Pseudo-Anosov braids are generic

Sandrine Caruso, Bert Wiest

Université de Rennes 1

Preliminary version of the paper (in French) at perso.univ-rennes1.fr/sandrine.caruso/recherche.html

Rolfsenfest, Luminy, July 2013

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

2 A crash course on Garside theory of braids

3 Nielsen-Thurston classification vs. Garside theory

2/16

Theorem 1 [Caruso-W]

Generic braids are pseudo-Anosov.

More precisely : consider the ball of radius *L* and center 1 in the Cayley graph of B_n with generators = { simple braids } (Garside's generators). Then

proportion of pA elements in this ball $\stackrel{L \to \infty}{\longrightarrow} 1$

(exponentially fast convergence).

Remark Maher and Sisto proved this (and much more) if you interpret "generic" as "the result of a long random walk in the Cayley graph".

Open questions

Generalizations to

- braid group *B_n* equipped with other generating sets?
- mapping class groups ?
- groups acting on $\,\delta$ -hyperbolic spaces (analogue of Sisto's result) ?

Corollary 1

In the Cayley graph there are arbitrarily large balls containing only pA elements.

Open questions

Generalizations to

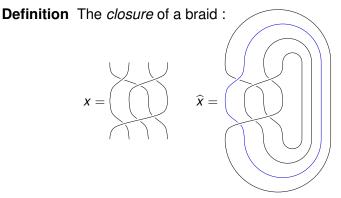
- braid group *B_n* equipped with other generating sets?
- mapping class groups ?
- groups acting on $\,\delta$ -hyperbolic spaces (analogue of Sisto's result) ?

Corollary 1

In the Cayley graph there are arbitrarily large balls containing only pA elements.

Corollary 2

The closure of a generic braid is a hyperbolic link.



Proof of Corollary 2 uses a theorem of Tetsuya Ito : the closure of a pA braid with Dehornoy floor $\notin [-2, 2]$ is a hyperbolic link.

Theorem 2 [Caruso-W]

Generically, the conjugacy search problem in the braid group B_n can be solved in quadratic time.

I won't talk about this result today.

2 A crash course on Garside theory of braids

3 Nielsen-Thurston classification vs. Garside theory

"Simple braids", a.k.a. "positive permutation braids" : positive braids, any two strands crossing at most once

Permutations of $\{1, \ldots, n\}$

- Typical example Simple braid $x \in B_4$, permutation $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix}$
- Very special example Half-twist $\triangle \iff$ permutation $\begin{pmatrix} 1 & \dots & n \\ n & \dots & 1 \end{pmatrix}$
- Property of Δ : "almost commutes" with all braids (and Δ² generates Center(B_n))

・ロト・日本・日本・日本・日本

"Simple braids", a.k.a. "positive permutation braids" : positive braids, any two strands crossing at most once

Permutations of $\{1, \ldots, n\}$

Typical example

Simple braid $x \in B_4$, permutation $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix}$

- Very special example Half-twist $\Delta \iff$ permutation $\begin{pmatrix} 1 & \dots & n \\ n & \dots & 1 \end{pmatrix}$
- Property of Δ : "almost commutes" with all braids (and Δ² generates Center(B_n))

・ロト・日本・日本・日本・日本

"Simple braids", a.k.a. "positive permutation braids" : positive braids, any two strands crossing at most once

Permutations of $\{1, \ldots, n\}$

Typical example

Simple braid $x \in B_4$, permutation $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix}$

- Very special example Half-twist $\Delta \iff$ permutation $\begin{pmatrix} 1 & \dots & n \\ n & \dots & 1 \end{pmatrix}$
- Property of Δ : "almost commutes" with all braids (and Δ² generates Center(B_n))

・ロト・日本・日本・日本・日本

"Simple braids", a.k.a. "positive permutation braids" : positive braids, any two strands crossing at most once

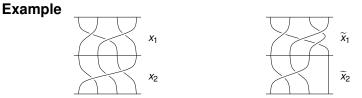
Permutations of $\{1, \ldots, n\}$

Typical example

Simple braid $x \in B_4$, permutation $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix}$

- Very special example Half-twist $\Delta \iff$ permutation $\begin{pmatrix} 1 & \dots & n \\ n & \dots & 1 \end{pmatrix}$
- Property of Δ : "almost commutes" with all braids (and Δ² generates Center(B_n))

Left-weighting



The product $x_1 \cdot x_2$ is *not* left-weighted; the product $\tilde{x}_1 \cdot \tilde{x}_2$ is.

Theorem (Thurston, Elrifai–Morton)

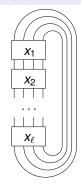
Every $x \in B_n$ has a unique representative of the form

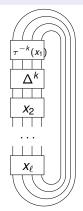
 $\Delta^k \cdot x_1 \cdot \ldots \cdot x_\ell$ $(k \in \mathbb{Z})$ with $x_i \cdot x_{i+1}$ left-weighted $\forall i$

Notation k = "infimum of x ", $\ell =$ "canonical length of x " **Remark** Normal forms are described by a FSA.

Definition (Rigid braids)

- A braid x with normal form x₁ · . . . · x_ℓ is rigid if x_ℓ · x₁ is left-weighted.
- A braid x with normal form $\Delta^k \cdot x_1 \cdot \ldots \cdot x_\ell$ is *rigid* if $x_\ell \cdot \tau^{-k}(x_1)$ is left-weighted.





2 A crash course on Garside theory of braids

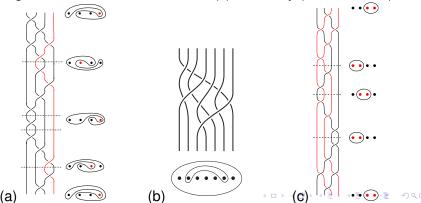
3 Nielsen-Thurston classification vs. Garside theory

Theorem (Thurston)

Every braid $x \in B_n$ is exactly one of

- periodic, i.e., $\exists k, m \in \mathbb{Z}$ such that $x^k = \Delta^m$
- reducible (i.e. a curve system is preserved) non-periodic
- pseudo-Anosov

Examples of reducible braids (a) nonobviously (b) rigid braid, almost round curve (c) obviously (round curves)



Our criterion for being pseudo-Anosov

Vague hope

x as "short, straight and tight" as possible in its conjugacy class

 $\stackrel{?}{\Longrightarrow}$ x can only be reducible by being "obviously reducible"

Theorem (González-Meneses, Wiest)

- If $x \in B_n$ rigid and reducible, then
 - either ∃ round reducing curve
 - or ∃ "almost round" reducing curve and interior strands don't cross (or cross as much as possible in each factor)

(日) (日) (日) (日) (日) (日) (日)

Corollary

If a *rigid* braid wants to be reducible, it must not contain both of the following braids.

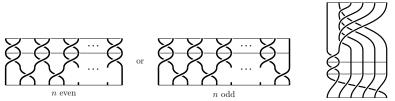


Figure (a) Braids sending no round curve to a round curve. (b) Braid where every pair of strands crosses.

Remark A "generic" braid *does* contain both of these subwords with $\mathbb{P} \stackrel{L \to \infty}{\longrightarrow} 1$

・ロト ・「聞 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Theorem (Caruso)

Among the braids in the *L*-ball of Cayley graph of B_n , the proportion of rigid, pA braids $\stackrel{L\to\infty}{\longrightarrow} c > 0$.

Corollary

If a *rigid* braid wants to be reducible, it must not contain both of the following braids.

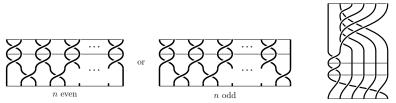


Figure (a) Braids sending no round curve to a round curve.

(b) Braid where every pair of strands crosses.

Remark A "generic" braid *does* contain both of these subwords with $\mathbb{P} \stackrel{L \to \infty}{\longrightarrow} 1$

Theorem (Caruso)

Among the braids in the *L*-ball of Cayley graph of B_n , the proportion of rigid, pA braids $\stackrel{L\to\infty}{\longrightarrow} c > 0$.

Proof of main theorem (Theorem 1)

Definition (non-intrusive conjugation)

A conjugation

$$x \in B_n \stackrel{conjug}{\longrightarrow} \widetilde{x} \in B_n$$

$$x_1 \cdot \ldots \cdot x_\ell \quad \longmapsto \quad \widetilde{x}_1 \cdot \ldots \cdot \widetilde{x}_{\widetilde{\ell}}$$

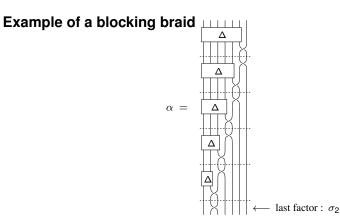
is *non-intrusive* if the middle third $x_{\frac{1}{3}\ell} \dots x_{\frac{2}{3}\ell}$ of x also occurs in $\widetilde{x}_1 \dots \widetilde{x}_\ell$.

Claim

Generic braids are non-intrusively conjugate to rigid braids.

I.e., in the ball of radius *L* of the Cayley graph of B_n , the proportion of braids that have a non-intrusive conjugation to a rigid braid $\xrightarrow{L \to \infty} 1$ exponentially quickly.

Claim \implies Theorem 1



Defining property

For every braid X such that $X \cdot \alpha$ is in normal form as written, the only simple suffix of $X \cdot \alpha$ is σ_2 .

