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Theorem 1 [Caruso-W]
Generic braids are pseudo-Anosov.

More precisely : consider the ball of radius L and center 1
in the Cayley graph of B

n

with generators = { simple braids }
(Garside’s generators). Then

proportion of pA elements in this ball L!1�! 1

(exponentially fast convergence).

Remark Maher and Sisto proved this (and much more) if you
interpret “generic” as “the result of a long random walk in the
Cayley graph”.
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Open questions
Generalizations to

• braid group B

n

equipped with other generating sets ?
• mapping class groups ?
• groups acting on � -hyperbolic spaces (analogue of Sisto’s

result) ?

Corollary 1
In the Cayley graph there are arbitrarily large balls containing
only pA elements.
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Corollary 2
The closure of a generic braid is a hyperbolic link.

Definition The closure of a braid :

x = b
x =

Proof of Corollary 2 uses a theorem of Tetsuya Ito :
the closure of a pA braid with Dehornoy floor /2 [�2, 2]
is a hyperbolic link.
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Theorem 2 [Caruso-W]
Generically, the conjugacy search problem in the braid
group B

n

can be solved in quadratic time.

I won’t talk about this result today.
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Our preferred generators of B

n

“Simple braids”, a.k.a. “positive permutation braids” :
positive braids, any two strands crossing at most once

m

Permutations of {1, . . . , n}

•
Typical example

Simple braid x 2 B4 , permutation
✓

1 2 3 4
3 1 4 2

◆

•
Very special example

Half-twist � ! permutation
✓

1 . . . n

n . . . 1

◆

•
Property of � : “almost commutes” with all braids
(and �2 generates Center(B

n

) )
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Left-weighting

Example

e
x2

x1

x2

e
x1

The product x1 · x2 is not left-weighted ; the product e
x1 · e

x2 is.

Theorem (Thurston, Elrifai–Morton)
Every x 2 B

n

has a unique representative of the form

�k · x1 · . . . · x` (k 2 Z) with x

i

· x

i+1 left-weighted 8i

Notation k = “infimum of x ”, ` =“canonical length of x ”

Remark Normal forms are described by a FSA.
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Definition (Rigid braids)
• A braid x with normal form x1 · . . . · x` is rigid

if x` · x1 is left-weighted.
• A braid x with normal form �k · x1 · . . . · x` is rigid

if x` · ⌧�k (x1) is left-weighted.

⌧�k (x1)

x`

· · ·

x1

x2

x2

�k

x`

· · ·
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Theorem (Thurston)
Every braid x 2 B

n

is exactly one of
• periodic, i.e., 9k , m 2 Z such that x

k = �m

• reducible (i.e. a curve system is preserved) non-periodic
• pseudo-Anosov

Examples of reducible braids (a) nonobviously
(b) rigid braid, almost round curve (c) obviously (round curves)

(a) (b)
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Our criterion for being pseudo-Anosov

Vague hope

x as ”short, straight and tight” as possible in its conjugacy class
?

=) x can only be reducible by being “obviously reducible”

Theorem (González-Meneses, Wiest)
If x 2 B

n

rigid and reducible, then
• either 9 round reducing curve
• or 9 “almost round” reducing curve and interior strands

don’t cross (or cross as much as possible in each factor)
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Corollary
If a rigid braid wants to be reducible, it must not contain both of
the following braids.

or

n even n odd

Figure (a) Braids sending no round curve to a round curve.
(b) Braid where every pair of strands crosses.

Remark A “generic” braid does contain both of these subwords
with P L!1�! 1

Theorem (Caruso)
Among the braids in the L -ball of Cayley graph of B

n

, the
proportion of rigid, pA braids L!1�! c > 0 .
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Proof of main theorem (Theorem 1)
Definition (non-intrusive conjugation)
A conjugation

x 2 B

n

conjug�! e
x 2 B

n

x1 · . . . · x` 7�! e
x1 · . . . · e

xè

is non-intrusive if the middle third x 1
3 ` . . . x 2

3 ` of x also occurs
in e

x1 · . . . · e
x` .

Claim
Generic braids are non-intrusively conjugate to rigid braids.

I.e., in the ball of radius L of the Cayley graph of B

n

,
the proportion of braids that have a non-intrusive conjugation
to a rigid braid L!1�! 1 exponentially quickly.

Claim =) Theorem 1

Claim =) Theorem 1
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Example of a blocking braid

�

�

�

�

�

 � last factor : �2

↵ =

Defining property
For every braid X such that X · ↵ is in normal form as written,
the only simple suffix of X · ↵ is �2 .
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