Strongly contracting elements in Garside groups

Bert Wiest, joint work with Matthieu Calvez

Université de Rennes 1 (France), Heriot Watt University, Edinburgh (UK)

GAGTA, June 2021

Strongly contracting elements in Garside groups

1 Main result: strong contraction in Cay(Garside group)

2 Corollary: Loxodromic action on C_{AL} (Garside group)

Are pA axes in Mod(S) "like" hyperbolic geodesics?

[Duchin & Rafi, 2009] Axes of pA mapping classes in Cay(Mod(S)) are contracting, and hence Morse [Behrstock 2006]. Question Are they strongly contracting?

Answer [Rafi & Verberne, 2018] No!

There exists a generating set \mathcal{K} and pA elements in $Mod(\mathbb{S}_5)$ whose axis in $Cay(Mod(\mathbb{S}_5), \mathcal{K})$ is not strongly contracting.

Are pA axes in Mod(S) "like" hyperbolic geodesics?

[Duchin & Rafi, 2009] Axes of pA mapping classes in Cay(Mod(S)) are contracting, and hence Morse [Behrstock 2006]. Question Are they strongly contracting?

Answer [Rafi & Verberne, 2018] No!

There exists a generating set \mathcal{K} and pA elements in $Mod(\mathbb{S}_5)$ whose axis in $Cay(Mod(\mathbb{S}_5), \mathcal{K})$ is not strongly contracting.

Theorem (Calvez & W, 2021)

Let $B_n =$ braid group on n strands, and $Z(B_n) = \langle \Delta^2 \rangle$ its center. In the Cayley graph of $B_n/Z(B_n)$ w.r.t. Garside's generating set, the axis of a pA element is strongly contracting.

More generally:

Let G be a Garside group of finite type with cyclic center. In the Cayley graph of G/Z(G) w.r.t. the Garside generating set, the axis of a Morse element is strongly contracting.

Morse

Definition (Morse)

- A quasi-geodesic γ in a metric space X is *Morse* if for every $\Lambda \ge 1$, $K \ge 0$, there is a number $M_{\Lambda,K}$ such that every (Λ, K) -quasi-geodesic with endpoints on γ remains in a $M_{\Lambda,K}$ -neighborhood of γ .
- An infinite order element g in a f.g. G = (S) is Morse if
 (i) n → gⁿ is a quasi-isometric embedding of Z in Cay(G, S) and
 (ii) the axis {gⁿ | n ∈ Z} is Morse.

Example

(1) Geodesics in \mathbb{H}^2 are Morse. (2) *pAs* in Mod(S) are Morse.

Remark

The Morse property is invariant under quasi-isometry / change of generating set.

Strong contraction

Definition (Strongly contracting)

Let (X, d) be a metric space, and $A \subset X$. A is *C*-strongly contracting if for every ball *B* in *X* disjoint from *A*, $proj_A(B)$ has diameter $\leq C$ (universally bounded).

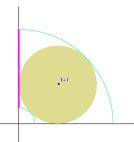
Here, $proj_A(x) = \{a \in A \mid \forall a' \in A, d(x, a) \leq d(x, a')\}.$

Example

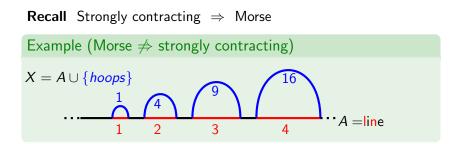
Geodesics in
$$\mathbb{H}^2$$
 are $ln(\frac{\sqrt{2}+1}{\sqrt{2}-1})$ -strongly contracting.

Attention

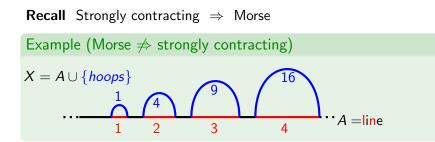
The strong contraction property is **not** invariant under quasi-isometry / change of generating set.



Morse vs. strongly contracting



Morse vs. strongly contracting



Theorem (Sultan 2014, Cashen 2020) Suppose $A \subset X$ and X is CAT(0). Then A Morse \Rightarrow A strongly contracting

Thus our theorem ("In Garside, Morse \Rightarrow strongly contracting") says that Garside groups "behave a bit like" CAT(0). Evidence for **Famous conjecture** Braid groups are CAT(0)

Proof of the main theorem

Theorem (reminder)

If G is Garside, then in $Cay(G/Z(G), \{Garside generators\})$, axis(g) Morse \Rightarrow axis(g) strongly contracting.

Proof of the main theorem

Theorem (reminder)

If G is Garside, then in $Cay(G/Z(G), \{Garside generators\})$, axis(g) Morse \Rightarrow axis(g) strongly contracting.

Difficulty

In order to prove strong contraction, one needs excellent control over *geodesics* (not just quasi-geodesics)

In Garside groups, this is not a problem

If G is Garside, then in

Cay(G, Garside's generators)

we know a unique preferred geodesic between any pair of vertices (coming from the Garside normal form). Moreover, these geodesics have good geometric properties, e.g. fellow travelling.

Proof of the main theorem

Theorem (reminder)

If G is Garside, then in $Cay(G/Z(G), \{Garside generators\})$, axis(g) Morse \Rightarrow axis(g) strongly contracting.

Difficulty

In order to prove strong contraction, one needs excellent control over *geodesics* (not just quasi-geodesics)

In Garside groups, this is not a problem

If G is Garside, then in

Cay(G, Garside's generators)

we know a unique preferred geodesic between any pair of vertices (coming from the Garside normal form). Moreover, these geodesics have good geometric properties, e.g. fellow travelling. 1 Main result: strong contraction in Cay(Garside group)

2 Corollary: Loxodromic action on C_{AL} (Garside group)

Hyperbolic spaces

Braid groups $B_n \subset Mod(\mathbb{D}_n)$

Irred. spherical Artin groups *A* Garside groups with cyclic center

 \subset

Hyperbolic spaces

Braid groups B_n $\simeq Mod(\mathbb{D}_n)$ Irred. spherical Artin groups *A*

 \subset

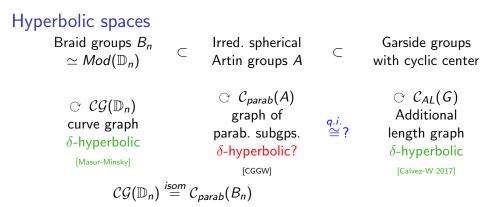
 \subset

Garside groups with cyclic center

 $\bigcirc CG(\mathbb{D}_n)$ curve graph δ -hyperbolic

[Masur-Minsky]

Hyperbolic spaces Garside groups Braid groups B_n Irred. spherical \subset \subset $\simeq Mod(\mathbb{D}_n)$ Artin groups Awith cyclic center $\bigcirc \mathcal{C}_{parab}(A)$ $\bigcirc \mathcal{C}_{AL}(G)$ $\bigcirc \mathcal{CG}(\mathbb{D}_n)$ graph of Additional *q.i.* ≅? curve graph parab. subgps. length graph δ -hyperbolic δ -hyperbolic? δ -hyperbolic [Masur-Minsky] [CGGW] [Calvez-W 2017] $\mathcal{CG}(\mathbb{D}_n) \stackrel{isom}{=} \mathcal{C}_{parab}(B_n)$



Corollary (Calvez & W, 2021)

- (1) Suppose G is a Garside group with cyclic center. If $g \in G$ is Morse, then its action on $C_{AL}(G)$ is loxodromic, WPD.
- (2) For braid groups B_n :
 - reducible & finite order braids act elliptically on C_{AL}(B_n)
 - pA braids act loxodromically, WPD on $C_{AL}(B_n)$.

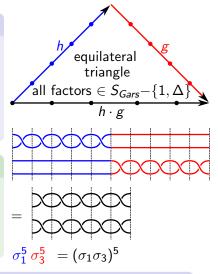
Additional length graph

Definition (Calvez & W, 2017)

 $g \in G$ (Garside group) is *absorbable* if

- $\inf(g) = 0$ or $\sup(g) = 0$ and
- there is some $h \in G$ such that inf(hg) = inf(h) and sup(hg) = sup(h).

Example (in the braid group
$$B_4$$
)
 $g = \sigma_3^{50}$ is absorbable: with $h = \sigma_1^{50}$
we have $hg = (\sigma_1 \sigma_3)^{50}$, so
 $\inf(hg) = 0 = \inf(h)$ and
 $\sup(hg) = 50 = \sup(h)$



Definition (Additional length graph – Calvez & W, 2017) $C_{AL}(G) = Cay(G, \{Garside genrts\} \cup \{absorbable elts\})/\langle \Delta \rangle$