Strongly contracting elements in Garside groups

Bert Wiest, joint work with Matthieu Calvez

Université de Rennes 1 (France), Heriot Watt University, Edinburgh (UK)

Conference in honor of Ruth Charney, July 2021

Strongly contracting elements in Garside groups

1 Main result: strong contraction in Cay(Garside group)

2 A crash course on Garside theory

3 Proof of the main theorem (ideas)

4 Corollary: Loxodromic action on *C_{AL}*(Garside group)

Are pA axes in Mod(S) "like" hyperbolic geodesics?

[Duchin & Rafi, 2009] Axes of pA mapping classes in Cay(Mod(S)) are contracting, and hence Morse [Behrstock 2006]. Question Are they strongly contracting?

Answer [Rafi & Verberne, 2018] No!

There exists a generating set \mathcal{K} and pA elements in $Mod(\mathbb{S}_5)$ whose axis in $Cay(Mod(\mathbb{S}_5), \mathcal{K})$ is not strongly contracting.

Are pA axes in Mod(S) "like" hyperbolic geodesics?

[Duchin & Rafi, 2009] Axes of pA mapping classes in Cay(Mod(S)) are contracting, and hence Morse [Behrstock 2006]. Question Are they strongly contracting?

Answer [Rafi & Verberne, 2018] No!

There exists a generating set \mathcal{K} and pA elements in $Mod(\mathbb{S}_5)$ whose axis in $Cay(Mod(\mathbb{S}_5), \mathcal{K})$ is not strongly contracting.

Theorem (Calvez & W, 2021)

Let $B_n =$ braid group on n strands, and $Z(B_n) = \langle \Delta^2 \rangle$ its center. In the Cayley graph of $B_n/Z(B_n)$ w.r.t. Garside's generating set, the axis of a pA element is strongly contracting.

More generally:

Let G be a Garside group of finite type with cyclic center. In the Cayley graph of G/Z(G) w.r.t. the Garside generating set, the axis of a Morse element is strongly contracting.

Morse

Definition (Morse)

- A quasi-geodesic γ in a metric space X is *Morse* if for every $\Lambda \ge 1$, $K \ge 0$, there is a number $M_{\Lambda,K}$ such that every (Λ, K) -quasi-geodesic with endpoints on γ remains in a $M_{\Lambda,K}$ -neighborhood of γ .
- An infinite order element g in a f.g. G = (S) is Morse if
 (i) n → gⁿ is a quasi-isometric embedding of Z in Cay(G, S) and
 (ii) the axis {gⁿ | n ∈ Z} is Morse.

Example

(1) Geodesics in \mathbb{H}^2 are Morse. (2) *pAs* in Mod(S) are Morse.

Remark

The Morse property is invariant under quasi-isometry / change of generating set.

Strong contraction

Definition (Strongly contracting)

Let (X, d) be a metric space, and $A \subset X$. A is *C*-strongly contracting if for every ball *B* in *X* disjoint from *A*, $proj_A(B)$ has diameter $\leq C$ (universally bounded).

Here, $proj_A(x) = \{a \in A \mid \forall a' \in A, d(x, a) \leq d(x, a')\}.$

Example

Geodesics in
$$\mathbb{H}^2$$
 are $\ln(\frac{\sqrt{2}+1}{\sqrt{2}-1})$ -strongly contracting.

Attention

The strong contraction property is **not** invariant under quasi-isometry / change of generating set.

Morse vs. strongly contracting

Morse vs. strongly contracting

Theorem (Sultan 2014, Cashen 2020) Suppose $A \subset X$ and X is CAT(0). Then A Morse \Rightarrow A strongly contracting

Thus our theorem ("In Garside, Morse \Rightarrow strongly contracting") says that Garside groups "behave a bit like" CAT(0). Evidence for **Famous conjecture** Braid groups are CAT(0)

Main result: strong contraction in Cay(Garside group)

2 A crash course on Garside theory

3 Proof of the main theorem (ideas)

4 Corollary: Loxodromic action on *C_{AL}*(Garside group)

Our preferred generators of B_n : Garside's generators

"Simple braids", a.k.a. "positive permutation braids": positive braids, any two strands crossing at most once

 $\hat{}$ Permutations of $\{1, \ldots, n\}$

Our preferred generators of B_n : Garside's generators

"Simple braids", a.k.a. "positive permutation braids": positive braids, any two strands crossing at most once

Permutations of
$$\{1, \ldots, n\}$$

• Typical example

Simple braid $x \in B_4$, permutation $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix}$

• Very special example Half-twist $\Delta \iff$ permutation $\begin{pmatrix} 1 & \dots & n \\ n & \dots & 1 \end{pmatrix}$

 Property of Δ: "almost commutes" with all braids (and Δ² generates center Z(B_n))

Left-weighting, left normal form

The product $x_1 \cdot x_2$ is *not* left-weighted; the product $\tilde{x}_1 \cdot \tilde{x}_2$ is.

Theorem (Adjan, Thurston, Elrifai–Morton) Every $x \in B_n$ has a unique representative of the form $\Delta^k \cdot x_1 \cdot \ldots \cdot x_\ell$ ($k \in \mathbb{Z}$) with $x_i \cdot x_{i+1}$ left-weighted $\forall i$ Notation k = "infimum of x", $k + \ell =$ "supremum of x" Motivation $\overset{[Garside]}{\leadsto}$ Solution to word and conjugacy pbm in B_n . Similarly *Right*-weighted normal form $x'_1 \cdot \ldots \cdot x'_\ell \cdot \Delta^k$

Definition (The prefix ordering)

Partial ordering on B_n :

$$x \preccurlyeq y : \Leftrightarrow \exists \alpha \in B_n^+, x \cdot \alpha = y$$

Proposition (Garside)

On B_n^+ , the monoid of positive braids, this partial ordering is a lattice ordering: for $x, y \in B_n^+$

 $x \wedge y = g.c.d.(x, y)$ and $x \vee y = l.c.m.(x, y)$ exist

Definition (The prefix ordering)

Partial ordering on B_n :

$$x \preccurlyeq y : \Leftrightarrow \exists \alpha \in B_n^+, x \cdot \alpha = y$$

Proposition (Garside)

On B_n^+ , the monoid of positive braids, this partial ordering is a lattice ordering: for $x, y \in B_n^+$

 $x \wedge y = g.c.d.(x, y)$ and $x \vee y = l.c.m.(x, y)$ exist

All this works more generally

"Definition" [Dehornoy-Paris] Garside group

A group G is Garside if similar combinatorial machinery works.

Example (Brieskorn-Saito, Deligne, Charney)

Irreducible Artin-Tits groups of spherical type $(A_n, B_n, D_n, E_6, E_7, E_8, F_4, H_3, H_4, I_2(m))$ are Garside.

Bestvina's graph (1999)

Definition (Bestvina's graph)

- $\mathcal{X} = \textit{Cay}(\textit{G},\textit{S}_{\textit{Garside}})/\langle \Delta
 angle$:
 - Vertices = Cosets $g\langle \Delta \rangle$ represented by \underline{g} with $\inf(\underline{g}) = 0$,
 - Edge from $g\langle\Delta
 angle$ to $h\langle\Delta
 angle$ if there is $s\in S_{Gars}$ s.t. $\underline{g}s\in h\langle\Delta
 angle$

Bestvina's graph (1999)

Definition (Bestvina's graph)

- $\mathcal{X} = \textit{Cay}(\textit{G},\textit{S}_{\textit{Garside}})/\langle \Delta
 angle$:
 - Vertices = Cosets $g\langle \Delta \rangle$ represented by \underline{g} with $\inf(\underline{g}) = 0$,
 - Edge from $g\langle\Delta
 angle$ to $h\langle\Delta
 angle$ if there is $s\in S_{Gars}$ s.t. $\underline{g}s\in h\langle\Delta
 angle$

Convenient quasi-isometric model for $Cay(G/Z(G), S_{Garside})$: recall $Z(G) = \langle \Delta^e \rangle$

Lemma

$$\mathcal{X} \xrightarrow{\text{isom. embed.}} Cay(G/Z(G), S_{Garside})$$
 with e-dense image

Bestvina's graph (1999)

Definition (Bestvina's graph)

$$\mathcal{X} = {\it Cay}({\it G}, {\it S_{\it Garside}})/\langle \Delta
angle$$
 :

- Vertices = Cosets $g\langle \Delta \rangle$ represented by \underline{g} with $\inf(\underline{g}) = 0$,
- Edge from $g\langle\Delta
 angle$ to $h\langle\Delta
 angle$ if there is $s\in S_{Gars}$ s.t. $\underline{g}s\in h\langle\Delta
 angle$

Convenient quasi-isometric model for $Cay(G/Z(G), S_{Garside})$: recall $Z(G) = \langle \Delta^e \rangle$

Lemma

$$\mathcal{X} \xrightarrow{\text{isom. embed.}} Cay(G/Z(G), S_{Garside})$$
 with e-dense image

Want Axes of Morse elements in \mathcal{X} are strongly contracting.

Bestvina's graph

Proposition (Charney)

Garside normal forms give rise to geodesics in \mathcal{X} .

Notation $\mathcal{NF}(g, h) =$ preferred geod. between vertices g and h.

Bestvina's graph

Proposition (Charney)

Garside normal forms give rise to geodesics in \mathcal{X} .

Notation $\mathcal{NF}(g, h)$ = preferred geod. between vertices g and h.

Proposition

[Charney 1992], [Dehornoy] If h, h' are adjacent, then $\mathcal{NF}(g, h)$ and $\mathcal{NF}(g, h')$ <u>1-fellow travel</u>

Bestvina's graph

Proposition (Charney)

Garside normal forms give rise to geodesics in \mathcal{X} .

Notation $\mathcal{NF}(g, h)$ = preferred geod. between vertices g and h.

Proposition

[Charney 1992], [Dehornoy] If h, h' are adjacent, then $\mathcal{NF}(g, h)$ and $\mathcal{NF}(g, h')$ <u>1-fellow travel</u>

Balls are <u>convex</u>: if $g, h \in B(k, R)$, then $\mathcal{NF}(g, h) \subset B(k, R)$.

Main result: strong contraction in Cay(Garside group)

2 A crash course on Garside theory

3 Proof of the main theorem (ideas)

4 Corollary: Loxodromic action on *C_{AL}*(Garside group)

Theorem (reminder)

If G is Garside (fin.type, $Z(G) \cong \mathbb{Z}$), then in $Cay(G/Z(G), S_{Gars})$, axis(g) Morse \Rightarrow axis(g) strongly contracting.

Theorem (reminder)

If G is Garside (fin.type, $Z(G) \cong \mathbb{Z}$), then in $Cay(G/Z(G), S_{Gars})$, axis(g) Morse \Rightarrow axis(g) strongly contracting.

Theorem (reminder)

If G is Garside (fin.type, $Z(G) \cong \mathbb{Z}$), then in $Cay(G/Z(G), S_{Gars})$, axis(g) Morse \Rightarrow axis(g) strongly contracting.

Difficulty

In order to prove strong contraction, one needs excellent control over *geodesics* (not just quasi-geodesics)

Theorem (reminder)

If G is Garside (fin.type, $Z(G) \cong \mathbb{Z}$), then in \mathcal{X} , axis(g) Morse $\Rightarrow axis(g)$ strongly contracting.

Difficulty

In order to prove strong contraction, one needs excellent control over *geodesics* (not just quasi-geodesics)

In Garside groups, this is not a problem

If G is Garside, then in \mathcal{X} we know a unique preferred geodesic between any pair of vertices (from the Garside normal form). Moreover, these geodesics have good geometric properties, e.g. fellow travelling. A Garside-theoretical projection $\pi: \mathcal{X} \to \operatorname{axis}(x)$ Definition (Projection to $\operatorname{axis}(x) = \{x^k \langle \Delta \rangle \mid k \in \mathbb{Z}\} \subset \mathcal{X})$ Let $x \in G$ with $\operatorname{inf}(x) = 0$. Let v be a vertex of \mathcal{X} . Define

$$\lambda(v) = -\max\{k \in \mathbb{Z}, \; x
eq rac{x^k \cdot v}{2}\} \quad ext{and} \quad \pi(v) = x^{\lambda(v)} \langle \Delta
angle$$

Lemma

Suppose moreover that x is right-rigid. Then this picture holds:

Main result: strong contraction in Cay(Garside group)

2 A crash course on Garside theory

3 Proof of the main theorem (ideas)

4 Corollary: Loxodromic action on *C_{AL}*(Garside group)

 $\bigcirc C\mathcal{G}(\mathbb{D}_n)$ curve graph δ -hyperbolic

[Masur-Minsky]

 ${
m Braid}\ {
m groups}\ B_n\ \simeq {
m Mod}({\mathbb D}_n)$

Irred. spherical Artin groups *A*

 \subset

 $\bigcirc CG(\mathbb{D}_n)$ curve graph δ -hyperbolic

[Masur-Minsky]

 $\bigcirc \mathcal{C}_{parab}(A)$ graph of parab. subgps. δ -hyperbolic?

[CGGW]

 $\mathcal{CG}(\mathbb{D}_n) \stackrel{isom}{=} \mathcal{C}_{parab}(B_n)$

 \subset

Garside groups with cyclic center

> $\bigcirc C_{AL}(G)$ Additional length graph δ -hyperbolic [Calvez-W 2017]

Additional length graph C_{AL}

Definition (Calvez & W, 2017)

 $g \in G$ (Garside group) is *absorbable* if

- $\inf(g) = 0$ or $\sup(g) = 0$ and
- there is some $h \in G$ such that inf(hg) = inf(h) and sup(hg) = sup(h).

Example (in the braid group
$$B_4$$
)
 $g = \sigma_3^{50}$ is absorbable: with $h = \sigma_1^{50}$
we have $hg = (\sigma_1 \sigma_3)^{50}$, so
 $\inf(hg) = 0 = \inf(h)$ and
 $\sup(hg) = 50 = \sup(h)$

 $\begin{array}{l} \mbox{Definition (Additional length graph - Calvez \& W, 2017)} \\ \mathcal{C}_{AL}(G) = Cay(G, \{\mbox{Garside genrts}\} \cup \{\mbox{absorbable elts}\})/\langle \Delta \rangle \end{array}$

 $\mathsf{Braid} \ \mathsf{groups} \ B_n \ \simeq \mathsf{Mod}(\mathbb{D}_n)$

 $\bigcirc \mathcal{CG}(\mathbb{D}_n)$ curve graph δ -hyperbolic

[Masur-Minsky]

Irred. spherical Artin groups *A*

> C $C_{parab}(A)$ graph of parab. subgps. δ -hyperbolic?

> > [CGGW]

$$\mathcal{CG}(\mathbb{D}_n) \stackrel{isom}{=} \mathcal{C}_{parab}(B_n)$$

 \subset

Garside groups with cyclic center

 \subset

C $C_{AL}(G)$ Additional length graph δ -hyperbolic

[Calvez-W 2017]

 $\mathsf{Braid} \ \mathsf{groups} \ B_n \ \simeq \mathsf{Mod}(\mathbb{D}_n)$

 $\bigcirc \mathcal{CG}(\mathbb{D}_n)$ curve graph δ -hyperbolic

[Masur-Minsky]

Irred. spherical Artin groups *A*

> $\bigcirc C_{parab}(A)$ graph of parab. subgps. δ -hyperbolic?

> > [CGGW]

 $\mathcal{CG}(\mathbb{D}_n) \stackrel{isom}{=} \mathcal{C}_{parab}(B_n)$

 \subset

Garside groups with cyclic center

 \subset

q.i.?

 $\bigcirc C_{AL}(G)$ Additional length graph δ -hyperbolic [Calvez-W 2017]

Hyperbolic spaces Irred. spherical Braid groups B_n Garside groups \subset \subset $\simeq Mod(\mathbb{D}_n)$ Artin groups Awith cyclic center $\bigcirc \mathcal{C}_{parab}(A)$ $\bigcirc \mathcal{C}_{AI}(G)$ $\bigcirc \mathcal{CG}(\mathbb{D}_n)$ graph of Additional curve graph q.i.? parab. subgps. length graph δ -hyperbolic δ -hyperbolic? δ -hyperbolic [Masur-Minsky] [CGGW] [Calvez-W 2017] $\mathcal{CG}(\mathbb{D}_n) \stackrel{isom}{=} \mathcal{C}_{parab}(B_n)$

Corollary (Calvez & W, 2021)

- (2) For braid groups B_n :
 - reducible & finite order braids act elliptically on $\mathcal{C}_{AL}(B_n)$
 - pA braids act loxodromically, WPD on $C_{AL}(B_n)$.