y), unless there is somez in the sliding circuit ofy such thatzm = ym, in
which caseP(ym) will be shorter thanP(y), but continuing along the sliding circuit of
ym one will obtain several repetitions ofP(ym) being equal toP(y).

We end this section with a result about preferred conjugators which we shall need
soon. It says that the preferred conjugators of any two elements in the same set of
sliding circuits are conjugate, up to raising those preferred conjugators to some suitable
powers. This will allow us to obtain information concerningP(y), for somey ∈ SC(x),
just by comparingP(y) with P(z), for some otherz ∈ SC(x). This time we do not
require any rigidity condition.

Lemma 5.13 Let x ∈ Bn andy, z∈ SC(x). ThenP(y)s is conjugate toP(z)t for some
s, t > 0, and one can take as conjugating element any braidα conjugatingy to z.

Proof Let N and M be the lengths of the sliding circuits ofy and z, respectively.
That is,sN(y) = y andsM(z) = z. Let α be such thatα−1yα = z. We can apply toα
the transport map defined in [16]. If one applies this transport mapk times toα, we
obtain an element denotedα(k) , which is a conjugating element fromsk(y) to sk(z).
Namely,

(1) α(k)
=

(
p(y)p(s(y)) · · · p(sk−1(y))

)−1
α

(
p(z)p(s(z)) · · · p(sk−1(z))

)
.

In [16, Lemma 8] it is shown that, in this situation,z∈ SC(x) if and only if α(sN) = α

for somes > 0. This means thatα conjugatesssN(y) = y to ssN(z), but since the
conjugate ofy by α is preciselyz, it follows that ssN(z) = z hencesN = tM for
somet > 0. But then Equality (1), replacingk by sN, readsα = (P(y)s)−1α P(z)t or,
in other words,α−1P(y)sα = P(z)t .
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5.3 Sliding circuits and canonical reduction systems

Proposition 5.14 Let x ∈ Bn and y ∈ SC(x). If R(y) > 0 andR(y−1) > 0, then
CRS(P(y)) ⊂ CRS(y).

Proof Notice that the result holds ify is periodic, since the only periodic elements
satisfying the rigidity hypothesis are powers of∆, and thenP(y) = 1, so both canonical
reduction systems are empty. Ify is pseudo-Anosov the result also holds, sinceP(y)
is in the centralizer ofy so it must be either pseudo-Anosov or periodic [19], and in
either caseCRS(P(y)) = ∅ = CRS(y). We can then assume thaty is non-periodic and
reducible, that is,CRS(y) 6= ∅. And of course we can assume thatCRS(P(y)) 6= ∅,
otherwise the result is trivially true.

By Proposition5.12, we can make the further assumption thaty is pure, sinceym will
satisfy the same hypothesis asy, and the canonical reduction systems ofy and of its
preferred conjugator are preserved by taking powers ofy. ReplacingP(y) by a power
if necessary in the following discussion, we will also assume thatP(y) is pure.

Let F = CRS(y) ∪ {∂(D2)}, and let us assume for a moment that all curves inF are
round. SinceP(y) is pure and commutes withy, P(y) sendsF to itself, curve-wise.
This implies that an essential reduction curve ofP(y) either belongs toF (as we want to
show) or can be isotoped to be disjoint fromF . In the latter case, it would correspond
to an essential reduction curve ofP(y)[C∈F ] for some [C] ∈ F . Thus we must show
that P(y)[C∈F ] does not admit an essential reduction curve, for every [C] ∈ F .

Let then [C] ∈ F . We know thaty[C∈F ] is either periodic or pseudo-Anosov, and
that the braidP(y)[C∈F ] commutes withy[C∈F ] . If y[C∈F ] is pseudo-Anosov, then
P(y)[C∈F ] must be either pseudo-Anosov or periodic, hence it admits noessential
curves. If y[C∈F ] is periodic, it has to be a power of the full twist, sincey is pure.
But in this case Proposition5.7 tells us thatp(y)[C∈F ] is either trivial or a half twist
(here we use thatF consists of round curves). Hence, applying cyclic sliding to y, we
obtain a braid whose component associated toC is also a power of the half twist, and
we can repeat the argument until one gets back toy, to conclude thatP(y)[C∈F ] is a
(possibly trivial) power of∆. HenceP(y)[C∈F ] does not admit an essential curve, also
in this case. Therefore, all essential reduction curves ofP(y) are essential curves ofy,
that is,CRS(P(y)) ⊂ CRS(y) if CRS(y) is a family of round curves.

Now we show the general case, in which the curves inCRS(y) are not necessarily
round. We cannot apply the above argument as we do not know, a priori, that the
components ofP(y) corresponding to the periodic components ofy are powers of∆.
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Nevertheless, we will be able to show this by comparing preferred prefixes with the aid
of Lemma5.13. We just need to find a suitable braid whose reduction curves are round
and which satisfies the hypothesis of Proposition5.14, that is, it belongs to a sliding
circuit, and both the braid and its inverse have nonzero rigidity.

By Corollary5.3, for everyN > 0 there is some elementz∈ SC[N](y) whose essential
curves are all round. We can then takeN = ||∆||3 − ||∆||2 and use Proposition5.11
to conclude that for somem with 0 < m 6 N we haveR(zm) > 0 andR(z−m) > 0.
As m ≤ N, we also havezm ∈ SC(ym). Notice that the canonical reduction systems
of z and zm coincide, sozm is a braid whose canonical reduction system is made
of round curves, which belongs to a sliding circuit, and suchthat R(zm) > 0 and
R(z−m) > 0, sozm is the braid we were looking for. To simplify notation, we recall
from Proposition5.12that the result will be shown fory if it is shown for ym, so we
can replacey by ym, and this will replacez by zm. We can then assume thatz is a
braid whose canonical reduction system is made of round curves, which belongs to a
sliding circuit, and such thatR(z) > 0 andR(z−1) > 0.

As the result is shown for elements whose canonical reduction system is made of round
curves,CRS(P(z)) ⊂ CRS(z). But recall from Lemma5.13that P(z)s is conjugate to
P(y)t for somes, t > 0, and that a conjugating elementα is precisely a conjugating
element fromz to y. Since the essential curves ofP(z) and P(z)s coincide, we have
CRS(P(z)s) = CRS(P(z)) ⊂ CRS(z). Conjugating bothP(z)s andz by α, corresponds
to applyingα to their essential curves, hence it follows thatCRS(P(y)t) ⊂ CRS(y). As
the essential curves ofP(y)t and P(y) coincide, this meansCRS(P(y)) ⊂ CRS(y), as
we wanted to show.

We have now assembled most of the ingredients for showing that our main result,
Theorem3.4, follows from the rigid case. The key lemma for this reduction to the rigid
case is as follows.

Lemma 5.15 Let x ∈ Bn be a non-periodic, reducible braid. LetN = ||∆||3−||∆||2 .
For every elementy ∈ SC[N](x) there is somem 6 N such that eitherym is rigid, or
P(ym) is rigid, admits essential reduction curves, and all its essential reduction curves
are essential reduction curves ofy.

Proof Let x ∈ Bn be a non-periodic, reducible braid,N = ||∆||3 − ||∆||2 and
y ∈ SC[N](x). By Proposition5.11 there is some powerym with m 6 N such that
R(ym) > 0 andR(y−m) > 0. Notice also thatym ∈ SC(xm). Henceym satisfies the
hypothesis of Propositions5.10and5.14, soP(ym) is rigid andCRS(P(ym)) ⊂ CRS(ym).
If CRS(P(ym)) 6= ∅, the result follows.
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Suppose on the contrary thatCRS(P(ym)) = ∅. This means thatP(ym) must be either
periodic or pseudo-Anosov. It cannot be pseudo-Anosov, as it commutes with the
non-periodic, reducible braidym, while pseudo-Anosov elements can only commute
with pseudo-Anosov or periodic ones. HenceP(ym) is periodic. Notice thatP(ym)
cannot be a nontrivial power of∆, since by Proposition5.10the left normal form of
P(ym) is a product of preferred prefixes, each of them not equal to∆ by definition.
As the only rigid, periodic braids are the powers of∆, it follows that P(ym) must be
trivial. This is equivalent to saying thatym is rigid.

The following result tells us how to deal with the rigid case.We assume for the
moment; it will be shown in the next section:

Theorem 5.16 Let β ∈ Bn be a non-periodic, reducible braid which is rigid. Then
there is some positive integerk 6 n such that one of the following conditions holds:

(1) βk preserves a round essential curve, or

(2) inf(βk) and sup(βk) are even, and either∆− inf(βk)βk or β−k∆sup(βk) is a pos-
itive braid which preserves an almost round essential reduction curve whose
corresponding interior strands do not cross.

In particular, some essential reduction curve forβ is either round or almost round.

We can finally show our main result, assuming that Theorem5.16holds.

Proof of Theorem 3.4 Let x ∈ Bn be a non-periodic, reducible braid,N = ||∆||3 −

||∆||2 and y ∈ SC[N](x). Let m 6 N be the integer given by Lemma5.15. If ym is
rigid, then by Theorem5.16CRS(ym) contains a curve which is either round or almost
round. AsCRS(ym) = CRS(y), the result follows in this case.

If ym is not rigid, then by Lemma5.15, P(ym) is rigid and ∅ 6= CRS(P(ym)) ⊂

CRS(ym) = CRS(y). By Theorem5.16again, some curve inCRS(P(ym)), and thus in
CRS(y), is either round or almost round.

This shows that every element inSC[N](x) admits an essential reduction curve which
is either round or almost round. This implies the result.

6 Reducible rigid braids

This section is devoted to the proof of Theorem5.16.
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Let β ∈ Bn be a non-periodic, reducible braid which is rigid. Thenβ belongs to a
sliding circuit (ass(β) = β ), also ℓ(β) > 0 andCRS(β) 6= ∅. Also, any powerβk

of β is also non-periodic, reducible and rigid, and has the same canonical reduction
system asβ . Notice that for every curveC ∈ CRS(β), there is somet 6 n/2 such
that [C]β

t
= [C]. Replacingβt by its square if necessary, it follows that for every

C ∈ CRS(x) there is some evenk 6 n such thatβk preserves [C], and both inf(βk)
and sup(βk) are even.

Fix an innermost curveC ∈ CRS(β) and considerβk for some evenk 6 n such
that [C]β

k
= [C]. Let ∆2px1 · · · xr be the left normal form ofβk , and denotex =

x1 · · · xr = ∆− inf(βk)βk . Notice thatCRS(β) = CRS(βk) = CRS(∆2px) = CRS(x),
as ∆2 preserves every simple closed curve of the punctured disc. Moreover x =

x1 · · · xr is non-periodic, reducible and rigid.

DenoteF = CRS(x) = CRS(β) 6= ∅. As C is an innermost curve ofF , the component
x[C∈F ] must be either periodic or pseudo-Anosov. Recall that in order to definex[C∈F ]

one conjugatesx by the minimal standardizer ofF to obtain y = x̂, and the curve
corresponding toC , namely Ĉ , is an innermost essential curve ofy which is round.
By [20, Theorem 4.9]y belongs to its Ultra Summit Set providedx does. It is not
difficult to modify the proof in [20] to show thaty belongs toSC(x) providedx does.
This is the case, asx is rigid. But it is shown in [16] that, if x is rigid, SC(x) consists
precisely of the rigid conjugates ofx. Hencey is rigid. Moreover, asx preserves [C],
y[Ĉ∈F̂ ] is a conjugate ofx[C∈F ] , which is either periodic or pseudo-Anosov.

Supposey[Ĉ∈F̂ ] is periodic. Asy is a rigid, positive braid, whose left normal form has
the form y1 · · · yr , one has thatyry1 is left weighted as written. But the left normal
form of y[Ĉ∈F̂ ] is determined by the left normal form ofy, in the sense explained in
Lemma5.4. Hencey[Ĉ∈F̂ ] must be a rigid, positive braid whose left normal form is the
product ofr (possibly trivial) simple elements. Since the only periodic rigid elements
are powers of∆, it follows that eithery[Ĉ∈F̂ ] is trivial, or y[Ĉ∈F̂ ] = ∆r

k (wherek is

the number of strands insidêC ).

If y[Ĉ∈F̂ ] is trivial, the interior braid ofx = ∆− inf(βm)βm associated toC must also be
trivial, as it is a conjugate ofy[Ĉ∈F̂ ] . By Proposition2.3, C is either round or almost
round, so Theorem5.16holds in this case.

Suppose thaty[Ĉ∈F̂ ] = ∆r
k , and notice thatr = sup(βm) − inf(βm) is even. Let us

consider then-strand braidsx′ andy′ such thatxx′ = ∆r andyy′ = ∆r . We remark
thatx′ andy′ are basically the inverses ofx andy, multiplied by some even power of∆
so that their infimum becomes 0. Hencex′ andy′ are positive, rigid braids of infimum
0 and canonical lengthr , whose canonical reduction systems coincide with those ofx
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and y, respectively. Letα be such thatα−1xα = y. Sinceα−1∆rα = ∆r as r is
even, we obtain thatα−1x′α = y′ . Moreover,y′

[Ĉ∈F̂ ]
is trivial. Hence, the strands ofx′

interior toC do not cross. By Proposition2.3, C is either round or almost round. Now
notice thatx′ = x−1∆r = β−m∆inf(βm)+r = β−m∆sup(βm) . Hence Theorem5.16also
holds in this case.

It only remains to prove Theorem5.16in the case in whichx[C∈F ] is pseudo-Anosov.

Lemma 6.1 Let x ∈ Bn. Given two elementsy, z ∈ SC(x), there is a sequence of
conjugations

y = α1
s1−→ α2

s2−→ α3 · · ·
sr−→ αr+1 = z

such that for everyi = 1, . . . , r one hasαi+1 = αsi
i ∈ SC(x), and eithersi 4 ι(αi) or

si 4 ι(α−1
i ).

Proof This proof follows the ideas in [9, 13, 4]. First, we can assume thatℓ(y) > 0,
otherwise SC(x) = {∆p} for some p, and the result becomes trivial asy = z.
Now y and z are conjugate since they belong toSC(x). Multiplying any conjugating
element by a sufficiently large power of∆, it follows that z = yα for some positive
elementα. This conjugating elementα can obviously be decomposed into a product
of indecomposableconjugating elements, that is,α = s1 · · · sr , whereαi+1 = ys1···si ∈

SC(x) for i = 1, . . . , r , and si is positive and cannot be decomposed as a product
of two nontrivial positive elementssi = ab such thatαa

i ∈ SC(x). Notice thatsi

must be simple, otherwise we could takea = si ∧∆ (which by Theorem4.1satisfies
αa

i ∈ SC(x)) to decomposesi . We must show that such an indecomposable elementsi

must be a prefix of eitherι(αi) or ι(α−1
i ).

Denotet = si ∧ ι(α−1
i ). We claim that (αi)t ∈ SC(x). Indeed, by definition, one has

ι(α−1
i ) = ∆∧ (α−1

i ∆− inf(α−1
i )). Sinceαi ∈ SC(x), it is clear thatα∆

i ∈ SC(x) and that

α(α−1
i ∆− inf(α−1

i ))
i ∈ SC(x). By Theorem4.1, αι(α−1

i )
i = α∆∧(α−1

i ∆− inf(α−1
i ))

i ∈ SC(x).

But αsi
i = αi+1 ∈ SC(x), so applying Theorem4.1again one hasαι(α−1

i )∧si
i = (αi)t ∈

SC(x), as we wanted to show.

We then have a positive prefixt 4 si such that (αi)t ∈ SC(x). Since si is an
indecomposable conjugator, it follows that eithert = si or t = 1. In the former case
si = t = si ∧ ι(α−1

i ), which impliessi 4 ι(α−1
i ), hence the result holds in this case.

Suppose then thatt = 1. This meansι(α−1
i ) ∧ si = ∂(ϕ(αi )) ∧ si = 1, which is

equivalent to say thatϕ(αi)si is left weighted as written. Let∆pa1 · · · ar be the left
normal form ofαi . We have then shown thatarsi is left weighted as written, so
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∆pa1 · · · arsi is the left normal form ofαisi . But we know thatαi+1 = s−1
i αisi ∈

SC(x). In particularℓ(αi+1) = r , whereαi+1 = s−1
i ∆pa1 · · · arsi . This implies that

τp(si) 4 a1 · · · arsi , where the right hand side is in left normal form and the left hand
side is a simple element, henceτp(si) 4 a1, that is,si 4 τ−p(a1) = ι(αi), so the result
also holds in this case.

Finally, here is the result that completes the proof of Theorem5.16:

Proposition 6.2 Let x be a reducible rigid braid, and letC be an invariant curve ofx
whose corresponding interior braid is pseudo-Anosov. ThenC is round.

Proof We know from [16] that SC(x) is the set of rigid conjugates ofx, hence
x ∈ SC(x), and we know from Corollary5.3 that there is an elementx̃ ∈ SC(x) whose
reduction curves are all round. By Lemma6.1there is a chain of conjugations

x̃ = α1
t1−→ α2

t2−→ α3 · · ·
tr−→ αr+1 = x

such that for everyi = 1, . . . , r one hasαi+1 = αti
i ∈ SC(x), and eitherti 4 ι(αi) or

ti 4 ι(α−1
i ).

Suppose thatC is not round. This means that the curveCx̃ of x̃ corresponding toC is
a round curve which loses its roundness after the application of t1 · · · tr . This implies
that there must be two rigid braidsy, z ∈ SC(x) (preciselyαi andαi+1 for somei ),
conjugate by a simple elements (preciselyti ), a round invariant curveCy of y whose
corresponding interior braid is pseudo-Anosov, and the corresponding invariant curve
of z, [Cz] = [Cy]s, which is not round. Moreovers is either a prefix ofι(y) or a prefix of
ι(y−1) (ass= ti ). Since the inverse of a pseudo-Anosov braid is also pseudo-Anosov,
and the rigidity and reduction curves of a braid are preserved by taking inverses, we
can replacey and z by y−1 andz−1 if necessary, so we can assume thats is a prefix
of ι(y−1).

Since taking powers and multiplying rigid braids by∆2k are operations which do not
affect their rigidity, their initial factors, their invariant curves or the geometric type of
their corresponding interior braids, we can further assumethaty andz are pure braids,
and that inf(y) = inf(z) = 0.

Suppose that some nontrivial positive prefixs′ 4 s is such that [Cy]s′ is round, and
denote byρ the minimal positive element such thats′ 4 ρ andyρ is rigid (equivalently,
yρ ∈ SC(x)). Sinces is an indecomposable conjugator, we must haveρ = s. But we
will now see thatρ sends [Cy] to a round curve, while [Cy]ρ = [Cy]s = [Cz] is not
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round. A contradiction that will imply thats′ = 1. Indeed, by [17, Algorithm 2, step
3(b)], ρ can be computed in the following way: first, whileys′ /∈ SSS(x), replaces′ by

s′ ·
(

1 ∨ (ys′)−1
∆

inf y ∨ ys′
∆

− supy
)
.

Notice that the three elements 1, (ys′)−1∆inf y and ys′∆− supy send [Cy]s′ to a round
curve. In the terminology of [20], the three elements belong to thestandardizerof
[Cy]s′ . Since it is shown in [20] that the standardizer of a curve is closed under∨, it
follows that each step of this procedure replacess′ by a bigger element, which belongs
to the standardizer of [Cy]. Hence we can assume thatys′ ∈ SSS(x). The second
step to computeρ, explained in [16, Theorem 2], consists of applying iterated sliding
to ys′ until one reaches a rigid element. Multiplyings′ on the right by all conjugating
elements, one obtainsρ. But each conjugating element for sliding maintains the
roundness of our distinguished curve, from Proposition5.2. Therefore,ρ sendsCy to
a round curve, but [Cy]ρ = [Cz] is not round. A contradiction. It follows thats′ = 1,
or in other words, there is no nontrivial prefixs′ 4 s is such that [Cy]s′ is round.

Let p,p + 1, . . . ,q be the punctures insideCy. We will collect the strands ofs into
three sets,L = {1, . . . ,p− 1}, I = {p,p+ 1, . . . ,q} andR= {q+ 1,q+ 2, . . . ,n},
depending whether they start to the left, inside or to the right of Cy. Since every
prefix of s must deform the round curveCy, and the braids is simple, it follows that
the strands inL (resp. inI and in R) do not cross each other ins, since this would
imply that two consecutive strands inL (resp. inI and in R) would cross ins, and
the corresponding crossing would be a prefix ofs preserving the roundness ofCy, a
contradiction. Also, no strand ofs in L can crossall the strands inI , since this would
imply that the strandp− 1 would cross all the strands inI , and thenσp−1σp · · · σq−1

would be a prefix ofs preserving the roundness ofCy, a contradiction. In the same
way, no strand ofs in R can crossall the strands inI . In summary,s is a simple
braid of a very particular form: some strands ofL may cross some (but not all) strands
of I , some strands ofR may cross some (but not all) strands ofI , and any two strands
belonging to the same group (L, I , or R) never cross.

Recall thaty andz are rigid, and lety1 · · · yr andz1 · · · zr be their left normal forms.
For i = 0 . . . , r , we denote [Cy,i ] = [Cy]y1···yi and [Cz,i ] = [Cz]z1···zi . By Theorem5.1,
Cy,i is round for everyi , and by the rigidity ofz it follows thatCz,i is not round for anyi .
Now, for i = 0, . . . , r , consider the braidsi = (y−1

i · · · y−1
1 )s(z1 · · · zi), which is thei th

transport ofs under cycling (see [15]). Notice thats0 = sr = s. As transport under
cycling preserves prefixes, products, greatest common divisors, and the positivity and
simplicity of braids [15], it follows thatsi is a simple element fori = 0 . . . , r . Hencesi
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is a simple element that conjugates the rigid braidyi+1 · · · yry1 · · · yi to the rigid braid
zi+1 · · · zrz1 · · · zi , and sends the round curveCy,i to the non-round curveCz,i .

We claim that for i = 0, . . . , r , the elementsi is an indecomposable conjugator.
Indeed, if this is not the case, we have a decompositionsi = aibi , whereai andbi are
nontrivial simple braids, such thata−1

i (yi+1 · · · yry1 · · · yi)ai is a rigid braid, whose left
normal form will have the formwi+1 · · ·wrw1 · · ·wi . We can apply transport under
cycling to ai [15] and we obtainw−1

i+1aiyi+1 . As ai is conjugating a rigid braid to

another rigid braid, the second transport ofai will be a(2)
i = w−1

i+2w−1
i+1aiyi+1yi+2 .

Iterating this process, it follows that ther th transport ofai under cycling will be
a(r)

i = (w−1
i · · ·w−1

1 w−1
r · · ·w−1

i+1)ai (yi+1 · · · yry1 · · · yi) = ai . Soai is preserved byr th
transport. This implies that no transport ofai can be trivial (since the transport of the
trivial braid is trivial). In particular the (r − i)th transport ofai , that we will denotear ,
is not trivial. In the same way, ther th transport ofbi , that we will denotebr , is not
trivial. Hence, by the properties of transport,ar and br are simple, nontrivial braids
such thatyar is rigid, andarbr = s (asaibi = si and transport preserves products). This
contradicts the indecomposability ofs, and shows thatsi must be an indecomposable
conjugator fori = 0, . . . , r .

Recall thatsi sends the round curveCy,i to the non-round curveCz,i . As si is an
indecomposable conjugator, an argument analogous to the one we used fors, tells us
that no prefix ofsi can sendCy,i to a round curve. Hence, eachsi is a very special
simple braid which has the same form, with respect toCy,i , ass has with respect toCy.

Notice that we have the equalities:

(2) (y1 · · · yr )s = (y1 · · · yr−1)sr−1(zr ) = · · · = (y1 · · · yi)si(zi+1 · · · zr ) = · · ·

= s(z1 · · · zr).

We are now going to deal with the strands in the factorsy1, . . . , yr and s0, . . . , sr . In
order to avoid confusion, we will refer to the strands in eachof these factors by the
position they have at the beginning of the braidy1 · · · yrs, or any of the alternative
factorizations shown in (2). For instance, if we refer to the strandk of si , we mean the
strand ofsi which starts at positionk at the beginning of (y1 · · · yi)si (zi+1 · · · zr ). Notice
that, asy is pure, there is no ambiguity with the names of the strands ofs= s0 = sr .

Since [Cz] = [Cy]s is not round, some strand ofs in either L or R must cross some
strand inI . Suppose that some strand inL does (the other case is symmetric). Then
the rightmost strand ofs in L, that is, the strandp− 1 of s, must cross some strands
in I . Let us define the setI0 to be the set of strands inI which are crossed ins by the
strandp−1. In the same way, define fori = 1, . . . , r , the setI i to be the set of strands
insideCy,i which are crossed, insi , by the rightmost strand that starts to the left ofCy,i .
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We will show thatI i ⊂ I i+1 for i = 0, . . . , r − 1. Indeed, sincey is rigid, one has
ι(y)∧ι(y−1) = y1∧ι(y−1) = 1, and sinces4 ι(y−1), one also hasy1∧s= 1 (applying
transport under cycling to this equality one hasyi ∧ si−1 = 1 for all i ). Now the strand
p− 1 of s crosses some strands inI , in particular, the strandsp− 1 andp cross ins,
hence they do not cross iny1. As y1 preserves the roundness ofCy, this implies that
the strandp− 1 of y1 crosses no strand inI (since either it crosses all of them or it
crosses none).

We claim thatys∧∆ = y1s1. Indeed, by definitions1 = y−1
1 sz1, that isy1s1 = sz1 .

Recall thats 4 ι(y−1) = ∂(yr ), which means thatyrs is simple. The transport under
cycling (based atyry1 · · · yr−1) of this simple braid is preciselyy1s1, so y1s1 = sz1 is
simple. Theny1s1 = y1s1 ∧∆ = sz1 ∧∆ = s(z∧∆)∧∆ = sz∧ s∆∧∆ = sz∧∆ =

ys∧∆, showing the claim.

Now recall that the strandp−1 of y1 crosses no strand inI . As s−1ys= z is a positive
braid, s4 ys. Sinces is simple,s4 ys∧∆ = y1s1 by the above claim. This means
that the strands crossed byp − 1 in s must also be crossed iny1s1 but they are not
crossed iny1 , hence they are crossed ins1. Notice that the strandp− 1 of s does not
need to be the rightmost strand to the left ofCy,1 at the beginning ofs1 . Nevertheless,
since neither the strands to the left ofCy,1 nor the strands insideCy,1 cross ins1, if some
of the strands to the left ofCy,1 crosses an interior strand, then the rightmost strand to
the left of Cy,1 also crosses it. Therefore, the strands which are crossed byp− 1 in s
are crossed by the rightmost strand to the left ofCy,1 in s1. In other words,I0 ⊂ I1.
Applying the same argument to the rigid braidsyi · · · yry1 · · · yi−1 for i = 2, . . . , r , it
follows that I0 ⊂ I1 ⊂ · · · ⊂ Ir . Since by definitionIr = I0, we have the equality
I i = I j for all i, j ∈ {0, . . . , r}.

Notice that 0< #(I0) < q − p+ 1, that is,I0 contains some interior strands but not
all of them. Let us now defineJ0 = I\I0 . We will see that no strand ofI0 crosses a
strand ofJ0 in the whole braidy. Indeed, since the strands inI i = I0 are the strands
in si crossed by the rightmost strand to the left ofCy,i , it follows that they are the
leftmost #(I0) strands insideCy,i at the beginning of eachsi , that is, at the end of
eachyi−1 . Therefore, fori = 1, . . . , r , the leftmost #(I0) strands insideCy,i at the
end of eachyi are always the same, meaning that they never cross iny with the other
interior strands, that is, with the strands inJ0 . But this implies that the interior braid
of y corresponding toCy is split, that is, the generatorσ#(I0) does not appear in any
positive word representing that interior braid. This contradicts the fact that the interior
braid is pseudo-Anosov, since a pseudo-Anosov braid can never be split.
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