The Lawrence-Krammer-Bigelow representation detects the dual braid length

Bert Wiest (Univ. Rennes 1)

joint work with Tetsuya Ito (Univ. Kyoto)
1. Classical and dual Garside structure on braid groups

2. The Lawrence-Krammer-Bigelow representation

3. Proof: Labellings of curve diagrams

4. Proof: further ideas
1 Classical and dual Garside structure on braid groups

2 The Lawrence-Krammer-Bigelow representation

3 Proof: Labellings of curve diagrams

4 Proof: further ideas
The classical structure: preferred generators of B_n

“Simple braids”, a.k.a. “positive permutation braids”: positive braids, any two strands crossing at most once

\[\begin{array}{c}
\vdash \\
\end{array} \]

Permutations of $\{1, \ldots, n\}$

- **Typical example**

 Simple braid $x \in B_4$, permutation \[
 \begin{pmatrix}
 1 & 2 & 3 & 4 \\
 3 & 1 & 4 & 2 \\
 \end{pmatrix}
 \]

- **Very special example**

 Half-twist $\Delta \leftrightarrow$ permutation \[
 \begin{pmatrix}
 1 & \ldots & n \\
 n & \ldots & 1 \\
 \end{pmatrix}
 \]

- **Property of Δ**: “almost commutes” with all braids (and Δ^2 generates $Center(B_n)$)
The *classical* structure: preferred generators of B_n

“Simple braids”, a.k.a. “positive permutation braids”:
positive braids, any two strands crossing at most once

\[\uparrow \downarrow \]

Permutations of $\{1, \ldots, n\}$

- **Typical example**
 Simple braid $x \in B_4$, permutation

\[
\begin{pmatrix}
1 & 2 & 3 & 4 \\
3 & 1 & 4 & 2
\end{pmatrix}
\]

- **Very special example**
 Half-twist $\Delta \iff$ permutation

\[
\begin{pmatrix}
1 & \cdots & n \\
n & \cdots & 1
\end{pmatrix}
\]

- **Property of Δ**: “almost commutes” with all braids
 (and Δ^2 generates $\text{Center}(B_n)$)
The *classical* structure: preferred generators of B_n

“Simple braids”, a.k.a. “positive permutation braids”: positive braids, any two strands crossing at most once

\[
\begin{array}{c}
\uparrow \\
\Downarrow
\end{array}
\]

Permutations of \{1, \ldots, n\}

- **Typical example**

 Simple braid $x \in B_4$, permutation \[
 \begin{pmatrix}
 1 & 2 & 3 & 4 \\
 3 & 1 & 4 & 2
 \end{pmatrix}
 \]

- **Very special example**

 Half-twist $\Delta \leftrightarrow$ permutation \[
 \begin{pmatrix}
 1 & \ldots & n \\
 n & \ldots & 1
 \end{pmatrix}
 \]

- **Property of Δ**: “almost commutes” with all braids (and Δ^2 generates $Center(B_n)$)
The classical structure: preferred generators of B_n

“Simple braids”, a.k.a. “positive permutation braids”: positive braids, any two strands crossing at most once

\uparrow

Permutations of $\{1, \ldots, n\}$

- **Typical example**

 Simple braid $x \in B_4$, permutation $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix}$

- **Very special example**

 Half-twist $\Delta \leftrightarrow$ permutation $\begin{pmatrix} 1 & \ldots & n \\ n & \ldots & 1 \end{pmatrix}$

- **Property of Δ**: “almost commutes” with all braids (and Δ^2 generates $\text{Center}(B_n)$)
Left-weighting

Example

The product $x_1 \cdot x_2$ is *not* left-weighted; the product $\tilde{x}_1 \cdot \tilde{x}_2$ is.

Theorem (Thurston, Elrifai–Morton)

Every $x \in B_n$ has a unique representative of the form

$$\Delta^k \cdot x_1 \cdot \ldots \cdot x_\ell \quad (k \in \mathbb{Z})$$

with $x_i \cdot x_{i+1}$ left-weighted $\forall i$

Notation $k = \text{“infimum of } x\text{”}$, $k + \ell = \text{“supremum of } x\text{”}$

Remark Normal forms are described by a FSA.
There is a second Garside structure on the braid group B_n

- **Classical** Punctures lined up horizontally. $\Delta = \text{half-twist.}$ Divisors of $\Delta \leftrightarrow$ permutations of the n punctures

 Notation : $\sigma_i = \text{exchange adjacent punctures}$

- **Dual** Punctures on a circle. $\delta = \frac{2\pi}{n}$ turn.
 Divisors of $\delta \leftrightarrow$ disjoint, non-nested polygons, (possibly degenerate, i.e. having only two vertices)

 Notation : $a_{i,j} = \text{exchange punctures } i \text{ and } j$.
There is a second Garside structure on the braid group B_n

- **Classical** Punctures lined up horizontally. $\Delta = \text{half-twist}$.
 Divisors of $\Delta \leftrightarrow$ permutations of the n punctures
 Notation : $\sigma_i = \text{exchange adjacent punctures}$

- **Dual** Punctures on a circle. $\delta = \frac{2\pi}{n}$ turn.
 Divisors of $\delta \leftrightarrow$ disjoint, non-nested polygons, (possibly degenerate, i.e. having only two vertices)
 Notation : $a_{i,j} = \text{exchange punctures } i \text{ and } j$.

![Diagram of classical and dual punctures](attachment:image.png)
1 Classical and dual Garside structure on braid groups

2 The Lawrence-Krammer-Bigelow representation

3 Proof: Labellings of curve diagrams

4 Proof: further ideas
Historical reminder

Question

Is B_n linear, i.e. the subgroup of a matrix group?

- The *Burau* representation is *not* faithful for $n \geq 5$ [Bigelow, Long, Moody], it *is* faithful for $n = 2, 3$, and for $n = 4$ the question is open.

- The LKB–representation (Ruth Lawrence)

$$B_n \xrightarrow{\mathcal{L}} GL\left(\mathbb{Z}\left[q^{\pm 1}, t^{\pm 1}\right], \frac{n(n-1)}{2}\right)$$

Answer: Yes! \mathcal{L} is faithful for all n.

Two proofs: by Daan Krammer and Stephen Bigelow.
Historical reminder

Question

Is B_n linear, i.e. the subgroup of a matrix group?

- The *Burau* representation is *not* faithful for $n \geq 5$ [Bigelow, Long, Moody], it *is* faithful for $n = 2, 3$, and for $n = 4$ the question is open.

- The LKB–representation (Ruth Lawrence)

$$B_n \xrightarrow{\mathcal{L}} GL \left(\mathbb{Z} \left[q^{\pm 1}, t^{\pm 1} \right], \frac{n(n-1)}{2} \right)$$

Answer: Yes! \mathcal{L} is faithful for all n.

Two proofs: by Daan Krammer and Stephen Bigelow.
Historical reminder

Question
Is B_n linear, i.e. the subgroup of a matrix group ?

• The Burau representation is not faithful for $n \geq 5$ [Bigelow, Long, Moody], it is faithful for $n = 2, 3$, and for $n = 4$ the question is open.

• The LKB–representation (Ruth Lawrence)

$$B_n \overset{\mathcal{L}}{\longrightarrow} GL\left(\mathbb{Z}[q^{\pm 1}, t^{\pm 1}], \frac{n(n - 1)}{2}\right)$$

Answer : Yes ! \mathcal{L} is faithful for all n.
Two proofs : by Daan Krammer and Stephen Bigelow.
Explicit formula for the representation \mathcal{L}

$$B_n \overset{\mathcal{L}}{\longrightarrow} GL \left(\mathbb{Z} \left[q^{\pm 1}, t^{\pm 1} \right], \frac{n(n-1)}{2} \right)$$

Denote the basis vectors of $\mathbb{R}^{\frac{n(n-1)}{2}}$ by $F_{i,j}$ (for $1 \leq i < j \leq n$). Then $\mathcal{L}(\sigma_k)$ sends

$$F_{i,j} \mapsto \begin{cases}
F_{i,j} & k \not\in \{i-1, i, j-1, j\} \\
qF_{k,j} + (q^2 - q)F_{k,i} + (1 - q)F_{i,j} & k = i - 1 \\
F_{i+1,j} & k = i \neq j - 1 \\
qF_{i,k} + (1 - q)F_{i,j} + (q - q^2)tF_{k,j} & k = j - 1 \neq i \\
F_{i,j+1} & k = j \\
-q^2 tF_{i,j} & k = i = j - 1
\end{cases}$$
Krammer’s proof that \mathcal{L} is faithful

For any $\beta \in B_n$, consider the maximal and minimal powers of t occurring in the matrix $\mathcal{L}(\beta)$.

Krammer’s main lemma (which implies faithfulness):

maximal power of t in $\mathcal{L}(\beta) = \sup_{\text{ClassicalGarside}}(\beta)$

minimal power of t in $\mathcal{L}(\beta) = \inf_{\text{ClassicalGarside}}(\beta)$

Krammer conjectured

maximal power of q in $\mathcal{L}(\beta) = 2 \cdot \sup_{\text{DualGarside}}(\beta)$

minimal power of q in $\mathcal{L}(\beta) = 2 \cdot \inf_{\text{DualGarside}}(\beta)$

Theorem [Ito,W] Krammer’s conjecture is true.

The variable q in the LKB-representation detects dual braid length.
Krammer’s proof that L is faithful

For any $\beta \in B_n$, consider the maximal and minimal powers of t occurring in the matrix $L(\beta)$.

Krammer’s main lemma (which implies faithfulness):

maximal power of t in $L(\beta) = \sup_{\text{ClassicalGarside}}(\beta)$

minimal power of t in $L(\beta) = \inf_{\text{ClassicalGarside}}(\beta)$

Krammer conjectured

maximal power of q in $L(\beta) = 2 \cdot \sup_{\text{DualGarside}}(\beta)$

minimal power of q in $L(\beta) = 2 \cdot \inf_{\text{DualGarside}}(\beta)$

Theorem [Ito,W] Krammer’s conjecture is true.

The variable q in the LKB-representation detects dual braid length.
Krammer’s proof that \mathcal{L} is faithful

For any $\beta \in B_n$, consider the maximal and minimal powers of t occurring in the matrix $\mathcal{L}(\beta)$.

Krammer’s main lemma (which implies faithfulness):

- Maximal power of t in $\mathcal{L}(\beta) = \sup_{\text{ClassicalGarside}}(\beta)$
- Minimal power of t in $\mathcal{L}(\beta) = \inf_{\text{ClassicalGarside}}(\beta)$

Krammer conjectured

- Maximal power of q in $\mathcal{L}(\beta) = 2 \cdot \sup_{\text{DualGarside}}(\beta)$
- Minimal power of q in $\mathcal{L}(\beta) = 2 \cdot \inf_{\text{DualGarside}}(\beta)$

Theorem [Ito,W] Krammer’s conjecture is true.

The variable q in the LKB-representation detects dual braid length.
Krammer’s proof that \mathcal{L} is faithful

For any $\beta \in B_n$, consider the maximal and minimal powers of t occurring in the matrix $\mathcal{L}(\beta)$.

Krammer’s main lemma (which implies faithfulness):

maximal power of t in $\mathcal{L}(\beta) = \sup_{\text{ClassicalGarside}}(\beta)$

minimal power of t in $\mathcal{L}(\beta) = \inf_{\text{ClassicalGarside}}(\beta)$

Krammer conjectured

maximal power of q in $\mathcal{L}(\beta) = 2 \cdot \sup_{\text{DualGarside}}(\beta)$

minimal power of q in $\mathcal{L}(\beta) = 2 \cdot \inf_{\text{DualGarside}}(\beta)$

Theorem [Ito,W] Krammer’s conjecture is true.

The variable q in the LKB-representation detects dual braid length.

Note One direction is easy.
Krammer’s proof that \mathcal{L} is faithful

For any $\beta \in B_n$, consider the maximal and minimal powers of t occurring in the matrix $\mathcal{L}(\beta)$.

Krammer’s main lemma (which implies faithfulness):

- maximal power of t in $\mathcal{L}(\beta) = \sup_{\text{ClassicalGarside}(\beta)}$
- minimal power of t in $\mathcal{L}(\beta) = \inf_{\text{ClassicalGarside}(\beta)}$

Krammer conjectured

- maximal power of q in $\mathcal{L}(\beta) = 2 \cdot \sup_{\text{DualGarside}(\beta)}$
- minimal power of q in $\mathcal{L}(\beta) = 2 \cdot \inf_{\text{DualGarside}(\beta)}$

Theorem [Ito,W] Krammer’s conjecture is true.

The variable q in the LKB-representntn. detects dual braid length.

We unsuccessfully tried to also reprove Krammer’s result using our techniques.
1. Classical and dual Garside structure on braid groups

2. The Lawrence-Krammer-Bigelow representation

3. Proof: Labellings of curve diagrams

4. Proof: further ideas
For any braid \(\beta \in B_n \), consider its \textit{curve diagram} \(\overline{D_\beta} \) with Winding number labeling (WNu) and Wall crossing labeling (WCr).

Look at the maximal and minimal labels of the solid arcs.

\begin{align*}
\text{Thm 1 [W, 2010]} & & \text{Thm 2 [Ito & W, 2011]} \\
\text{Min}_{\text{WNu}}(\beta) &= \inf_{\text{Class.Garside}}(\beta) & \text{Min}_{\text{WCr}}(\beta) &= \inf_{\text{DualGarside}}(\beta) \\
\text{Max}_{\text{WNu}}(\beta) &= \sup_{\text{Class.Garside}}(\beta) & \text{Max}_{\text{WCr}}(\beta) &= \sup_{\text{DualGarside}}(\beta)
\end{align*}
For any braid $\beta \in B_n$, consider its curve diagram $\overline{D_\beta}$ with winding number labeling (WNu) and wall crossing labeling (WCr).

Look at the maximal and minimal labels of the solid arcs.

Thm 1 [W, 2010]

$\min_{WNu}(\beta) = \inf_{\text{Class.Garside}}(\beta)$

$\max_{WNu}(\beta) = \sup_{\text{Class.Garside}}(\beta)$

Thm 2 [Ito & W, 2011]

$\min_{WCr}(\beta) = \inf_{\text{DualGarside}}(\beta)$

$\max_{WCr}(\beta) = \sup_{\text{DualGarside}}(\beta)$
For any braid $\beta \in B_n$, consider its curve diagram \overline{D}_β with:

- **Winding number labeling (WNU)**
- **Wall crossing labeling (WCr)**

Look at the maximal and minimal labels of the solid arcs.

Thm 1 [W, 2010]

- $\text{Min}_{\text{WNU}}(\beta) = \inf_{\text{Class.Garside}}(\beta)$
- $\text{Max}_{\text{WNU}}(\beta) = \sup_{\text{Class.Garside}}(\beta)$

Thm 2 [Ito & W, 2011]

- $\text{Min}_{\text{WCr}}(\beta) = \inf_{\text{DualGarside}}(\beta)$
- $\text{Max}_{\text{WCr}}(\beta) = \sup_{\text{DualGarside}}(\beta)$

We will use only this result.
Details for this example: $\beta = (\sigma_2^{-1}\sigma_1)^2$

Check the theorems in this special case:

$\text{Min}_{\text{WNu}}(\beta) = -2$,
$\text{Max}_{\text{WNu}}(\beta) = 2$.

Class. Gars. normal form of β is
$\Delta^{-2} \cdot \sigma_1 \sigma_2 \cdot \sigma_2 \cdot \sigma_2 \cdot \sigma_2 \sigma_1$

$\text{Min}_{\text{WCr}}(\beta) = -2$,
$\text{Max}_{\text{WCr}}(\beta) = 2$.

Dual Gars. normal form of β is
$\delta^{-2} \cdot a_{2,3} \cdot a_{2,3} \cdot a_{1,2} \cdot a_{1,2}$
Details for this example: $\beta = (\sigma_2^{-1}\sigma_1)^2$

Check the theorems in this special case:

\[\text{Min}_{\text{WNu}}(\beta) = -2, \]
\[\text{Max}_{\text{WNu}}(\beta) = 2. \]

Class. Gars. normal form of β is
\[\Delta^{-2} \cdot \sigma_1 \sigma_2 \cdot \sigma_2 \cdot \sigma_2 \cdot \sigma_2 \sigma_1 \checkmark \]

\[\text{Min}_{\text{WCr}}(\beta) = -2, \]
\[\text{Max}_{\text{WCr}}(\beta) = 2. \]

Dual Gars. normal form of β is
\[\delta^{-2} \cdot a_{2,3} \cdot a_{2,3} \cdot a_{1,2} \cdot a_{1,2} \checkmark \]
Proof of Theorem 2 (beginning)

Theorem 2 Wall crossing labelling detects dual Garside length

Lemma Let $\beta \in B_n$, and $\hat{\beta}$ a divisor of δ. Action of $\hat{\beta}$ on D_β: an arc in D_β labelled k gives rise to one or several arcs in $D_{\hat{\beta}\cdot\beta}$, labelled k or $k+1$.

![Diagram](image-url)
Proof of Theorem 2 (end)

Theorem 2 Wall crossing labelling detects dual Garside length

For simplicity, suppose $Min_{WCr}(\beta) = 0$.

Need to prove : $Max_{WCr}(\beta) = \sup_{Dual}(\beta)$

Proof of \(\leq\) : follows from Lemma (acting by a divisor of \(\delta\) can only increase maximal label by 1).

Proof of \(\geq\) : by induction on $Max_{WCr}(\beta)$.

1. Construct a collection P of disjoint polygons intersecting all maximally labelled arcs, but none of the minimally labelled ones. Then let $\hat{\beta}$ be the divisor of δ corresponding to P.

2. Prove that acting on D_β by $\hat{\beta}^{-1}$ decreases the maximal label without decreasing the minimal label :
 - $Max_{WCr}(\hat{\beta}^{-1}\beta) = Max_{WCr}(\beta) - 1$
 - $Min_{WCr}(\hat{\beta}^{-1}\beta) = Min_{WCr}(\beta) = 0$
Theorem 2 Wall crossing labelling detects dual Garside length

For simplicity, suppose $\min_{WCr}(\beta) = 0$.

Need to prove: $\max_{WCr}(\beta) = \sup_{Dual}(\beta)$

Proof of “≤” : follows from Lemma (acting by a divisor of δ can only increase maximal label by 1).

Proof of “≥” : by induction on $\max_{WCr}(\beta)$.

1. Construct a collection P of disjoint polygons intersecting all maximally labelled arcs, but none of the minimally labelled ones. Then let $\hat{\beta}$ be the divisor of δ corresponding to P.

2. Prove that acting on D_β by $\hat{\beta}^{-1}$ decreases the maximal label without decreasing the minimal label:
 - $\max_{WCr}(\hat{\beta}^{-1}\beta) = \max_{WCr}(\beta) - 1$
 - $\min_{WCr}(\hat{\beta}^{-1}\beta) = \min_{WCr}(\beta) = 0$
Proof of Theorem 2 (end)

Theorem 2 Wall crossing labelling detects dual Garside length

For simplicity, suppose $\text{Min}_{\text{WCr}}(\beta) = 0$.

Need to prove: $\text{Max}_{\text{WCr}}(\beta) = \sup_{\text{Dual}}(\beta)$

Proof of “\leq” : follows from Lemma (acting by a divisor of δ can only increase maximal label by 1).

Proof of “\geq” : by induction on $\text{Max}_{\text{WCr}}(\beta)$.

1. Construct a collection P of disjoint polygons intersecting all maximally labelled arcs, but none of the minimally labelled ones. Then let $\hat{\beta}$ be the divisor of δ corresponding to P.

2. Prove that acting on D_{β} by $\hat{\beta}^{-1}$ decreases the maximal label without decreasing the minimal label:
 - $\text{Max}_{\text{WCr}}(\hat{\beta}^{-1}\beta) = \text{Max}_{\text{WCr}}(\beta) - 1$
 - $\text{Min}_{\text{WCr}}(\hat{\beta}^{-1}\beta) = \text{Min}_{\text{WCr}}(\beta) = 0$

□
1 Classical and dual Garside structure on braid groups

2 The Lawrence-Krammer-Bigelow representation

3 Proof : Labellings of curve diagrams

4 Proof : further ideas
Lawrence’s construction of the representation \mathcal{L}

Let X be the configuration space of unordered pairs of points in the n-times punctured disk D_n:

$$X = \left\{ \{x_1, x_2\} \mid x_1, x_2 \in D_n, x_1 \neq x_2 \right\}$$

equipped with a basepoint $\{d_1, d_2\}$ (see blackboard). There is a homomorphism

$$\pi_1(X) \to \mathbb{Z}^2 = \langle q, t \rangle, \quad \gamma = \{\gamma_1, \gamma_2\} \mapsto q^a t^b$$

where

$a = \text{sum of the winding numbers of } \gamma_1 \text{ and } \gamma_2 \text{ around all } n \text{ punctures}$

$b = 2 \cdot (\text{relative winding number of } \gamma_1 \text{ and } \gamma_2)$

Let \tilde{X} be the cover corresponding to $\ker (\pi_1(X) \to \mathbb{Z}^2)$. Covering group($\tilde{X}$) = $\mathbb{Z}^2 = \langle q, t \rangle$.
Lawrence’s construction of the representation \mathcal{L}

Let X be the configuration space of unordered pairs of points in the n-times punctured disk D_n:

$$X = \left\{ \{x_1, x_2\} \mid x_1, x_2 \in D_n, \, x_1 \neq x_2 \right\}$$

equipped with a basepoint $\{d_1, d_2\}$ (see blackboard).

There is a homomorphism

$$\pi_1(X) \to \mathbb{Z}^2 = \langle q, t \rangle, \quad \gamma = \{\gamma_1, \gamma_2\} \mapsto q^a t^b$$

where

$a =$ sum of the winding numbers of γ_1 and γ_2 around all n punctures

$b = 2 \cdot$ (relative winding number of γ_1 and γ_2)

Let \tilde{X} be the cover corresponding to $\ker (\pi_1(X) \to \mathbb{Z}^2)$.

Covering group(\tilde{X}) = $\mathbb{Z}^2 = \langle q, t \rangle$.
Note \(B_n \sim \tilde{X} \implies B_n \sim H_2(\tilde{X}, \partial \tilde{X}; \mathbb{R}[q^\pm, t^\pm]) \)

Proposition (Lawrence) The second homology \(H_2(\tilde{X}, \mathbb{R}[q^\pm, t^\pm]) \) is of dimension \(\frac{n(n-1)}{2} \) with generators \(F_{i,j} \) (“forks”) as in the following figure.

Moreover, the \(B_n \)-action on \(H_2(\tilde{X}, \mathbb{R}[q^\pm, t^\pm]) \) coincides with the representation \(\mathcal{L} \).
Bigelow’s Key Lemma

- Recall \(\tilde{X} \) is a 4-dim. mfd. with covering action by \(\mathbb{Z}^2 = \langle q, t \rangle \).
- Recall the “fork” \(F_{i,j} \) is a surface (more precisely a square) in \(\tilde{X} \) representing a generator of \(H_2(\tilde{X}, \mathbb{R}[q^{\pm 1}, t^{\pm 1}]) \).
- Let \(\tilde{X}_{0,0} \) be a fund. domain of the \(\mathbb{Z}^2 \)-action containing the basept. \(\{\tilde{d}_1, \tilde{d}_2\} \) and all forks \(F_{i,j} \). Let \(\tilde{X}_{a,b} = q^a t^b X_{0,0} \).

Handwaving version of Bigelow’s “Key Lemma”

Let \(\beta \in B_n \) and \(1 \leq i < j \leq n \), and consider \(\beta(F_{i,j}) \subset \tilde{X} \). Among the fundamental domains \(\tilde{X}_{a,b} \) intersected by \(\beta(F_{i,j}) \subset \tilde{X} \), select the one \(\tilde{X}_{a_{\text{max}}, b_{\text{max}}} \) with maximal \((a, b) \) (lexicographically). Now in \(H_2(\tilde{X}, \mathbb{R}[q^{\pm 1}, t^{\pm 1}]) \) we can write uniquely

\[
\beta(F_{i,j}) = \sum_{1 \leq i' < j' \leq n} P_{i',j'}(q, t) F_{i',j'} \quad \text{(with } P_{i',j'} \in \mathbb{R}[q^{\pm 1}, t^{\pm 1}] \text{)}
\]

Then in one of the polynomials \(P_{i',j'} \), the term \(q^{a_{\text{max}}} t^{b_{\text{max}}} \) occurs with non-zero coeff. (“contributions do not cancel in homology”).
Bigelow’s Key Lemma

- Recall \tilde{X} is a 4-dim. mfd. with covering action by $\mathbb{Z}^2 = \langle q, t \rangle$.
- Recall the “fork” $F_{i,j}$ is a surface (more precisely a square) in \tilde{X} representing a generator of $H_2(\tilde{X}, \mathbb{R}[q^{\pm 1}, t^{\pm 1}])$.
- Let $\tilde{X}_{0,0}$ be a fund. domain of the \mathbb{Z}^2-action containing the basept. $\{\tilde{d}_1, \tilde{d}_2\}$ and all forks $F_{i,j}$. Let $\tilde{X}_{a,b} = q^a t^b X_{0,0}$.

Handwaving version of Bigelow’s “Key Lemma” Let $\beta \in B_n$ and $1 \leq i < j \leq n$, and consider $\beta(F_{i,j}) \subset \tilde{X}$. Among the fundamental domains $\tilde{X}_{a,b}$ intersected by $\beta(F_{i,j}) \subset \tilde{X}$, select the one $\tilde{X}_{a_{\text{max}}, b_{\text{max}}}$ with maximal (a, b) (lexicographically). Now in $H_2(\tilde{X}, \mathbb{R}[q^{\pm 1}, t^{\pm 1}])$ we can write uniquely

$$\beta(F_{i,j}) = \sum_{1 \leq i' < j' \leq n} P_{i', j'}(q, t) F_{i', j'} \quad (\text{with } P_{i', j'} \in \mathbb{R}[q^{\pm 1}, t^{\pm 1}])$$

Then in one of the polynomials $P_{i', j'}$, the term $q^{a_{\text{max}}} t^{b_{\text{max}}}$ occurs with non-zero coeff. (“contributions do not cancel in homology”).
The LKB representation detects $\sup_{\text{DualGarside}}(\beta)$

Proof that $2 \cdot \sup_{\text{DualGarside}}(\beta) = \text{maximal power of } q \text{ in } \mathcal{L}(\beta)$

Proof of “\geq” is easy ($\mathcal{L} : \text{divisors of } \delta \mapsto \text{matrix of } q\text{-degree 2}$).

Proof of “\leq”:

$2 \cdot \sup_{\text{Dual}}(\beta) \overset{\text{Thm 2}}{=} 2 \cdot \text{Max}_{\text{WCr}}(\beta)$, the max. wall crossing labeling

the maximal number a such that $\beta.F_{i,i+1}$ intersects $q^a t^b X_{0,0}$ for some i, b

Now according to Bigelow’s Key Lemma, the monomial $q^a t^b$ occurs somewhere in the matrix $\mathcal{L}(\beta)$.

\square
Questions

1. Recall Theorem 2: for a braid β, we can read the length of β from the wall crossing labellings occurring in the curve diagram of β.

Question: is there some analogue for $Out(F_n)$, with the sphere system in $(S^1 \times S^2)\# \ldots \#(S^1 \times S^2)$ playing the role of the curve diagram?

2. Is there a generalization of our main theorem to Artin-Tits groups of finite type? The question makes sense, as
 - there are dual Garside structures on such groups (Bessis, T.Brady-Watt)
 - there are Lawrence-Krammer-Bigelow type representations on such groups (Digne, Cohen-Wales).
Questions

1. Recall Theorem 2: for a braid β, we can read the length of β from the wall crossing labellings occurring in the curve diagram of β.

 Question: is there some analogue for $\text{Out}(F_n)$, with the sphere system in $(S^1 \times S^2) \# \ldots \# (S^1 \times S^2)$ playing the role of the curve diagram?

2. Is there a generalization of our main theorem to Artin-Tits groups of finite type? The question makes sense, as
 - there are dual Garside structures on such groups (Bessis, T.Brady-Watt)
 - there are Lawrence-Krammer-Bigelow type representations on such groups (Digne, Cohen-Wales).
1. Classical and dual Garside structure on braid groups

2. The Lawrence-Krammer-Bigelow representation

3. Proof: Labellings of curve diagrams

4. Proof: further ideas