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The classical structure : preferred generators of B,

“Simple braids”, a.k.a. “positive permutation braids” :
positive braids, any two strands crossing at most once
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The classical structure : preferred generators of B,

“Simple braids”, a.k.a. “positive permutation braids” :
positive braids, any two strands crossing at most once
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Permutations of {1,...,n}

e Typical example
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Simple braid x € By, permutation ( 2
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The classical structure : preferred generators of B,

“Simple braids”, a.k.a. “positive permutation braids” :
positive braids, any two strands crossing at most once

)

Permutations of {1,...,n}

e Typical example

. , : 12 3 4
Simple braid x € By, permutation <3 1 4 2)
e Very special example
Half-twist A «~ permutation </17 ?)

e Property of A : “almost commutes” with all braids
(and A? generates Center(Bp))



Left-weighting
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Example

X1 < X1

X2 X2

The product x4 - X, is not left-weighted ; the product x; - X» is.
Theorem (Thurston, Elrifai-Morton)
Every x € By, has a unique representative of the form

A xi-....x, (keZ) withx- x4 left-weighted Vi

Notation k =‘infimum of x”, k + ¢=“supremum of x”

Remark Normal forms are described by a FSA.
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There is a second Garside structure on the braid group B,

e Classical Punctures lined up horizontally. A = half-twist.
Divisors of A <> permutations of the n punctures
Notation : o; = exchange adjacent punctures

e Dual Punctures on acircle. § = 2= turn.
Divisors of § «» disjoint, non-nested polygons, (possibly
degenerate, i.e. having only two vertices)
Notation : g; ; = exchange punctures / and .

CLASSICAL DUAL
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There is a second Garside structure on the braid group B,

e Classical Punctures lined up horizontally. A = half-twist.
Divisors of A <> permutations of the n punctures
Notation : o; = exchange adjacent punctures

e Dual Punctures on acircle. § = 2= turn.
Divisors of § «» disjoint, non-nested polygons, (possibly
degenerate, i.e. having only two vertices)
Notation : g;; = exchange punctures i and j.

identification
(conjugation)
between
classica
and

dual
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Historical reminder

Question
Is By, linear, i.e. the subgroup of a matrix group ?

’/18



Historical reminder

Question
Is B, linear, i.e. the subgroup of a matrix group ?

e The Burau representation is not faithful for n > 5 [Bigelow,
Long, Moody], it is faithful for n = 2,3, and for n = 4 the
question is open.

’/18



Historical reminder

Question
Is B, linear, i.e. the subgroup of a matrix group ?

e The Burau representation is not faithful for n > 5 [Bigelow,
Long, Moody], it is faithful for n = 2,3, and for n = 4 the
question is open.

e The LKB—-representation (Ruth Lawrence)

B, £, GL (z[qﬂ, tﬂ] w>

Answer : Yes ! L is faithful for all n.
Two proofs : by Daan Krammer and Stephen Bigelow.
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Explicit formula for the representation £

B, -~ GL (Z[qjﬂ’ tiq ’ ”(’72— 1)>

Denote the basis vectors of R™% by Fjj (for 1 <i<j<n).

Then L(ok) sends

9Fj+ (@ — QFci+ (1 —aq)Fi; k=i-1
Fij’—> Fi+1’j > k:{#j_T
’ gFik+ (1 —q)Fij+(q—q°)tFk; k=j—1#Ii
Fijt1 k=]

| —¢?tF k=i=j—1
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Krammer’s proof that £ is faithful
For any 8 € By, consider the maximal and minimal powers of t
occurring in the matrix £(3).

Krammer’s main lemma (which implies faithfulness) :

maximal power of tin E(ﬂ) = SupClassicalGarside(ﬂ)

minimal power of ¢ in £(3) = infciassicaigarsive(3)
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Krammer’s proof that £ is faithful
For any 8 € By, consider the maximal and minimal powers of t
occurring in the matrix £(3).

Krammer’s main lemma (which implies faithfulness) :
maximal power of tin L(/B) = SuDCIassicalGarside(/B)

minimal power of ¢ in £(3) = infciassicaigarsive(3)

Krammer conjectured

maximal power of g in L(8) = 2 - sUppyagarside(5)

minimal power of q in £(8) = 2 - infpyaiGarside(5)

Theorem [lto,W] Krammer’s conjecture is true.
The variable g in the LKB-representn. detects dual braid length.

Note One direction is easy.
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Krammer’s proof that £ is faithful
For any 8 € By, consider the maximal and minimal powers of t
occurring in the matrix £(3).

Krammer’s main lemma (which implies faithfulness) :

maximal power of t in L() = SUP¢assicaiGarside( )

minimal power of t in £(53) = infciassicaiGarside( )

Krammer conjectured
maximal power of g in £(8) = 2 - SUP pyaiGarside(3)

minimal power of q in £(3) = 2 - infpyaGarside(3)

Theorem [lto,W] Krammer’s conjecture is true.
The variable g in the LKB-representn. detects dual braid length.

LA We unsuccessfully tried to also reprove Krammer’s result using our techniques.



@® Proof : Labellings of curve diagrams
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For any braid 8 € By, consider its curve diagram D_,B with
Winding number labeling (WNu)  Wall crossing labeling (WCr)

Look at the maximal and minimal labels of the solid arcs.
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For any braid 8 € By, consider its curve diagram D_/j with
Winding number labeling (WNu)  Wall crossing labeling (WCr)

Look at the maximal and minimal labels of the solid arcs.

Thm 1 [W, 2010]

Minwnu(8) = infelass. Garside(5)
Maxywnu(B) = SUPciass. Garside(3)
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For any braid 8 € By, consider its curve diagram D_/j with
Winding number labeling (WNu)  Wall crossing labeling (WCr)

Look at the maximal and minimal labels of the solid arcs.

Thm 1 [W, 2010] Thm 2 [lto & W, 2011]

Minwnu(B) = infciass. Garside(3) Minwer(B) = infpuaigarside(5)
MaXWNu(/B) = SupClass.Garside(/B) MaXWCr(/B) = SupDualGarside(/B)

We will use only this result



Details for this example : 5 = (05 '0+)?

Check the theorems in this special case :

Minwnu(8) = -2,

MaxWNu(ﬂ) =2.

Class. Gars. normal form of 3 is
A2. 0109 - 09 - 02 - 0201 v
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Details for this example : 5 = (05 '0+)?

Check the theorems in this special case :

Minwny(8) = -2, Minyc,(8) = -2,

Maxwnu(B8) = 2. Maxyc,(8) = 2.

Class. Gars. normal form of 5 is ~ Dual Gars. normal form of 3 is
A_2'0'10'2'O'2'0'2'0'20'1 v 5_2'8273'8273'8172'8172 v
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Proof of Theorem 2 (beginning)

Theorem 2 Wall crossing labelling detects dual Garside length

Lemma Let § € B, and j a divisor of 4. Action of 3 on Dj :
an arc in Dy labelled k gives rise to one or several arcs in Dj ;,
labelled k or k + 1.
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Proof of Theorem 2 (end)

Theorem 2 Wall crossing labelling detects dual Garside length

For simplicity, suppose Minyc, () = 0.

Need to prove : Maxyc(3) = suppua(3)
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Proof of “<” : follows from Lemma (acting by a divisor of §
can only increase maximal label by 1).
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Proof of Theorem 2 (end)

Theorem 2 Wall crossing labelling detects dual Garside length

For simplicity, suppose Minyc, () = 0.

Need to prove : Maxyc(3) = suppua(3)

Proof of “<” : follows from Lemma (acting by a divisor of §
can only increase maximal label by 1).
Proof of “>” : by induction on Maxyc.(5)-

© Construct a collection P of disjoint polygons intersecting alll
maximally labelled arcs, but none of the minimally labelled
ones. Then let g be the divisor of § corresponding to P.

® Prove that acting on Dg by 3~1 decreases the maximal
label without decreasing the minimal label :
. MaXWCr(Eqﬁ) = Maxwc, () — 1
o Minwc (B~ B8) = Minyc(8) =0 O
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@ Proof : further ideas
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Lawrence’s construction of the representation £

Let X be the configuration space of unordered pairs of points in
the n-times punctured disk Dy, :

X = {{anz} | X1,X% € Dn, Xq #Xz}

equipped with a basepoint {dy, d>} (see blackboard).
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Lawrence’s construction of the representation £

Let X be the configuration space of unordered pairs of points in
the n-times punctured disk Dy, :

X = {{X17X2} | X1,X € Dn , X4 #Xz}

equipped with a basepoint {dy, d>} (see blackboard).
There is a homomorphism
T (X) — Zz = <q7 t>7 Y= {71772} — qatb
where
a = sum of the winding numbers of vy and 7, around all n punctures
b = 2 - (relative winding number of 71 and ~»)
Let X be the cover corresponding to ker (my(X) — Z2).
Covering group(X) = Z? = (q, t).
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Note B,~ X = B, Ho(X, 0X; R[gF", t£1])

Proposition (Lawrence) The second homology
Ha(X,R[q*", t¥1]) is of dimension 2-1)

with generators F; ; (“forks”) as in the following figure.

ady az
Moreover, the Bp-action on Hx(X, R[g=", t£1]) coincides with
the representation L.
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Bigelow’s Key Lemma

e Recall X is a 4-dim. mfd. with covering action by Z2 = (q, ).
o Recall the “fork” F; ; is a surface (more precisely a square)

in X representing a generator of Ho(X, R[g*1, t£1]).
e Let X be a fund. domain of the Z2-action containing the
basept. {d;,d>} and all forks F; ;. Let Xap = q3t°. Xy .
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Bigelow’s Key Lemma
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e Recall X is a 4-dim. mfd. with covering action by Z2 = (q, ).
o Recall the “fork” F; ; is a surface (more precisely a square)

in X representing a generator of Ho(X, R[g*1, t£1]).
e Let X be a fund. domain of the Z2-action containing the
basept. {d;,d>} and all forks F; ;. Let Xap = q3t°. Xy .

Handwaving version of Bigelow’s “Key Lemma” Let 3 € B,
and 1 </ <j < n, and consider 5(F; ;) C X. Among the
fundamental domains )N(a,b intersected by 3(F;;) C X, select the
one )?amax,bmx with maximal (&, b) (lexicographically). Now in
Hao(X,R[g*1, t£1]) we can write uniquely

(F)= S Puji(q.t)Fiy (with Py € R[g™", 1))
1<i'<j’<n

Then in one of the polynomials P; j, the term g@max tbmax occurs
with non-zero coeff. (“contributions do not cancel in homology”).



The LKB representation detects supp,.icarside(5)
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Proof that 2 - supp,aGarsidze(5) = maximal power of g in £(3)
Proof of “>” is easy (L : divisors of § — matrix of g-degree 2).

Proof of “<”:

2 - suppya(B) hme o, Maxycr(5), the max. wall crossing labeling

= the maximal number a such that 3.F; ;1
intersects qatb.Xop for some i, b

Now according to Bigelow’s Key Lemma, the monomial g2t°
occurs somewhere in the matrix £(3). O



Questions

© Recall Theorem 2 : for a braid 3, we can read the length
of 5 from the wall crossing labellings occurring in the curve
diagram of 5.

Question : is there some analogue for Out(F), with the

sphere system in (S' x S?)# ... #(S" x S?) playing the
role of the curve diagram ?
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Questions

© Recall Theorem 2 : for a braid 3, we can read the length
of 5 from the wall crossing labellings occurring in the curve
diagram of 5.

Question : is there some analogue for Out(F), with the
sphere system in (S' x S?)# ... #(S" x S?) playing the
role of the curve diagram ?

® Is there a generalization of our main theorem to Artin-Tits
groups of finite type ? The question makes sense, as
o there are dual Garside structures on such groups (Bessis,
T.Brady-Watt)
o there are Lawrence-Krammer-Bigelow type representations
on such groups (Digne, Cohen-Wales).
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