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Strongly contracting elements in Garside groups

1 Main result: strong contraction in Cay(Garside group)

2 Corollary: Loxodromic action on CAL(Garside group)



Are pA axes in Mod(S) “like” hyperbolic geodesics?

[Duchin & Rafi, 2009] Axes of pA mapping classes in
Cay(Mod(S)) are contracting, and hence Morse [Behrstock 2006].
Question Are they strongly contracting?

Answer [Rafi & Verberne, 2018] No!
There exists a generating set K and pA elements in Mod(S5)
whose axis in Cay(Mod(S5),K) is not strongly contracting.

Theorem (Calvez & W, 2021)

Let Bn = braid group on n strands, and Z (Bn) = 〈∆2〉 its center.
In the Cayley graph of Bn/Z (Bn) w.r.t. Garside’s generating set,
the axis of a pA element is strongly contracting.
More generally:
Let G be a Garside group of finite type with cyclic center.
In the Cayley graph of G/Z (G ) w.r.t. the Garside generating set,
the axis of a Morse element is strongly contracting.
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Morse

Definition (Morse)

• A quasi-geodesic γ in a metric space X is Morse if for every
Λ > 1, K > 0, there is a number MΛ,K such that every
(Λ,K )-quasi-geodesic with endpoints on γ remains in a
MΛ,K -neighborhood of γ.
• An infinite order element g in a f.g. G = 〈S〉 is Morse if

(i) n 7→ gn is a quasi-isometric embedding of Z in Cay(G ,S) and
(ii) the axis {gn | n ∈ Z} is Morse.

Example

(1) Geodesics in H2 are Morse. (2) pAs in Mod(S) are Morse.

Remark

The Morse property is invariant under quasi-isometry / change of
generating set.



Strong contraction

Definition (Strongly contracting)

Let (X , d) be a metric space, and A ⊂ X .
A is C-strongly contracting if for every ball B in X disjoint from A,
projA(B) has diameter 6 C (universally bounded).

Here, projA(x) = {a ∈ A | ∀a′ ∈ A, d(x , a) 6 d(x , a′)}.

Example

Geodesics in H2 are ln(
√

2+1√
2−1

)-strongly

contracting.

Attention

The strong contraction property is not
invariant under quasi-isometry / change
of generating set.

1+ i



Morse vs. strongly contracting

Recall Strongly contracting ⇒ Morse

Example (Morse 6⇒ strongly contracting)

A =line

X = A ∪ {hoops}
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Theorem (Sultan 2014, Cashen 2020)

Suppose A ⊂ X and X is CAT (0). Then
A Morse ⇒ A strongly contracting

Thus our theorem (“In Garside, Morse ⇒ strongly contracting”)
says that Garside groups “behave a bit like” CAT (0). Evidence for
Famous conjecture Braid groups are CAT (0)
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Proof of the main theorem

Theorem (reminder)

If G is Garside, then in Cay(G/Z (G ), {Garside generators}),
axis(g) Morse ⇒ axis(g) strongly contracting.

Difficulty

In order to prove strong contraction, one needs excellent control
over geodesics (not just quasi-geodesics)

In Garside groups, this is not a problem

If G is Garside, then in

Cay(G ,Garside’s generators)

we know a unique preferred geodesic between any pair of vertices
(coming from the Garside normal form).
Moreover, these geodesics have good geometric properties, e.g.
fellow travelling.
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Hyperbolic spaces
Braid groups Bn

' Mod(Dn)
⊂ Irred. spherical

Artin groups A
⊂ Garside groups

with cyclic center

� CG(Dn)
curve graph
δ-hyperbolic

[Masur-Minsky]

� Cparab(A)
graph of

parab. subgps.
δ-hyperbolic?

[CGGW]

q.i .∼= ?

� CAL(G )
Additional

length graph
δ-hyperbolic

[Calvez-W 2017]

CG(Dn)
isom
= Cparab(Bn)

Corollary (Calvez & W, 2021)

(1) Suppose G is a Garside group with cyclic center. If g ∈ G is
Morse, then its action on CAL(G ) is loxodromic, WPD.

(2) For braid groups Bn:
• reducible & finite order braids act elliptically on CAL(Bn)
• pA braids act loxodromically, WPD on CAL(Bn).
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Additional length graph

Definition (Calvez & W, 2017 )

g ∈ G (Garside group) is absorbable if

• inf(g) = 0 or sup(g) = 0 and

• there is some h ∈ G such that
inf(hg) = inf(h) and
sup(hg) = sup(h).

Example (in the braid group B4)

g = σ50
3 is absorbable: with h = σ50

1

we have hg = (σ1σ3)50, so
inf(hg) = 0 = inf(h) and
sup(hg) = 50 = sup(h)

=

σ5
1 σ

5
3 = (σ1σ3)5

h g

h · g

equilateral
triangle

all factors ∈ SGars−{1,∆}

Definition (Additional length graph – Calvez & W, 2017)

CAL(G ) = Cay(G , {Garside genrts} ∪ {absorbable elts})/〈∆〉
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