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ABSTRACT. Consider an m -strand braid x which is rigid in the sense of Garside-theory. Let SC(x) be
the set of rigid conjugates of x – this is a well-known characteristic subset of the conjugacy class of x .
We present computational evidence that the sequence

(
|SC(xn)|

)
n∈N is not only bounded, but in fact

periodic, and that the length of the period can be bounded in terms of the number of strands m . We
prove this result in the special case of the 3-strand braid group (where we prove that the sequence is
always constant) and of the dual 4-strand braid group.

1. INTRODUCTION

Let G be a Garside group, equipped with a Garside structure – in this paper we will mostly be con-
cerned with the two most well-known examples, namely the m-strand braid group equipped with
Garside’s original Garside structure, denoted Bm , and the same group equipped with Birman-Ko-
Lee’s dual Garside structure, denoted B∗

m , but we will also present some calculations in Artin-Tits
groups of spherical type, equipped with their classical Garside structures. (Relevant references for
the braid groups with the classical structure are [14, 13] and [3] for the dual structure, [4, 12] for the
generalisation to Artin-Tits groups of spherical type. For general Garside theory, see [11] (for the first
definition), as well as [8, 1], and [20], and finally [10] for a very complete and high-level modern
point of view].)

We recall that to any element x of G , we can associate a finite subset of the conjugacy class of x called
the sliding circuits set, denoted SC(x) [16]. This subset depends only on the conjugacy class of x ;
therefore, being able to calculate the sliding circuits set of any given element solves the conjugacy
problem in G . If x is rigid (which means, roughly speaking, that x is in Garside normal form as a
cyclic word), then this subset consists of the set of rigid conjugates.

Conjecture 1.1. For any rigid element x, the sequence
(
|SC(xn)|

)
n∈N is bounded.

There are at least three motivations for studying this conjecture.

(1) Currently the biggest roadblock to solving the conjugacy problem in braid groups in polyno-
mial time using Garside theory is the following open question: how quickly can maxx∈Bn,|x|≤ℓ, x pA |SC(x)|
grow, as a function of ℓ (for any fixed value of m)? In particular, it is open whether or not this
function is polynomially bounded. It would be valuable to at least understand how the size of
the sliding circuit set of powers of a single element behaves.

(2) As will be shown in a future paper, for an element x , the property of having a bounded as-
sociated sequence |SC(xn)| has some very strong consequences. Namely, the element x then
either has a “large” centraliser (not virtually equal to ⟨x,∆2⟩), or the axis of the element in the
Cayley graph of G/C(G) has the Morse property (which, in this case, even implies the very
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restrictive strong contraction-property [6, 23]). This, together with Conjecture 1.1, would im-
ply that all elements in spherical-type Artin-Tits group with no obvious obstruction to having
the Morse property really do have the Morse property; also it would be a rare occasion where
the Morse property is not deduced from a loxodromic action on some hyperbolic space.

(3) The centralizer of a pseudo-Anosov braid x is virtually Z2 [21, 19], virtually generated by
x and by ∆2 , and this gives rise to a two-dimensional flat in the Cayley graph containing
the axis of x . For reducible braids, the centralizer is larger, and we obtain correspondingly
higher-dimensional flats containing the axis. These flats are to be expected. By contrast, it is
conceivable that there might be a sequence of bi-infinite geodesics, each of them parallel to the
axis of x , coming from rigid conjugates of xn , with larger and larger powers n and with longer
and longer conjugating words. Together, these geodesics would form an unexpected half-flat.
Conjecture 1.1 would exclude such unexpected half-flats in the Cayley graph bounded by the
axis of a rigid element x . What makes this conjecture so elegant is that it applies (in the
context of braid groups) not only to pseudo-Anosov braids, but also to reducible ones (as long
as they are rigid).

While performing extensive computer experiments in order to test Conjecture 1.1, the authors were
surprised to discover that a much stronger result appears to hold. Indeed, there seems to be a unifor-
mity phenomenon: for any fixed number of strands, the power for which the sliding circuit set takes
its maximal size appears to be bounded:

Main Conjecture 1.2. For any Garside group G, equipped with a Garside structure, there exists
a finite set of integers PG with the following property: for any rigid element x of G, the sequence
(|SC(xn)|)n∈N is periodic, and the period is an element of PG .

This conjecture is the fruit of large computer experiments with various Artin-Tits groups of spherical
type. Large numbers of random elements were generated (by writing random words in Artin genera-
tors), and for those that happened to have a rigid conjugate, the sizes of the sliding circuit sets of the
braids and their first few powers were calculated. For the braid groups equipped with the classical
Garside structure, these calculations were based on Juan González-Meneses’ C++ program [18]. By
contrast, GAP3 [22] (with the package Chevie [7] was used for braid groups with the dual Garside
structure, as well as for other Artin-Tits groups (with the classical Garside structure). In the latter
cases, we have much less experimental data, since calculations on GAP3/Chevie were substantially
slower than on the C++ program [18]. As a result of our calculations, we have the following table
with the conjectured sets of possible periods. Here Bm denotes the m-strand braid group (which is
the same as the Artin-Tits group of type Am−1 ), equipped with the classical Garside structure; B∗

m
denotes the same group, equipped with the dual Garside structure. We did not perform calculations
with the dual structure on Artin-Tits groups other than the braid groups.

Group G B3 B4 B5 B6 B7 B8

PG {1} {1, 2} {1, 2, 3} {1, 2, 3, 6} {1, 2, 3, 4, 6} {1, 2, 3, 4, 6, 12}

Group G B∗
3 B∗

4 B∗
5 B∗

6

PG {1} {1, 2, 3} {1, 2, 3, 4, 6} {1, 2, 3, 4, 5, 6, ?}

Group G B2 B3,B4 B5 D4 D5 F4 H3 H4 I2(10)
PG {1} {1, 2} {1, 2, 3} {1, 2, 3} {1, 2, 3, 6} {1, 2, 3} {1, 2} {1, 2, 3} {1}
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Notation 1.3. In the braid group Bm , we will use the notation i instead of the more standard σi for
the ith Artin half-twist generator. Also, when we write 21|12, the symbol | indicates that the product
of two Garside generators σ2σ1 · σ1σ2 is in Garside normal form as written.

Example 1.4. In B4 , for x = 21|12|2132, we have |SC(xk)| = 6 if k is odd, and |SC(xk)| = 18 if
k is even. Figure 1 shows the “conjugacy graphs” of x and of x2 . Every vertex of a conjugacy graph

x = 21|12|2132
x2 = 21|12|2132|21|12|2132 21|12|2132|2132|23|32

×2
×1

FIGURE 1. For x = 21|12|2132, the figure shows on the left the conjugacy graph of
x (only one vertex), and on the right the conjugacy graph of x2 .

denotes one orbit in the sliding circuit set under the action of cycling and of τ (i.e. conjugation by ∆).
On the left, we see that SC(x) consists only of x , of the two elements obtained from x by cyclically
permuting the three factors, and of their images under τ , so it contains only one vertex.

The set SC(x2), by contrast, is larger: we can conjugate x2 in two different ways (by 1 or by 3), and
we obtain two elements of SC(x2) which are cyclic conjugates of each other (so they both represent
the right-hand vertex). If we want to conjugate back, from one of the elements thus obtained to a
rigid braid representing to the left vertex, then we have only one choice: the only simple braid that
conjugates 1−1 · (x2) · 1 = 21|12|2132|2132|23|32 to a cyclic conjugate of x2 is the braid 3. The
arrows are drawn in gray color, because they represent conjugations by a prefix of the complement of
the last factor – in the notation of [2], they represent "gray arrows". (By contrast, “black arrows” are
conjugations by minimal prefixes of the first factor.)

The next figure shows a part of the Cayley graph, and specifically the conjugation of x2 by 1 yielding
21|12|2132|2132|23|32. The blue arcs indicate sequences of generators that are in normal form. It is
also intuitive from the red arrows in this figure why y = 1−1 · x · 1 is not rigid whereas 1−1 · x2 · 1 is.
In Section 2 we will give a detailed explanation of how the calculation of a conjugate along a gray or
black arrow works.

2132 21 12 2132 21 12 2132

1 2 1 3 321 321 1
121 121 12132 21321 12321 21321

21 12 2132 2132 23 32

. . . . . .

x x

FIGURE 2. The conjugation of x2 by 1 for x = 21|12|2132, seen in the Cayley
graph. This diagram can be periodically extended into a bi-infinite strip. This type of
diagram is called a domino diagram.

Let us reinterpret our conjectures in light of this example. We have seen that a rigid braid x may very
well have a conjugate y which is not rigid, but whose square (living in SC(x2)) is rigid. At first sight,
such an element y2 doesn’t look like a square, as its normal form does not consist of some shorter
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word that is repeated twice. Now it may happen (though it doesn’t in this example) that some further,
even higher power of y can be conjugated again, yielding yet more rigid conjugates; and there may
even be a whole tower of such powers. However, Conjecture 1.1 states that such a tower is necessarily
finite, and Conjecture 1.2 claims that there is a bound on the highest power involved, and this bound
is uniform in the group.

Notation 1.5. For any element y of G which possesses a rigid power, we denote r(y) the smallest
positive integer such that yr(y) is rigid.

We observe that some power yn is rigid if and only if n is a multiple of r(y). (This is because if q is
an integer such that yq is rigid and if n ≡ n′ mod q , then ι(yn) = ι(yn′) and φ(yn) = φ(yn′).)

Introducing some more notation, for any rigid element x of G we define

R(x) = {r(y) | y is conjugate to x, and y has a rigid power}

Conjecture 1.6. For any Garside group G, there exists a finite subset P̃(G) of N such that for any
rigid element x of G we have R(x) ⊆ P̃(G) .

We observe that Conjecture 1.6 implies our Main Conjecture 1.2. Indeed, assuming that Conjec-
ture 1.6 holds, the sequence (|SC(xn)|)n∈N is periodic of period lcm(R(x)), the least common mul-
tiple of all elements of R(x). The finite set P̃(G) has only finitely many subsets, and in particular
only finitely many subsets of type R(x), so there are only finitely many possible periods of the se-
quence |SC(xn)|n∈N , as desired.

We also conjecture that for any rigid element x , the set R(x) is a lattice with respect to the divisibility
relation. If this conjecture holds, then the period lcm(R(x)) is equal to the largest element of R(x).

Our main theorem is:

Theorem 1.7. (a) Conjecture 1.6 holds for B3 , the three-strand braid group with the classical Garside
structure: for any rigid element x, we have R(x) = {1} , and the sequence |SC(xn)| is constant.

(b) Conjecture 1.6 holds for B∗
4 , the four-strand braid group with the dual Garside structure.

Remark 1.8. Using a detailed combinatorial analysis, it would be possible to prove that in B∗
4 , the

sequence |SC(xn)| can only have three possible behaviors: it is either constant, or it is periodic of
period 2, or it is periodic of period 3 with |SC(x2)| = |SC(x)| and |SC(x3)| = 4 · |SC(x)| . Corre-
spondingly, the only possible sets R(x) are {1} , {1, 2} , and {1, 3} . We will only prove a weaker
result.

2. GENERAL FRAMEWORK AND PRELIMINARY RESULTS

We start with some reminders of general Garside theory – the reader can consult [1, 2, 8, 9, 13, 20]. We
recall that in a Garside group G , equipped with a Garside structure, every element x is represented by
a unique word in normal form, taking the shape x = ∆k · x1| . . . |xℓ . Here ∆ is the particular element
given by the Garside structure (e.g. the half-twist braid in Bm and the 2π

m -twist braid in B∗
m ); each xi

is a Garside generator or a simple element, and each pair of successive letters xi · xi+1 is left-weighted
– these terms will be defined shortly – and we indicate this by writing the product xi|xi+1 . We denote
k = inf(x) the infimum, k+ ℓ = sup(x) the supremum, and ℓ = ℓcan(x) the canonical length of x . The
automorphism τ : G → G is defined by τ (x) = ∆−1x∆ .
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We recall the prefix ordering ≼ on G , which is a partial ordering given by g1 ≼ g2 if and only if
g−1

1 g2 ∈ G+ . Thus any two elements g1 , g2 of G have a meet g1 ∧ g2 , and a join g1 ∨ g2 . The
Garside generators of G , or simple elements, are precisely the elements x satisfying 1 ≼ x ≼ ∆ . The
complement ∂x of a simple element x is ∂x = x−1∆ . A product of two simple elements x1 · x2 is
said to be left-weighted, or in normal form if there is no prefix p of x2 such that x1p is simple, or
equivalently, if x2 ∧∂x1 = 1; in this case, we write x1|x2 . This completes our definition of the normal
form.

For an element x of G with normal form ∆inf(x)x1| . . . |xℓ and ℓ > 0, the initial and final factors are
defined by ι(x) = τ− inf(x)x1 and τ (x) = xℓ . A element x is said to be rigid if it is not a power of ∆
and if the product φ(x) · ι(x) is in normal form as written: φ(x)|ι(x). Roughly speaking, saying that
x is rigid means that the normal form of x2 is as expected: twice the power of ∆ , followed by the
non-∆ factors repeated twice, except that the first half of them may be twisted by some power of τ .
If inf(x) = 0, the idea is that the normal form word representing x , regarded as a cyclic word, is still
in normal form.

If an element g of G is conjugate to a rigid element, then, following [16], we define SC(g) to be the
set of all rigid conjugates of g . (In fact, this is not the original definition of [16], but it is proven in
this paper that the original definition – which we won’t need – coincides with the one given here in
the special case of rigid elements.)

To any rigid element x , we will associate a graph with colored, oriented edges called the conjugacy
graph, already used in [5], and very similar to the graphs introduced earlier in [2].

Definition 2.1. Let x be a rigid element of G . The conjugacy graph of x has one vertex for every
orbit in SC(x) under the action of cycling (i.e. conjugation by ι(x)) and of τ (conjugation by ∆).
The edges, which we will call arrows, come in two colors: black and gray. A vertex represented by
an element x is connected by a black arrow to a vertex represented by y if there is a prefix c ≼ ι(x)
which conjugates x to y , i.e. if c−1xc = y . By contrast, there is a gray arrow between these two
vertices if the conjugator c satisfies c ≼ ∂φ(x). Any arrow can carry a label of the form “×k” (with
k ⩾ 2), indicating that there are k different conjugations of one representative of the source vertex,
yielding various representatives of the target vertex.

Remark 2.2. Our conjugacy graphs are almost the same as the graphs introduced in [2], but there are
some subtle differences: firstly, in the graphs of [2], the vertices are orbits of SC(x) under cycling, but
not under the action of τ . Secondly, the graphs of [2] have fewer arrows per vertex than our graphs,
because they only contain minimal arrows (i.e. arrows that are not given by the concatenation of two
or more arrows of the same color).

Remark 2.3. In this paper, we are drawing two types of diagrams, which should not be confused. On
the one hand, we have domino diagrams (Figures 2, 3, 4, 8, 9, 10), which live in the Cayley graph
of G (with generators = simple elements). In domino diagrams, arrows indicate right multiplication
by a simple element, and the little blue arcs connecting the end of one arrow xi to the start of another
arrow xi+1 indicate that the word xi ·xi+1 is in normal form. On the other hand, we have have pictures
of conjugacy graphs (Figures 1, 5, 7) from Definition 2.1, where (black or gray) arrows indicate
conjugations by simple elements.

Next, we recall the standard method for calculating the conjugate of a rigid braid x = ∆kx1| . . . |xℓ
(with ℓ > 0) along a gray arrow, i.e. calculating the normal form of c−1xc for some simple element
c such that xℓ · c ≼ ∆ . We will see that this is essentially the same problem as calculating the normal
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form of xℓ · x · c for such an element c . We will first suppose, for simplicity, that inf(x) = 0; the
process is illustrated by the domino diagram in Figure 3, in the special case ℓ = 3. For an explicit
example, see Figure 2.

x3 x1 x2 x3

c0 c1 c2 c3 = c
d0 d1 d2 d3

y1 y2 y3

x

FIGURE 3. A domino diagram showing the calculation of the normal form of c−1x c
if inf(x) = 0. It is a non-obvious fact that the word y1 y2 y3 obtained by this cal-
culation is in normal form. Also, under the hypothesis that both x and c−1x c are
rigid, it is true but non-obvious that d0 = d3 and c0 = c3 = c , meaning that
y1 y2 y3 = c−1x c , as desired.

We denote dℓ = xℓ · c , and recall that this is a simple element by hypothesis. The first calculation
step consists in determining the normal form of xℓ−1dℓ – we denote the two factors dℓ−1 and yℓ , so
that xℓ−1 · dℓ = dℓ−1|yℓ . We denote cℓ−1 = x−1

ℓ−1 · dℓ−1 – this simple element can be interpreted as
“the initial part of dℓ that can be slid into xℓ−1 ”. Then we work our way backwards through the word:
xℓ−2dℓ−1 = dℓ−2|yℓ−1 , etc. The last step consists in calculating the normal form xℓ · d1 = d0|y1 , and
c0 = x−1

ℓ d0 . The right domino rule from [9] tells us the non-obvious fact that the word y1 · y2 · . . . · yℓ
thus obtained is in normal form (as indicated by the blue dotted arcs in Figure 3).

Lemma 2.4. Suppose that x is rigid with inf(x) = 0 , that c ≼ φ(x) , and that c−1 · x · c is also rigid.
Suppose the normal form of xℓ|x1| . . . |xℓ · c is d0|y1| . . . |yℓ . Then d0 = dℓ , and c0 = cℓ = c. In
particular, c−1xc = y1|y2| . . . |yℓ .

Proof. This result is contained in the statement and proof of Proposition 2.1 of [15] – in that paper,
our elements ci are denoted ui . □

We have seen how to calculate the normal form of c−1xc , provided that both x and c−1xc belong to
SC(x), that c ≼ ∂φ(x) (i.e. the conjugation represents a gray arrow), and that inf(x) = 0.

If inf(x) ̸= 0, then we need a slight modification of the previous rule (see Figure 4 and Example 3.7):
in the very last step, we do not determine the letters d0 and y1 by calculating the normal form d0|y1
of xℓ · d1 ; instead, we determine two letters, which we call d0 and τ−k(y1), by calculating the normal
form d0|τ−k(y1) of xℓ · τ−k(d1). As previously, we let c0 = x−1

ℓ d0 . By the same arguments as above,
we have d0 = dℓ and c0 = cℓ = c . Thus, c−1xc = τ−k(y1)∆k y2 . . . yℓ . The latter word is almost
in normal form: in order to obtain its normal form, it suffices to slide ∆k to the start, using the rule
τ−k(y1)∆k = ∆k y1 . Finally, the normal form of c−1xc is ∆k y1| . . . |yℓ .

Lemma 2.5. Let G be a Garside group. Suppose x ∈ G is rigid, and n,N are two integers with n|N .
Denoting d = N

n , we have:

(1) The function πd : SC(xn) −→ SC(xN) , y 7→ yd is an injection. In particular, |SC(xn)| ⩽
|SC(xN)| .
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x3 ∆k x1 x2 x3

c0 c1 c2 c3 = c
d0 τ−k(d1) d1 d2 d3

τ−k(y1) ∆k y2 y3

x

FIGURE 4. A domino diagram showing the calculation of the normal form of c−1x c ,
in the case inf(x) ̸= 0. Again, the word ∆ky1 y2 y3 obtained by this calculation is in
normal form. Also, under the hypothesis that both x and c−1x c are rigid, d0 = d3
and c0 = c3 = c , meaning that ∆ky1 y2 y3 = c−1x c .

(2) The injection πd sends each orbit under cycling and τ of SC(xn) bijectively to an orbit under
cycling and τ of SC(xN) .

(3) The function πd gives rise to an inclusion of the conjugacy graph of xn in the conjugacy
graph of xN .

(4) Suppose that the natural injection of commutator subgroups C(xn) ↪→ C(xN) is also surjec-
tive. Then the image of the inclusion mentioned in (3) of the conjugacy graph of xn in the
conjugacy graph of xN is an induced subgraph.

Proof. (1) If y is a rigid element conjugate to xn , then yd is a rigid conjugate of xN , so πd is well-
defined. Next, we claim that the normal form of y can be reconstructed from the normal form of yd

(which implies injectivity). Indeed, since y is rigid, inf(y) = inf(yd)
d , and the non-∆ factors of the

normal form of y are the same as the last ℓcan(yd)
d factors of the normal form of yd .

(2) is a consequence of the fact that πd commutes with cycling and with τ .

(3) Before proving (3), we warn the reader that minimality of arrows may not be preserved by πd , i.e.
it can happen that a minimal edge in the conjugacy graph of xn is split into two minimal edges by πd .

From point (2) we know that the function πd induces a well-defined map from the vertices of the
conjugacy graph of xn to the conjugacy graph of xN . Let us now think about the edges.

Suppose in the conjugacy graph of xn we have a black edge from a vertex represented by an element
y of SC(xn) to a vertex represented by z = c−1yc ∈ SC(xn), where c ≼ ι(y). Then c−1ydc = zd ,
and also c ≼ ι(yd), because (by rigidity of y) we have ι(yd) = ι(y). This means that in the conjugacy
graph of xN , there is still a black edge between the vertices represented by yd and zd . The same
argument works for gray edges. In summary, πd induces an inclusion of the conjugacy graph of xn in
the conjugacy graph of xN .

(4) Suppose that y, z ∈ SC(xn) represent distinct vertices of the conjugacy graph of xn , and that in the
conjugacy graph of xN there is a black edge connecting the vertices represented by yd and zd . Let c be
the conjugating element: c ≼ ι(yd). We have to prove that there is also a black arrow in the conjugacy
graph of xn from y to z with conjugating element c . For that, we observe that c ≼ ι(y) = ι(yd),
by the rigidity of y; moreover, since y and z are both contained in SC(xn), there exists an element c̃
which conjugates: c̃−1yc̃ = z . By taking d th powers, we obtain c̃−1ydc̃ = zd . Together with the fact
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that c−1ydc = zd we obtain c̃c−1ydcc̃−1 = yd . Since the commutators of yd and of y coincide, we
deduce that c̃c−1ycc̃−1 = y , and conclude that c−1yc = c̃−1yc̃ = z . □

Remark 2.6. Lemma 2.5(4) will not actually be used in the rest of the paper. It is, however, quite
a powerful statement: for instance, in the context of braid groups, the hypothesis C(xn) = C(xN)
is verified for all pseudo-Anosov braids. This is an immediate consequence of the fact (proved in
[17] that pseudo-Anosov braids have unique roots: if y−1xly = xl , then (y−1xy)l = xl , and by the
uniqueness of roots y−1xky = (y−1xy)k = xk . (The fact that C(xk) = C(xl) for a pseudo-Anosov
braid x can also be deduced from the results of [19].)

We recall that for any element x of G there is another well-known characteristic subset of the con-
jugacy class of x , called the super summit set SSS(x) which satisfies SC(x) ⊆ SSS(x). We recall the
definition from [13]: an element y of G belongs to SSS(x) if it is conjugate to x , if inf(y) is as large
as possible among conjugates of x , and if sup(y) is as small as possible among conjugates of x . It is a
non-obvious fact that this subset is always non-empty, and that it coincides with the set of conjugates
y of x whose canonical length ℓcan(y) is as small as possible among conjugates of x .

Proposition 2.7. Suppose that y ∈ SSS(y) is not rigid, but conjugate to a rigid element x. Then no
positive power yn is rigid.

In other words, if x is rigid and y ∈ SSS(x) \ SC(x), then no power yn belongs to SC(x). Yet another
way of saying this is: for elements possessing a rigid power and a rigid conjugate, the property of
being in its own SSS is actually equivalent to the (a priori much stronger) condition of being in its
own SC .

Proof. For every positive integer n , the element xn is rigid. Therefore ℓcan(xn) = n · ℓcan(x), and no
conjugate of xn has a smaller canonical length than that. In particular, ℓcan(yn) ⩾ n · ℓcan(x). On the
other hand, y ∈ SSS(y) = SSS(x), so ℓcan(y) = ℓcan(x). This implies that ℓcan(yn) ⩽ n · ℓcan(y) =
n · ℓcan(x). We have proven that ℓcan(yn) = n · ℓcan(x) for every positive integer n .

This implies that the sequence of initial factors ι(y), ι(y2), . . . is increasing, in the sense that each
is a prefix of the next: ι(y) ≼ ι(y2) ≼ ι(y3) ≼ . . . (see [1](Proof of Lemma 3.28)). In particular,
ι(y) ≼ ι(yn). By a similar argument, φ(y) ≽ φ(yn).

Now by hypothesis, y is not rigid, i.e. the product φ(y) · ι(y) is not left-weighted; this means that
ι(y) has a non-empty prefix i such that φ(y) · i is simple. A fortiori, the product φ(yn) · ι(yn) is not
left-weighted, either (as the same element i is still a prefix of ι(yn) and φ(yn) · i is still simple). This
means that yn is not rigid. □

Example 2.8. We return to Example 1.4. There, the rigid braid x = 21|12|2132, with inf(x) = 0
and sup(x) = 3, has a conjugate y = 1−1x1 = ∆−112132|21321|23|32 which is not rigid but whose
square is rigid. As predicted by Lemma 2.7, y does not even belong to SSS(x), as witnessed by the
fact that inf(y) = −1.

3. MORE EXAMPLES

In this section we present some examples which we find enlightening. All calculations were performed
with the computer programs Cbraid [18] (for Bm ) and GAP3 [22, 7] (for B∗

m ). Whenever we say that
the sequence |SC(xn)|n∈N “appears to be” periodic of some period, we mean that this is what our
(necessarily finite) calculations indicate.
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Example 3.1. In B5 , if we set x = 213243.34.432, then the sequence (|SC(xn)|)n∈N appears to be
periodic of period 3, with |SC(x)| = |SC(x2)| = 6 and |SC(x3)| = 42. The conjugacy graph of x3

consists of three vertices which are connected by three gray arrows in a cyclic manner.)

Example 3.2. In B6 , if we set x = 243215432.24, then the sequence (|SC(xn)|)n∈N appears to be
periodic of period 6, and |SC(x)| = 4, |SC(x2)| = 12, |SC(x3)| = 28, |SC(x4)| = 12, |SC(x5)| = 4
and |SC(x6)| = 84.

Example 3.3. The following example might help for understanding the general case. We consider the
8-strand braid group, equipped with its classical Garside structure, and the element

x = 2 4 6 . 2 4 6 5 4 3 2 1 7 6 5 4 3 2 ∈ B8

Calculations with the computer program [18] indicate that this element x is rigid and pseudo-Anosov,
with inf(x) = 0 and sup(x) = 2. Moreover, the sequence (|SC(xn)|)n∈N appears to be periodic of
period 12, with

n 1 2 3 4 5 6 7 8 9 10 11 12
|SC(xn)| 4 12 40 76 4 120 4 76 40 12 4 760

One possible interpretation is that the 8-strand braid x has some kind of symmetry which only reveals
itself in the twelfth power x12 . Making this intuition more precise might be a great step towards
proving Conjecture 1.2.

Figure 5 shows the conjugacy graph of x12 . This graph nicely illustrates the fact that R(x) =
{1, 2, 3, 4, 6, 12} . The red dot is present in the conjugacy graph of xn for every n , where it is rep-
resented by the braid xn . The orange dot is present in the conjugacy graph of xn if n is even: it is
represented by y2 for some non-rigid conjugate y of x with r(y) = 2. The yellow dots are in the
graph of xn if 3|n , the green dots if 4|n , the blue dots if 6|n , and the white dots if 12|n .

Here is an example of an element y which is conjugate to x , which is not rigid, but whose twelfth
power is: we take y to be x , conjugated by the braid c = 1 6

y = −6 −1 · x · 1 6 = −1 . 2 4 6 5 4 3 2 1 7 6 5 4 3 2 1 . 4 6 . 6

when written in mixed normal form.

As expected from Lemma 2.7, y does not belong to its super summit set – indeed, we have inf(y) =
−1 = inf(x) − 1 and sup(y) = 3 = sup(x) + 1. Here is the list of infima and suprema of powers of x
and y:

n 1 2 3 4 5 6 7 8 9 10 11 12

inf(xn) 0 0 0 0 0 0 0 0 0 0 0 0
inf(yn) -1 -1 -1 0 -1 -1 -1 0 -1 -1 -1 0
sup(xn) 2 4 6 8 10 12 14 16 18 20 22 24
sup(yn) 3 5 6 9 11 12 15 17 18 21 23 24

Example 3.4. Here is a generalization of the previous example. In B2m , the element

x = (2 4 6 8 . . . 2m − 4 2m − 2)2 2m − 3 2m − 4 . . . 3 2 1 2m − 1 2m − 2 2m − 3 . . . 4 3 2

is a rigid pseudo-Anosov braid, and it appears that the sequence (|SC(xn)|n∈N) is periodic of period
m · (m − 1).
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Level 1
Level 2
Level 3
Level 4
Level 6
Level 12

×3

×4

×3

×2

×2

×2

×3

×3

×3

×3

×2

×4

×2

×4

×2

×4

×2×2

×2

×2

×2

×2

×2

×2

×2

×2

×2

×2

FIGURE 5. The conjugacy graph of x12 . However, for the sake of clarity, not all
black and gray arrows are shown but only the minimal ones, i.e. only those arrows
that cannot be obtained as the composition of two or more arrows of the same color.

FIGURE 6. The braids x12 (above) and y , its conjugate by σ1σ6 (below). Thus the
upper picture shows a representative of the red dot in Figure 5, and the lower one
shows a representative of one of the white dots.

Example 3.5. The aim of the next example is to destroy one possible idea for proving Conjec-
ture 1.6. In the 5-strand braid group with its classical Garside structure, we consider the element
y = ∆−2 . 1 2 1 3 2 1 4 3 2 . 2 1 3 2 1 4 3 2 1 . 1 2 1 3 2 1 . 2 3 2 1 4 3. It is pseudo-Anosov, it satisfies
inf(y) = −2, sup(y) = 2, it is not rigid, but it is conjugate to the rigid braid x = 1 2 3 2 1 . 3 2 1 4 3
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with inf(x) = 0 and sup(x) = 2. The powers of y are as follows:

y = ∆−2 . 121321432 . 213214321 . 121321 . 232143
y2 = ∆0 . 12321432 . 2134321 . 12 . 213
y3 = ∆−2 . 121321432 . 213214321 . 121321 . 232143 . 12321432 . 2134321 . 12 . 213
y4 = ∆0 . 12321432 . 2134321 . 12 . 213 . 12321432 . 2134321 . 12 . 213

...

The braid yn is rigid if and only if n is even. We have inf(yn) = −2 if n is odd, inf(yn) = 0 if n is
even, and sup(yk) = 2n .

We observe that the last factors of y and y3 do not coincide. This example goes to show that the
sequence of pairs (ι(yn), φ(yn)) need not be periodic of period r(y), even when r(y) is the first rigid
power of y , and even when the sequence |SC(xn)| is periodic of period r(y).

The final three examples will illustrate the proof of our main theorem. They take place in B∗
4 , the

4-strand braid group equipped with the dual Garside-structure of [3]. Here is a quick reminder of how
this structure works. The four punctures are arranged in a circular fashion around the disk, and the
Garside element δ is given by a counterclockwise cyclic movement of all four punctures in the disk by
an angle of π

2 , giving rise to a cyclic permutation of the punctures. The divisors of δ are in bijection
with non-crossing partitions of the four punctures – indeed, given a non-crossing partition, we get a
braid by a movement of the punctures which cyclically exchanges the punctures in the same subset.
Thus, the divisors of δ in B∗

4 are the trivial element, the six atoms ( ), ( ), ( ), ( ), ( ) and ( ),
as well as ( ), ( ), ( ), ( ), ( ), ( ), and finally ( ) = δ . We will call ( ) and ( ) the “diagonal
elements”. Here are some examples of relations between these generators: ( ) · ( ) = ( ) (whereas
the product ( ) · ( ) cannot be simplified and is in normal form), ( ) · ( ) = ( ), ( ) · ( ) = ( )
( ) · ( ) = ( ). We also recall the automorphism τ (x) = δ−1xδ , which can be interpreted as a π

2
counterclockwise rotation of the disk: τ (( )) = ( ), τ (( )) = ( ) etc.

Example 3.6. In B∗
4 : we define x = ( )( )( )( )( ). Then the sequence (|SC(xn)|)n∈N appears to

be periodic of period 2, with |SC(x)| = 7 and |SC(x2)| = 7 · 20 = 140.

x2 = (( )( )( )( )( ))2

( )( )( )( )( )( )( )( )( )( )

( )( )( )( )( )( )( )( )( )( )

( )( )( )( )( )( )( )( )( )( )

FIGURE 7. The conjugacy graph of x2 for x = ( )( )( )( )( )

The conjugacy diagram of SC(x) consists of only a single vertex (i.e. the only rigid conjugates of
x are those obtained by cyclic permutation of its factors and the action of τ ), whereas the diagram
of x2 has four vertices. Each of the rightward-pointing arrows in the diagram represents conjugation
by ( ), each of the leftward-pointing arrows represents conjugation by ( ).

We remark that the conjugacy graphs of x2 can become arbitrarily large, e.g. if we choose x from the
family x = ( )( )( )( )( ) (( )( )( )( ))s with s ∈ N .

Example 3.7. This example is similar to the previous one, but it illustrates the case inf(x) ̸= 0. In B∗
4 ,

we consider x = δ( )( ). Then the sequence (|SC(xn)|)n∈N is periodic of period 2, with |SC(x)| = 4
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

x x

. . . . . .

FIGURE 8. The conjugation of x2 by ( ) for x = ( )( )( )( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

. . . . . .

x x

FIGURE 9. For x = δ · ( )( ), the conjugation of x2 by ( ) yields
( ) δ ( )( ) δ ( ) = δ2 ( )( )( )( ).

and |SC(x2)| = 12. Indeed, the conjugacy graph of x has only one vertex, representing the four
obvious elements δ ( )( ), δ ( )( ), δ ( )( ), and δ ( )( ). The conjugacy graph of x2 has two
vertices: the vertex represented by x2 = (δ ( )( ))2 = δ2 ( )( )( )( ), and the one represented by
( )−1x2( ) = δ2 ( )( )( )( ). Figure 9 shows the calculation that conjugating x2 by ( ) yields
( ) δ ( )( ) δ ( ). The latter word is almost in normal form: in order to obtain the normal form,
it suffices to slide the letters δ to the start of the word, using the rule xi · δ = δ · τ (xi). We find:
( )−1 · δ ( )( ) · ( ) = δ2 ( )( )( )( ).

Example 3.8. Still in B∗
4 , we consider x = ( )( )( )( )( )( )( )( ). Then the sequence (|SC(xn)|)n∈N

appears to be periodic of period 3, with |SC(x)| = |SC(x2)| = 3 and |SC(x3)| = 32.

( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )

( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )( )

( ) ( ) ( ) ( ). . . . . .

FIGURE 10. The conjugation of x3 by ( ) for x = ( )( )( )( )( )( )( )( )

4. PROOF OF THE MAIN THEOREM

In this last section, we will focus on the special cases of the groups B3 and B∗
4 . These two groups

have a very convenient feature in common:

Lemma 4.1. (a) In the braid group B3 (with its classical Garside structure) the Garside ele-
ment ∆ is of weight 3.
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(b) In the braid group B∗
4 (with its dual Garside structure) the Garside element δ is of weight 3.

We recall that being of weight k means being the product of k atoms.

Proof. In B3 , every Garside generator is either a single atom (σ1 or σ2 ), or a product of two atoms
(σ1σ2 and σ2σ1 ), or it is equal to ∆ = σ1σ2σ1 = σ2σ1σ2 , a product of three atoms. Similarly,
in B∗

4 , every Garside generator is either a single atom (( ), ( ), ( ), ( ), ( ), ( )), or a product of
two atoms (( ), ( ), ( ), ( ), ( ), ( )), or it is equal to δ , which can be written as a product of three
atoms in many different ways: ( ) = ( )( )( ) = ( )( )( ) = ( )( )( ) = ... . □

Lemma 4.2. Suppose G is a Garside group, equipped with a Garside structure where the Garside
element is of weight 3. Suppose the normal form of a rigid element x of G contains a letter of weight 1
and a letter of weight 2 . Then the conjugacy graph of x (and of xn for any integer n) consists of only
one vertex.

Proof. Possibly after applying the cycling operation a few times, we can assume that the last letter
of x is of weight 2. Now we recall that any gray arrow in the conjugacy graph leaving the vertex
represented by x is given by conjugation by an element of

Cx = {c ∈ G | 1 ≺ c ≺ ∂φ(x)}.

But in our situation, ∂φ(x) consists of a single atom, so this set is empty. We conclude that no gray
arrow can leave the vertex represented by x .

Similarly, after some cycling, the first non-∆ letter of x is of weight 1. Now, ι(x) consists of only
one atom, and no black arrow can exit the vertex represented by x .

Since the conjugacy graph of x is known to be connected [2], we conclude that it has only one
vertex. □

Remark 4.3. Because of Lemma 4.2, in Garside groups where the Garside element is of weight 3,
we can restrict our attention to rigid elements x whose normal form contains no letters of weight 2,
i.e. only ∆ and letters of weight 1. (The study of elements whose normal form contains no letters of
weight 1 can be reduced to the opposite case – indeed, if x has no letters of weight 1, then x−1 has no
letters of weight 2, and for any braid x , the sliding circuit sets of x and x−1 are in natural bijection.)

We are now ready to prove Theorem 1.7(a), i.e. to prove our Main Conjecture 1.2 in the case of the
3-strand braid group with its classical Garside structure.

By Lemma 4.1(a), the Garside element is of weight 3, and Remark 4.3 applies. In B3 , the only rigid
elements where all non-∆ factors have weight 1 are of the form ∆2kxℓ1 or ∆2kxℓ2 . It is easy to check by
hand that each such element has only two rigid conjugates: itself and its image under τ . In particular,
taking a power of x cannot increase the number of rigid conjugates. This completes the proof in the
3-strand case.

In order to deal with the case B∗
4 , we need some more theory. The theme of this paper is that, after

conjugating a rigid braid along a gray or black arrow, we may obtain a braid which is not rigid,
but which becomes rigid if we elevate it to some power. The following lemma places a bound on
the required power. Indeed, a bound is given by the number of strict, non-trivial prefixes of the
complement of any of the factors of x :



14 MATTHIEU CALVEZ, JUAN GONZÁLEZ-MENESES, BERT WIEST

Lemma 4.4 (Limit on rigid power). Suppose x is a rigid element of G. Consider the set

Cx = {c ∈ G | 1 ≺ c ≺ ∂φ(x)}
Suppose that for some element c∗ of C the conjugate c−1

∗ xc∗ has a rigid power. Let ρ be the smallest
such power, i.e. ρ = r(c−1

∗ xc∗) (using Notation 1.5). Then there is a subset C̃ of Cx which has
precisely ρ elements such that for every c belonging to C̃ , the element c−1xρc is rigid. In particular,
ρ ⩽ |Cx| .

There is, of course, an equivalent statement for conjugations of x by prefixes of ι(x).

Example 4.5. (a) In Example 1.4, there are two different conjugations of x2 , visible as red arrows
in Figure 2; indeed, x2 can be conjugated by 1 to the rigid braid 21.12.2132.2132.23.32, and by 3
to 2132.23.32.21.12.2132, which is a cyclic conjugate of the previous word. These two conjugations
are indicated by the label “×2” on the arrow originating in the vertex x2 in Figure 1.

(b) In Example 3.6, there are two different conjugations of x2 , one by ( ) and one by ( ) – again,
these two are visible as red arrows in Figure 7.

(c) Exactly the same behaviour as in Example 3.6 can be observed in Example 3.7 – see Figure 9.

(d) In Example 3.8, the braid x3 can be conjugated by three different gray arrows (corresponding to
conjugations by ( ), ( ) and ( )) to three braids that are cyclic conjugates of each other.

(e) In Example 3.3 (Figure 5), whenever we have an arrow from a vertex that appears in the conjugacy
graph of xn to a vertex that appears in the conjugacy graph of xN , with n|N , then the corresponding
edge is labelled ×N

n .

Proof of Lemma 4.4. We look at the domino diagram for calculating the normal form of c−1
∗ xρc∗ . Let

us denote by ℓ = ℓcan(x), the canonical length of x .

We start with the ρ · ℓ horizontal arrows whose labels spell out the normal form of xρ , see Figure 3,
and Figure 2 for an example. (We have to take ρ · (ℓ + 1) arrows if inf(x) ̸= 0, see Figure 4, and
Figure 9 for an example.) Also, we have a vertical arrow labelled c∗ = cρ·ℓ at the right end of the
diagram.

We then construct the full domino diagram from right to left, calculating cρ·ℓ−1, cρ·ℓ−2 etc. We will
be interested in the subsequence cρ·ℓ, c(ρ−1)·ℓ, . . . , c2·ℓ, cℓ, c0 , corresponding to the red arrows in our
examples. By minimality of ρ , the terms of this subsequence are pairwise distinct, except that cρ·ℓ =
c0 . These are our ρ distinct conjugators. We remark that the ρ elements c−1

0 xρc0, . . . , c−1
ρ·ℓx

ρcρ·ℓ are
all in the same orbit under the cycling operation. Since the last of them, c−1

ρ·ℓx
ρcρ·ℓ = c−1

∗ xρc∗ , is rigid
by hypothesis, they are all rigid. □

Lemma 4.6. Let x be a rigid element of G. Look at any vertex y in the conjugacy graph of xn , for
any n. Look at the labels of the outgoing gray edges from y, including those labelled ”×1” (for
which by convention we didn’t write down the label). Then the sum of those labels is at most |Cy| ,
where Cy = {c ∈ G | 1 ≺ c ≺ ∂φ(y)} .

Proof. This is simply because of the pigeonhole principle: the outgoing edges represent disjoint sets
of distinct conjugating elements, which all lie in Cy . □

Let us now concentrate on the braid group B∗
4 . The sliding circuit sets and conjugacy diagrams in the

case B∗
4 were already studied in [5].
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Because of Lemma 4.1(b) and Remark 4.3, when trying to prove our Main Theorem 1.7(b), we can
restrict our attention to rigid elements x whose normal form contains no letters of weight 2, but only
letters of weight 1, and δ . Any rigid conjugate y of any power of such an element x has the same
property: it has no letters of weight 2. In particular, ι(y) has no strict nontrivial prefixes. Thus

Observation 4.7. Suppose x ∈ B∗
4 is rigid, and contains no letter of weight 2. Then in the conjugacy

graph of xn , for any n , all vertices correspond to braids which are also rigid and without letters of
weight 2. Moreover, there are only gray arrows, no black ones.

Another key observation is that the presence of “diagonal” letters ( ) ou ( ) imposes strong restric-
tions on the possible gray arrows. Indeed, diagonal letters have only two strict nontrivial prefixes to
their complement, whereas non-diagonal letters have three. For instance:

{c ∈ G | 1 ≺ c ≺ ∂( )} = {( ), ( )} whereas {c ∈ G | 1 ≺ c ≺ ∂( )} = {( ), ( ), ( )}

Let us first prove our Main Theorem 1.7(b) in the more subtle case where some rigid conjugate of
some power of x contains no diagonal letter:

Lemma 4.8. Let x be a rigid element of B∗
4 containing no letters of weight 2. Suppose that the normal

form of some rigid conjugate of some power of x contains no diagonal letters (( ) or ( )). Then for
every integer n, the conjugacy graph of xn has at most six vertices.

Proof. By Lemma 2.5, the conjugacy graph of xn is contained in the conjugacy graph of x4n , whose
infimum is congruent to 0 modulo 4. The conjugacy graphs of dual 4-strand braids with infimum 0,
all of whose letters are of weight 1 and non-diagonal, were studied in detail in [5]. It turns out that the
conjugacy graphs have at most 6 vertices. □

To summarize, if x is a rigid braid with no letters of weight 2 and no diagonal letters, then the
conjugacy graph has only gray arrows, which Lemma 4.4 can only be labelled “×1”, “×2”, or “×3”;
this means that if y and z are elements of G that represent adjacent vertices of the conjugacy graph,
then r(z) ⩽ 3 · r(y). Moreover, the graph has diameter at most 5 (as it has at most 6 vertices). In
particular, for any y ∈ SC(x), we have r(y) ⩽ 35 = 243.Thus our braid x satisfies Conjecture 1.6. (In
fact, a finer analysis would show that the only possible conjugacy graphs are the graph with only one
vertex, and the graph with two vertices, an edge labelled ×3 going from one to the other, and an edge
labelled ×1 going the other way. We will not prove this result here.)

We now turn to the easier case, where every rigid conjugate of every power of x contains a diagonal
letter.

Lemma 4.9. Let x be a rigid element of B∗
4 containing no letters of weight 2. Suppose that in

the conjugacy graph of xn (for some n ∈ N) there is a gray arrow emanating from a vertex which
represents an element y ∈ SC(xn) whose normal form contains a diagonal letter ( ) or ( ) . Then for
any integer d , in the conjugacy graph of xn·d , there are no gray arrows emanating from the vertex yd

other than those inherited via πd from the conjugacy graph of xn .

Proof. After cycling, we can assume that the last letter of y is a diagonal letter. In that case, ∂φ(y)
has only two strict prefixes, so only two gray arrows (counted with multiplicity) can emanate from the
vertex y in the conjugacy graph of xn , or from the vertex yd in the conjugacy graph of xn·d . If d was
the smallest integer so that a new gray arrow appeared, emanating from the vertex yd in the conjugacy
graph of xn·d , then by Lemma 4.4, there are d copies of this gray arrow. Also, one further gray arrow
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is inherited via πd from the conjugacy graph of xn , by hypothesis. In summary, we’d have d+ 1 gray
arrows emanating from the vertex yd . Thus d = 1. □

As an immediate consequence of Observation 4.7 and Lemma 4.9 we have:

Lemma 4.10. Let x be a rigid element of B∗
4 containing no letters of weight 2. Suppose that the

normal form of every rigid conjugate of every power of x contains a diagonal letter (( ) or ( )).
Suppose that n and N are two positive integers with n|N . If the conjugacy graph of xn contains more
than one vertex, then the conjugacy graph of xN is isomorphic to the conjugacy graph of xn .

We are now ready to prove our Main Theorem 1.7(b) for elements x which are rigid, have no letters
of weight 2, and for which every rigid conjugate of any power of x contains a diagonal letter.

Let us fix some power n , and look at the conjugacy graph of xn . There are two possibilities.

Either the conjugacy graph of xn has only one vertex. Let d be the smallest integer such that the con-
jugacy graph of xd·n has more than one vertex. (If there exists none, then the proof is complete.) Let
c∗ be a conjugating element, representing a gray arrow in that conjugacy graph, such that c−1

∗ xd·nc∗
is rigid. Then r(c−1

∗ xnc∗) = d . By Lemma 4.4, applied to xn , we have d = 2.

The other possibility is that the conjugacy graph of xn has more than one vertex. Then Lemma 4.10
implies that the conjugacy graph of any further power xd·n is no larger than the conjugacy graph of xn .

To summarize, for any element y conjugate to x which has some rigid power, we have r(y) = 1 or
r(y) = 2. This completes the proof of Main Theorem 1.7(b).

This paragraph to be deleted. It is not immediately obvious that this implies that the sequence
(|SC(xn)|)n∈N is either constant or alternating: if |SC(x2)| > |SC(x)| , it neads a little bit of argument
to show that that |SC(x3)| = |SC(x)| . I suggest not do this here.
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