# The Lawrence-Krammer-Bigelow representation detects the dual braid length

Bert Wiest (Univ. Rennes 1)

joint work with Tetsuya Ito (Univ. Kyoto)

#### 1 Classical and dual Garside structure on braid groups

2 The Lawrence-Krammer-Bigelow representation

**3** Proof : Labellings of curve diagrams





### 1 Classical and dual Garside structure on braid groups

#### 2 The Lawrence-Krammer-Bigelow representation

#### 3 Proof : Labellings of curve diagrams





"Simple braids", a.k.a. "positive permutation braids" : positive braids, any two strands crossing at most once

Permutations of  $\{1, \ldots, n\}$ 

- Typical example Simple braid  $x \in B_4$ , permutation  $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix}$
- Very special example Half-twist  $\Delta \iff$  permutation  $\begin{pmatrix} 1 & \dots & n \\ n & \dots & 1 \end{pmatrix}$
- Property of Δ : "almost commutes" with all braids (and Δ<sup>2</sup> generates Center(B<sub>n</sub>))

"Simple braids", a.k.a. "positive permutation braids" : positive braids, any two strands crossing at most once

↕

Permutations of  $\{1, \ldots, n\}$ 

• Typical example Simple braid  $x \in B_4$ , permutation  $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix}$ 

- Very special example Half-twist  $\Delta \iff$  permutation  $\begin{pmatrix} 1 & \dots & n \\ n & \dots & 1 \end{pmatrix}$
- Property of Δ : "almost commutes" with all braids (and Δ<sup>2</sup> generates Center(B<sub>n</sub>))

"Simple braids", a.k.a. "positive permutation braids" : positive braids, any two strands crossing at most once

↕

Permutations of  $\{1, \ldots, n\}$ 

#### Typical example

Simple braid  $x \in B_4$ , permutation  $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix}$ 

- Very special example Half-twist  $\Delta \iff$  permutation  $\begin{pmatrix} 1 & \dots & n \\ n & \dots & 1 \end{pmatrix}$
- Property of Δ : "almost commutes" with all braids (and Δ<sup>2</sup> generates Center(B<sub>n</sub>))

・ロト・日本・日本・日本・日本・日本

"Simple braids", a.k.a. "positive permutation braids" : positive braids, any two strands crossing at most once

↕

Permutations of  $\{1, \ldots, n\}$ 

#### Typical example

Simple braid  $x \in B_4$ , permutation  $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix}$ 

- Very special example Half-twist  $\Delta \iff$  permutation  $\begin{pmatrix} 1 & \dots & n \\ n & \dots & 1 \end{pmatrix}$
- Property of Δ : "almost commutes" with all braids (and Δ<sup>2</sup> generates Center(B<sub>n</sub>))

# Left-weighting



The product  $x_1 \cdot x_2$  is *not* left-weighted; the product  $\tilde{x}_1 \cdot \tilde{x}_2$  is.

#### Theorem (Thurston, Elrifai–Morton)

Every  $x \in B_n$  has a unique representative of the form

 $\Delta^k \cdot x_1 \cdot \ldots \cdot x_\ell$   $(k \in \mathbb{Z})$  with  $x_i \cdot x_{i+1}$  left-weighted  $\forall i$ 

**Notation** k = "infimum of x",  $k + \ell =$  "supremum of x"

**Remark** Normal forms are described by a FSA.

There is a second Garside structure on the braid group  $B_n$ 

- Classical Punctures lined up horizontally. Δ = half-twist. Divisors of Δ ↔ permutations of the *n* punctures Notation : σ<sub>i</sub> = exchange adjacent punctures
- Dual Punctures on a circle. δ = 2π/n turn. Divisors of δ ↔ disjoint, non-nested polygons, (possibly degenerate, i.e. having only two vertices) Notation : a<sub>i,j</sub> = exchange punctures *i* and *j*.



There is a second Garside structure on the braid group  $B_n$ 

- Classical Punctures lined up horizontally. Δ = half-twist. Divisors of Δ ↔ permutations of the *n* punctures Notation : σ<sub>i</sub> = exchange adjacent punctures
- Dual Punctures on a circle. δ = 2π/n turn. Divisors of δ ↔ disjoint, non-nested polygons, (possibly degenerate, i.e. having only two vertices) Notation : a<sub>i,j</sub> = exchange punctures *i* and *j*.



#### Classical and dual Garside structure on braid groups

### 2 The Lawrence-Krammer-Bigelow representation

#### 3 Proof : Labellings of curve diagrams





# **Historical reminder**

#### Question

#### Is $B_n$ linear, i.e. the subgroup of a matrix group?

- The *Burau* representation is *not* faithful for  $n \ge 5$  [Bigelow, Long, Moody], it *is* faithful for n = 2, 3, and for n = 4 the question is open.
- The LKB–representation (Ruth Lawrence)

$$B_n \xrightarrow{\mathcal{L}} GL\left(\mathbb{Z}\left[q^{\pm 1}, t^{\pm 1}\right], \frac{n(n-1)}{2}\right)$$

Answer : Yes !  $\mathcal{L}$  is faithful for all n. Two proofs : by Daan Krammer and Stephen Bigelow.

# **Historical reminder**

#### Question

Is  $B_n$  linear, i.e. the subgroup of a matrix group?

- The *Burau* representation is *not* faithful for  $n \ge 5$  [Bigelow, Long, Moody], it *is* faithful for n = 2, 3, and for n = 4 the question is open.
- The LKB–representation (Ruth Lawrence)

$$B_n \stackrel{\mathcal{L}}{\longrightarrow} GL\left(\mathbb{Z}\left[q^{\pm 1}, t^{\pm 1}\right], \frac{n(n-1)}{2}\right)$$

Answer : Yes !  $\mathcal{L}$  is faithful for all *n*. Two proofs : by Daan Krammer and Stephen Bigelow.

# **Historical reminder**

#### Question

Is  $B_n$  linear, i.e. the subgroup of a matrix group?

- The *Burau* representation is *not* faithful for  $n \ge 5$  [Bigelow, Long, Moody], it *is* faithful for n = 2, 3, and for n = 4 the question is open.
- The LKB–representation (Ruth Lawrence)

$$B_n \stackrel{\mathcal{L}}{\longrightarrow} GL\left(\mathbb{Z}\left[q^{\pm 1}, t^{\pm 1}\right], \frac{n(n-1)}{2}\right)$$

Answer : Yes !  $\mathcal{L}$  is faithful for all *n*. Two proofs : by Daan Krammer and Stephen Bigelow.

## Explicit formula for the representation $\mathcal{L}$

$$B_n \xrightarrow{\mathcal{L}} GL\left(\mathbb{Z}\left[q^{\pm 1}, t^{\pm 1}\right], \frac{n(n-1)}{2}\right)$$

Denote the basis vectors of  $\mathbb{R}^{\frac{n(n-1)}{2}}$  by  $F_{i,j}$  (for  $1 \leq i < j \leq n$ ). Then  $\mathcal{L}(\sigma_k)$  sends

$$F_{i,j} \mapsto \begin{cases} F_{i,j} & k \notin \{i-1,i,j-1,j\} \\ qF_{k,j} + (q^2 - q)F_{k,i} + (1 - q)F_{i,j} & k = i - 1 \\ F_{i+1,j} & k = i \neq j - 1 \\ qF_{i,k} + (1 - q)F_{i,j} + (q - q^2)tF_{k,j} & k = j - 1 \neq i \\ F_{i,j+1} & k = j \\ -q^2tF_{i,j} & k = i = j - 1 \end{cases}$$

For any  $\beta \in B_n$ , consider the maximal and minimal powers of *t* occurring in the matrix  $\mathcal{L}(\beta)$ .

Krammer's main lemma (which implies faithfulness) :

maximal power of t in  $\mathcal{L}(\beta) = \sup_{ClassicalGarside}(\beta)$ minimal power of t in  $\mathcal{L}(\beta) = \inf_{ClassicalGarside}(\beta)$ 

**Krammer conjectured** 

maximal power of q in  $\mathcal{L}(\beta) = 2 \cdot \sup_{DualGarside}(\beta)$ minimal power of q in  $\mathcal{L}(\beta) = 2 \cdot \inf_{DualGarside}(\beta)$ 

**Theorem [Ito,W]** Krammer's conjecture is true. The variable *q* in the LKB-represent. detects dual braid length.

For any  $\beta \in B_n$ , consider the maximal and minimal powers of *t* occurring in the matrix  $\mathcal{L}(\beta)$ .

Krammer's main lemma (which implies faithfulness) :

maximal power of t in  $\mathcal{L}(\beta) = \sup_{ClassicalGarside}(\beta)$ minimal power of t in  $\mathcal{L}(\beta) = \inf_{ClassicalGarside}(\beta)$ 

#### Krammer conjectured

maximal power of q in  $\mathcal{L}(\beta) = 2 \cdot \sup_{DualGarside}(\beta)$ 

minimal power of q in  $\mathcal{L}(\beta) = 2 \cdot \inf_{\text{DualGarside}}(\beta)$ 

**Theorem [Ito,W]** Krammer's conjecture is true. The variable *q* in the LKB-represent. detects dual braid length.

・ロト・日本・日本・日本・日本・日本

For any  $\beta \in B_n$ , consider the maximal and minimal powers of *t* occurring in the matrix  $\mathcal{L}(\beta)$ .

Krammer's main lemma (which implies faithfulness) :

maximal power of t in  $\mathcal{L}(\beta) = \sup_{ClassicalGarside}(\beta)$ minimal power of t in  $\mathcal{L}(\beta) = \inf_{ClassicalGarside}(\beta)$ 

#### Krammer conjectured

maximal power of q in  $\mathcal{L}(\beta) = 2 \cdot \sup_{\text{DualGarside}}(\beta)$ 

minimal power of q in  $\mathcal{L}(\beta) = 2 \cdot \inf_{\text{DualGarside}}(\beta)$ 

## **Theorem [Ito,W]** Krammer's conjecture is true. The variable *q* in the LKB-represent. detects dual braid length.

For any  $\beta \in B_n$ , consider the maximal and minimal powers of *t* occurring in the matrix  $\mathcal{L}(\beta)$ .

Krammer's main lemma (which implies faithfulness) :

maximal power of t in  $\mathcal{L}(\beta) = \sup_{ClassicalGarside}(\beta)$ minimal power of t in  $\mathcal{L}(\beta) = \inf_{ClassicalGarside}(\beta)$ 

#### Krammer conjectured

maximal power of q in  $\mathcal{L}(\beta) = 2 \cdot \sup_{\text{DualGarside}}(\beta)$ 

minimal power of q in  $\mathcal{L}(\beta) = 2 \cdot \inf_{\text{DualGarside}}(\beta)$ 

## **Theorem [Ito,W]** Krammer's conjecture is true. The variable *q* in the LKB-represent. detects dual braid length.

For any  $\beta \in B_n$ , consider the maximal and minimal powers of *t* occurring in the matrix  $\mathcal{L}(\beta)$ .

Krammer's main lemma (which implies faithfulness) :

maximal power of t in  $\mathcal{L}(\beta) = \sup_{ClassicalGarside}(\beta)$ minimal power of t in  $\mathcal{L}(\beta) = \inf_{ClassicalGarside}(\beta)$ 

#### Krammer conjectured

maximal power of q in  $\mathcal{L}(\beta) = 2 \cdot \sup_{DualGarside}(\beta)$ 

minimal power of q in  $\mathcal{L}(\beta) = 2 \cdot \inf_{\text{DualGarside}}(\beta)$ 

## **Theorem [Ito,W]** Krammer's conjecture is true. The variable *q* in the LKB-representn. detects dual braid length.

We unsuccessfully tried to also reprove Krammer's result using our techniques.

1 Classical and dual Garside structure on braid groups

2 The Lawrence-Krammer-Bigelow representation

### **3** Proof : Labellings of curve diagrams





For any braid  $\beta \in B_n$ , consider its *curve diagram*  $\overline{D_{\beta}}$  with Winding number labeling (WNu) Wall crossing labeling (WCr)



Look at the maximal and minimal labels of the solid arcs.

Thm 1 [W, 2010]  $Min_{WNu}(\beta) = \inf_{Class. Garside}(\beta)$  $Max_{WNu}(\beta) = \sup_{Class. Garside}(\beta)$ 

## Thm 2 [Ito & W, 2011]

 $\begin{aligned} &\textit{Min}_{WCr}(\beta) = \inf_{\textit{DualGarside}}(\beta) \\ &\textit{Max}_{WCr}(\beta) = \sup_{\textit{DualGarside}}(\beta) \end{aligned}$ 

For any braid  $\beta \in B_n$ , consider its *curve diagram*  $\overline{D_{\beta}}$  with Winding number labeling (WNu) Wall crossing labeling (WCr)



Look at the maximal and minimal labels of the solid arcs.

Thm 1 [W, 2010]  $Min_{WNu}(\beta) = \inf_{Class. Garside}(\beta)$  $Max_{WNu}(\beta) = \sup_{Class. Garside}(\beta)$ 

## Thm 2 [Ito & W, 2011]

 $\begin{aligned} &\textit{Min}_{WCr}(\beta) = \inf_{\textit{DualGarside}}(\beta) \\ &\textit{Max}_{WCr}(\beta) = \sup_{\textit{DualGarside}}(\beta) \end{aligned}$ 

For any braid  $\beta \in B_n$ , consider its *curve diagram*  $\overline{D_{\beta}}$  with Winding number labeling (WNu) Wall crossing labeling (WCr)



Look at the maximal and minimal labels of the solid arcs.

Thm 1 [W, 2010]  $Min_{WNu}(\beta) = \inf_{Class.Garside}(\beta)$  $Max_{WNu}(\beta) = \sup_{Class.Garside}(\beta)$  Thm 2 [Ito & W, 2011]

 $\begin{aligned} &\textit{Min}_{\textit{WCr}}(\beta) = \textit{inf}_{\textit{DualGarside}}(\beta) \\ &\textit{Max}_{\textit{WCr}}(\beta) = \textit{sup}_{\textit{DualGarside}}(\beta) \end{aligned}$ 

# Details for this example : $\beta = (\sigma_2^{-1}\sigma_1)^2$

Check the theorems in this special case :



 $\begin{aligned} & \textit{Min}_{WNu}(\beta) = -2, \\ & \textit{Max}_{WNu}(\beta) = 2. \\ & \text{Class. Gars. normal form of } \beta \text{ is} \\ & \Delta^{-2} \cdot \sigma_1 \sigma_2 \cdot \sigma_2 \cdot \sigma_2 \sigma_1 \checkmark \end{aligned}$ 

 $Min_{WCr}(\beta) = -2,$   $Max_{WCr}(\beta) = 2.$ Dual Gars. normal form of  $\beta$  is  $\delta^{-2} \cdot a_{2,3} \cdot a_{2,3} \cdot a_{1,2} \cdot a_{1,2} \checkmark$ 

# Details for this example : $\beta = (\sigma_2^{-1}\sigma_1)^2$

Check the theorems in this special case :



 $\begin{aligned} & \operatorname{Min}_{WNu}(\beta) = -2, \\ & \operatorname{Max}_{WNu}(\beta) = 2. \\ & \operatorname{Class. \ Gars. \ normal \ form \ of \ } \beta \ \mathrm{is} \\ & \Delta^{-2} \cdot \sigma_1 \sigma_2 \cdot \sigma_2 \cdot \sigma_2 \cdot \sigma_2 \sigma_1 \end{aligned}$ 

 $\begin{aligned} & \textit{Min}_{WCr}(\beta) = -2, \\ & \textit{Max}_{WCr}(\beta) = 2. \\ & \text{Dual Gars. normal form of } \beta \text{ is} \\ & \delta^{-2} \cdot a_{2,3} \cdot a_{2,3} \cdot a_{1,2} \cdot a_{1,2} \checkmark \end{aligned}$ 

# Proof of Theorem 2 (beginning)

Theorem 2 Wall crossing labelling detects dual Garside length

**Lemma** Let  $\beta \in B_n$ , and  $\widehat{\beta}$  a divisor of  $\delta$ . Action of  $\widehat{\beta}$  on  $D_{\beta}$ : an arc in  $D_{\beta}$  labelled *k* gives rise to one or several arcs in  $D_{\widehat{\beta}\cdot\beta}$ , labelled *k* or k + 1.



# **Proof of Theorem 2 (end)**

Theorem 2 Wall crossing labelling detects dual Garside length

For simplicity, suppose  $Min_{WCr}(\beta) = 0$ .

Need to prove :  $Max_{WCr}(\beta) = \sup_{Dual}(\beta)$ 

**Proof of** " $\leq$ " : follows from Lemma (acting by a divisor of  $\delta$  can only increase maximal label by 1). **Proof of** " $\geq$ " : by induction on  $Max_{WCr}(\beta)$ .

**1** Construct a collection *P* of disjoint polygons intersecting all maximally labelled arcs, but none of the minimally labelled ones. Then let  $\hat{\beta}$  be the divisor of  $\delta$  corresponding to *P*.

2 Prove that acting on  $D_{\beta}$  by  $\hat{\beta}^{-1}$  decreases the maximal label without decreasing the minimal label :

• 
$$Max_{WCr}(\widehat{\beta}^{-1}\beta) = Max_{WCr}(\beta) - 1$$

• 
$$Min_{WCr}(\widehat{\beta}^{-1}\beta) = Min_{WCr}(\beta) = 0$$

# **Proof of Theorem 2 (end)**

Theorem 2 Wall crossing labelling detects dual Garside length

For simplicity, suppose  $Min_{WCr}(\beta) = 0$ .

Need to prove :  $Max_{WCr}(\beta) = \sup_{Dual}(\beta)$ 

**Proof of "** $\leqslant$ " : follows from Lemma (acting by a divisor of  $\delta$  can only increase maximal label by 1).

**Proof of "** $\geq$ **"** : by induction on  $Max_{WCr}(\beta)$ .

**1** Construct a collection *P* of disjoint polygons intersecting all maximally labelled arcs, but none of the minimally labelled ones. Then let  $\hat{\beta}$  be the divisor of  $\delta$  corresponding to *P*.

し ・ロ ・ 4 回 ・ 4 画 ・ 4 画 ・ 4 回 ・ 4 回 ・

2 Prove that acting on  $D_{\beta}$  by  $\hat{\beta}^{-1}$  decreases the maximal label without decreasing the minimal label :

• 
$$Max_{WCr}(\widehat{\beta}^{-1}\beta) = Max_{WCr}(\beta) - 1$$

• 
$$Min_{WCr}(\widehat{\beta}^{-1}\beta) = Min_{WCr}(\beta) = 0$$

# **Proof of Theorem 2 (end)**

Theorem 2 Wall crossing labelling detects dual Garside length

For simplicity, suppose  $Min_{WCr}(\beta) = 0$ .

Need to prove :  $Max_{WCr}(\beta) = \sup_{Dual}(\beta)$ 

**Proof of "** $\leqslant$ " : follows from Lemma (acting by a divisor of  $\delta$  can only increase maximal label by 1).

**Proof of "** $\geq$ ": by induction on  $Max_{WCr}(\beta)$ .

1 Construct a collection *P* of disjoint polygons intersecting all maximally labelled arcs, but none of the minimally labelled ones. Then let  $\hat{\beta}$  be the divisor of  $\delta$  corresponding to *P*.

2 Prove that acting on  $D_{\beta}$  by  $\hat{\beta}^{-1}$  decreases the maximal label without decreasing the minimal label :

• 
$$Max_{WCr}(\widehat{\beta}^{-1}\beta) = Max_{WCr}(\beta) - 1$$

• 
$$Min_{WCr}(\widehat{\beta}^{-1}\beta) = Min_{WCr}(\beta) = 0$$

#### 1 Classical and dual Garside structure on braid groups

2 The Lawrence-Krammer-Bigelow representation

#### 3 Proof : Labellings of curve diagrams





## Lawrence's construction of the representation $\mathcal{L}$

Let *X* be the configuration space of unordered pairs of points in the *n*-times punctured disk  $D_n$ :

$$X = \left\{ \{x_1, x_2\} \mid x_1, x_2 \in D_n \ , \ x_1 \neq x_2 \right\}$$

equipped with a basepoint  $\{d_1, d_2\}$  (see blackboard). There is a homomorphism

$$\pi_1(X) \to \mathbb{Z}^2 = \langle q, t \rangle, \ \gamma = \{\gamma_1, \gamma_2\} \mapsto q^a t^b$$

where

a = sum of the winding numbers of  $\gamma_1$  and  $\gamma_2$  around all *n* punctures

 $b = 2 \cdot (\text{relative winding number of } \gamma_1 \text{ and } \gamma_2)$ 

Let  $\widetilde{X}$  be the cover corresponding to ker  $(\pi_1(X) \to \mathbb{Z}^2)$ . Covering group $(\widetilde{X}) = \mathbb{Z}^2 = \langle q, t \rangle$ .

## Lawrence's construction of the representation $\mathcal{L}$

Let *X* be the configuration space of unordered pairs of points in the *n*-times punctured disk  $D_n$ :

$$X = \left\{ \{x_1, x_2\} \mid x_1, x_2 \in D_n , \ x_1 \neq x_2 \right\}$$

equipped with a basepoint  $\{d_1, d_2\}$  (see blackboard). There is a homomorphism

$$\pi_1(X) \to \mathbb{Z}^2 = \langle q, t \rangle, \ \gamma = \{\gamma_1, \gamma_2\} \mapsto q^a t^b$$

where

- a = sum of the winding numbers of  $\gamma_1$  and  $\gamma_2$  around all *n* punctures
- $b = 2 \cdot$  (relative winding number of  $\gamma_1$  and  $\gamma_2$ )

Let  $\widetilde{X}$  be the cover corresponding to ker  $(\pi_1(X) \to \mathbb{Z}^2)$ . Covering group $(\widetilde{X}) = \mathbb{Z}^2 = \langle q, t \rangle$ .

Note 
$$B_n \curvearrowright \widetilde{X} \implies B_n \curvearrowright H_2(\widetilde{X}, \partial \widetilde{X}; \mathbb{R}[q^{\pm 1}, t^{\pm 1}])$$

#### Proposition (Lawrence) The second homology

$$H_2(\widetilde{X}, \mathbb{R}[q^{\pm 1}, t^{\pm 1}])$$
 is of dimension  $rac{n(n-1)}{2}$ 

with generators  $F_{i,j}$  ("forks") as in the following figure.



Moreover, the  $B_n$ -action on  $H_2(\widetilde{X}, \mathbb{R}[q^{\pm 1}, t^{\pm 1}])$  coincides with the representation  $\mathcal{L}$ .

\* \* \*

# **Bigelow's Key Lemma**

- Recall  $\widetilde{X}$  is a 4-dim. mfd. with covering action by  $\mathbb{Z}^2 = \langle q, t \rangle$ .
- Recall the "fork"  $F_{i,j}$  is a surface (more precisely a square) in  $\widetilde{X}$  representing a generator of  $H_2(\widetilde{X}, \mathbb{R}[q^{\pm 1}, t^{\pm 1}])$ .
- Let  $\widetilde{X}_{0,0}$  be a fund. domain of the  $\mathbb{Z}^2$ -action containing the basept.  $\{\widetilde{d}_1, \widetilde{d}_2\}$  and all forks  $F_{i,j}$ . Let  $\widetilde{X}_{a,b} = q^a t^b X_{0,0}$ .

Handwaving version of Bigelow's "Key Lemma" Let  $\beta \in B_n$ and  $1 \leq i < j \leq n$ , and consider  $\beta(F_{i,j}) \subset \widetilde{X}$ . Among the fundamental domains  $\widetilde{X}_{a,b}$  intersected by  $\beta(F_{i,j}) \subset \widetilde{X}$ , select the one  $\widetilde{X}_{a_{\max},b_{\max}}$  with maximal (a,b) (lexicographically). Now in  $H_2(\widetilde{X}, \mathbb{R}[q^{\pm 1}, t^{\pm 1}])$  we can write uniquely

$$\beta(F_{i,j}) = \sum_{1 \leqslant i' < j' \leqslant n} P_{i',j'}(q,t) F_{i',j'} \quad (\text{with } P_{i',j'} \in \mathbb{R}[q^{\pm 1},t^{\pm 1}])$$

Then in one of the polynomials  $P_{i',j'}$ , the term  $q^{a_{\max}}t^{b_{\max}}$  occurs with non-zero coeff. ("contributions do not cancel in homology").

# **Bigelow's Key Lemma**

- Recall  $\widetilde{X}$  is a 4-dim. mfd. with covering action by  $\mathbb{Z}^2 = \langle q, t \rangle$ .
- Recall the "fork"  $F_{i,j}$  is a surface (more precisely a square) in  $\widetilde{X}$  representing a generator of  $H_2(\widetilde{X}, \mathbb{R}[q^{\pm 1}, t^{\pm 1}])$ .
- Let  $\widetilde{X}_{0,0}$  be a fund. domain of the  $\mathbb{Z}^2$ -action containing the basept.  $\{\widetilde{d}_1, \widetilde{d}_2\}$  and all forks  $F_{i,j}$ . Let  $\widetilde{X}_{a,b} = q^a t^b X_{0,0}$ .

Handwaving version of Bigelow's "Key Lemma" Let  $\beta \in B_n$ and  $1 \leq i < j \leq n$ , and consider  $\beta(F_{i,j}) \subset \widetilde{X}$ . Among the fundamental domains  $\widetilde{X}_{a,b}$  intersected by  $\beta(F_{i,j}) \subset \widetilde{X}$ , select the one  $\widetilde{X}_{a_{\max},b_{\max}}$  with maximal (a,b) (lexicographically). Now in  $H_2(\widetilde{X}, \mathbb{R}[q^{\pm 1}, t^{\pm 1}])$  we can write uniquely

$$\beta(F_{i,j}) = \sum_{1 \leqslant i' < j' \leqslant n} P_{i',j'}(q,t) F_{i',j'} \quad (\text{with } P_{i',j'} \in \mathbb{R}[q^{\pm 1},t^{\pm 1}])$$

Then in one of the polynomials  $P_{i',j'}$ , the term  $q^{a_{\max}}t^{b_{\max}}$  occurs with non-zero coeff. ("contributions do not cancel in homology").

▶ ▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● ○ ○ ○ ○

# The LKB representation detects $sup_{DualGarside}(\beta)$

**Proof that**  $2 \cdot \sup_{DualGarside}(\beta) =$ maximal power of q in  $\mathcal{L}(\beta)$ 

Proof of " $\geq$ " is easy ( $\mathcal{L}$  : divisors of  $\delta \mapsto$  matrix of *q*-degree 2).

Proof of " $\leq$ " :

 $2 \cdot \sup_{Dual}(\beta) \stackrel{\text{Thm 2}}{=} 2 \cdot Max_{WCr}(\beta), \text{ the max. wall crossing labeling}$  $\stackrel{\text{III}}{=} \text{ the maximal number } a \text{ such that } \beta.F_{i,i+1}$ intersects  $q^a t^b.X_{0,0}$  for some i, b

Now according to Bigelow's Key Lemma, the monomial  $q^a t^b$  occurs somewhere in the matrix  $\mathcal{L}(\beta)$ .

П

## Questions

 Recall Theorem 2 : for a braid β, we can read the length of β from the wall crossing labellings occurring in the curve diagram of β.

Question : is there some analogue for  $Out(F_n)$ , with the sphere system in  $(S^1 \times S^2) # \dots # (S^1 \times S^2)$  playing the role of the curve diagram?

- Is there a generalization of our main theorem to Artin-Tits groups of finite type? The question makes sense, as
  - there are dual Garside structures on such groups (Bessis, T.Brady-Watt)
  - there are Lawrence-Krammer-Bigelow type representations on such groups (Digne, Cohen-Wales).

## Questions

 Recall Theorem 2 : for a braid β, we can read the length of β from the wall crossing labellings occurring in the curve diagram of β.

Question : is there some analogue for  $Out(F_n)$ , with the sphere system in  $(S^1 \times S^2) # \dots # (S^1 \times S^2)$  playing the role of the curve diagram?

- Is there a generalization of our main theorem to Artin-Tits groups of finite type? The question makes sense, as
  - there are dual Garside structures on such groups (Bessis, T.Brady-Watt)
  - there are Lawrence-Krammer-Bigelow type representations on such groups (Digne, Cohen-Wales).

#### 1 Classical and dual Garside structure on braid groups

2 The Lawrence-Krammer-Bigelow representation

**3** Proof : Labellings of curve diagrams



