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The conjugacy problem in subgroups of right-angled Artin groups

John Crisp, Eddy Godelle, and Bert Wiest

Abstract

We prove that the conjugacy problem in a large and natural class of subgroups of right-angled
Artin groups (RAAGs), can be solved in linear-time. This class of subgroups has been previously
studied by Crisp and Wiest, and independently by Haglund and Wise, as fundamental groups
of compact special cube complexes.

1. Introduction

It is well known that the conjugacy problem in free groups can be solved in linear-time by
a RAM (random access memory) machine. This result has been generalized in two different
directions. On the one hand, Epstein and Holt [14] have shown that the conjugacy problem is
linear in all word-hyperbolic groups. On the other hand, Liu, Wrathall and Zeger have proved
the analogue result for all right-angled Artin groups ([24], based on [31]). Note that the latter
groups are also called “partially commutative groups” or “graph groups” in the literature.

The aim of the present paper is to further generalize the second result, by proving linearity
of the conjugacy problem in a large class of subgroups of right-angled Artin groups. This class
of groups has previously been studied by Crisp and Wiest [11, 12], and independently by
Haglund and Wise [19]; these groups are fundamental groups of certain cube complexes, called
compact A-special cube complexes in [19].

Our generalization is based on a new solution to the conjugacy problem in right-angled Artin
groups (RAAGs), different from the one of Liu, Wrathall and Zeger, but rather close in spirit
to the methods of Lalonde and Viennot [23, 30].

The class of groups considered in this paper contains in particular all graph braid groups [1,
2, 15, 16, 26] and more generally all state complex groups [3, 17], which are closely related to
robotics [2, 17] – indeed, our results can be interpreted as giving very efficient algorithms for
motion planning of periodic robot movements. Notice that it is still unknown whether Coxeter-
and Artin groups are virtually fundamental groups of compact special cube complexes [19, 20],
so our results do not apply immediately to these groups.

The plan of the paper is as follows. In the second section we present our new solution to the
conjugacy problem in RAAGs. In the third section we give a precise definition of the class of
subgroups of RAAGs under consideration, and prove that they inherit a linear-time solution
to the conjugacy problem from their supergroups.

2. The conjugacy problem in RAAGs is linear-time

We recall that a right-angled Artin group is a group given by a finite presentation, where
every relation states that some pair of generators commutes. Graphically, a right-angled Artin
group A can be specified by a simple graph ΓA, where the generators of A correspond to the
vertices of ΓA, and a pair of generators commutes if and only if the corresponding vertices are
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not connected by an edge. Note that the opposite convention (connecting commuting generators
by an edge) is also very common, but in the present paper we shall stick to this convention.

Right-angled Artin groups have been widely studied in the last decades – see [10] for an
excellent survey. Several solutions to the word and conjugacy problem have been found. It
seems difficult to have a complete bibliography concering these two problems, but the articles
by Servatius [27], Van Wyk [29], Liu, Wrathall and Zeger [24] (based on [31]), Cartier and
Foata [9], Viennot [30], Lalonde [23], and Krob, Mairesse, and Michos [22] can be highlighted.

In order to approach the conjugacy problem in right-angled Artin groups, let us first consider
the relatively easy case of free groups. Given two cyclic words of length ℓ1 and ℓ2 respectively,
there is a two step algorithm which can be performed in time O(ℓ1 + ℓ2) on a RAM machine:
first each word can be cyclically reduced in time O(ℓ1) and O(ℓ2), respectively. If the reduced
words have different lengths, then they are not conjugate. If they have the same length ℓ,
then they can be compared in time O(ℓ) using standard pattern matching algorithms, like
the Knuth-Morris-Pratt algorithm, the Boyer-Moore algorithm, or algorithms based on suffix-
tree methods – see [21, 7, 4, 18, 28]. It should be stressed that on a Turing machine these
algorithms take time O(ℓ log(ℓ)).

In the sequel, we assume that A is a fixed right-angled Artin group given by a fixed
presentation. We denote by {a1, · · · , aN} the generating set of A associated with this
presentation.

In this section we shall provide an algorithm for the conjugacy problem in A which works as
follows: given a word w, another word w′ with smaller or equal length is created in linear time
such that w and w′ represent conjugate elements of A. Furthermore, the word w′ depends only
on the conjugacy class in A of the element represented by w, up to a cyclic permutation of its
letters. This yields a linear-time solution to the conjugacy problem in A because, given words
w and v we can compute the canonical cyclic words w′ and v′ representing their conjugacy
classes, and compare those by one of the algorithms mentioned above.

2.1. Normal forms and pilings

In this subsection we reprove the well-known fact that there is a linear-time solution to the
word problem. We start by recalling the following classical lemma.

Lemma 2.1. [27] Any element of A can be represented by a reduced word (one which
does not contain a subword of the form a±1

i xa∓1
i , where all letters of x commute with ai).

Moreover, any two reduced representatives of the same element are related by a finite number
of commutation relations – no insertions/deletions of trivial pairs are needed.

Now we introduce our main tool, the notion of a piling.

Definition 2.2. An abstract piling is a collection of N words, one for each generator ai

of A, over the alphabet with three symbols {+,−, 0}.

The word associated with the generator ai will be called the ai-stack of the abstract piling.
The product of two abstract pilings is defined as the piling obtained by concatenation of the
corresponding stacks.

We define a function π⋆ that associates to every word on the 2n letters a1, a
−1
1 , . . . , aN , a−1

N

an abstract piling in the following way: starting with the empty piling, we read the word from
left to right. When a letter aǫ

i is read, we check what the last letter of the ai-stack of the piling
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is. If this letter is different from −ǫ (the no-cancellation cases) then we append a letter + or −
(the sign of ǫ) at the end of the ai-stack of the piling. Moreover, we also append a letter 0 at
the end of each of the aj-stacks associated with a generator aj that does not commute with the
generator ai. On the other hand, if the last letter of the ai-stack is −ǫ (the cancellation case),
then we erase this last letter, and we also erase the terminal letter of each of the aj-stacks of
the piling associated with a generator aj that does not commute with the generator ai – note
that the terminal letter of the aj-stack is necessarily “0”.

Definition 2.3. A piling is an abstract piling in the image of the function π⋆. The set of
pilings is denoted Π.

We observe that the number of letters + and − occuring in the piling π⋆(w) is at most equal
to the length of the word w. Moreover, it is immediate from the description of the function π⋆

that, given a word w of length ℓ, the piling π⋆(w) can be calculated in time O(ℓ) (linear-time).
It may be helpful to keep in mind the following physical interpretation of a piling: we have N

vertical sticks, labelled by the generators a1, . . . , an, with beads on it; the beads are labelled
by +, − or 0 such that when reading from bottom to top the sequence of labels of the beads on
the ai-stick, we obtain the ai-stack of the piling. A letter ai or a−1

i of the word w corresponds to
a set of beads (which we call a tile), consisting of one bead labelled + or − on the corresponding
stick, and one bead labelled 0 on each of the sticks corresponding to generators of A which do
not commute with ai; each 0 labelled bead is connected to the ± labelled bead by a thread.
On a stick, adjacent 0-beads can commute with (“slide through”) each other, but 0-beads do
not commute with ±-beads.

Example 2.4. In the group A with group presentation

〈a1, a2, a3, a4 | a1a4 = a4a1 ; a2a3 = a3a2 ; a2a4 = a4a2〉

we can calculate the piling p of the word a−2
2 a−1

4 a3a2a4a1a2a
−1
1 a2

2a
−1
4 as indicated in Figure 1.

p=

a a aa2 3 41 a a aa2 3 41 a a aa2 3 41

Figure 1. The pilings of the prefixes a
−2

2
a
−1

4
a3 and a

−2

2
a
−1

4
a3a2, and of the full word

a
−2

2
a
−1

4
a3a2a4a1a2a

−1

1
a2

2a
−1

4

The map π⋆ induces a well-defined function π : A→ Π because words representing the same
element of A have the same image under π⋆: the image of a word is unchanged by applying
a commutation relation, and by inserting or deleting a trivial pair aia

−1
i or a−1

i ai. Now,
from the definitions it is immediate that no cancellation occurs during the construction of
the piling π⋆(w) of a reduced word w. Thus the identity of A is the unique element of A whose
image by π is the trivial piling, and therefore the word problem is solved in linear-time: a
word w represents the identity if and only if its piling π⋆(w) is trivial; this piling can be built
in linear-time.
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Definition 2.5. Let w be a reduced word belonging to {a±1
1 , . . . , a±1

N }
∗.

(i) We say that w is initially normal when w is trivial or when the index of its first letter is
greater or equal to the index of the first letter of any equivalent reduced word.
(ii) We say that w is normal when all its suffixes are initially normal.

We remark that all the factors of a normal word are normal words.

Proposition 2.6. Any element of A has a unique normal reduced representative word.

Proof. For any reduced word w = aε1

i1
· · · aεk

ik
, where εj = ±1, we set

Ω(w) = {(r, s) | 1 ≤ r < s ≤ k and ir < is}.

Let a be in A. In order to prove that a has normal reduced representative word, we choose,
among all words representing a, a word w for which the number #Ω(w) is as small as possible
(possibly equal to zero). This word w is minimal.

We shall prove uniqueness of the normal representative by induction on the length. If a is
of length 1, i.e. if a = aε

i for ǫ = ±1, then uniqueness is obvious. Now suppose that a has two

normal reduced representatives w = aε1

i1
· · · aεk

ik
and w′ = a

ε′

1

i′
1

· · ·a
ε′

k

i′
k

. Since the the suffixes of

length k − 1 of w and w′ are again normal, it is, by induction hypothesis, sufficient to prove

that aε1

i1
= a

ε′

1

i′
1

. Since w and w′ are normal, we have i1 = i′1. Now, the exponents also have to be

equal by Lemma 2.1: we can not transform the word aε1

i1
· · · aεk

ik
into the word a−ε1

i1
a

ε′

2

i′
2

· · · a
ε′

k

i′
k

by

using commutation relations only: starting from the reduced w, no word of the form uaε1

i1
a−ε1

i1
u′

can appear by any sequence of commutation relations.

In the sequel, we call this unique normal reduced word representing a the normal form of a.

Proposition 2.7. There is a linear-time algorithm that associates to each piling p
a normal word σ⋆(p) such that π⋆(σ⋆(p)) = p. Furthermore, for any element a of A the
word σ⋆(π(a)) is the normal form of a.

Proof. Let p be a piling. By definition, this means that there exists an element a of A such
that π(a) = p. In order to prove Proposition 2.7, it suffices to find an algorithm for constructing
in linear time a word σ⋆(p), and to prove that σ⋆(p) is a normal reduced representative of a.

We start with the observation that the element a has a reduced representative starting with
the letter a±1

i if and only if the ai-stack of the piling is nonempty and starts with the letter +
or −, respectively (not with the letter 0).

We associate to p a normal reduced word σ⋆(p) by induction on the number of letters +
and − in p in the following way. If p is empty then σ⋆(p) is the empty word. Otherwise, let i
be the largest index with the property that the ai-stack of p is nonempty and starts with the
letter + or −. Then, according to this sign, we define the first letter of σ⋆(p) to be ai or a−1

i ,
respectively. Then we remove the tile consisting of the first letter (+ or −) of the ai-stack, and
of the initial letter (which has to be 0) of each of the aj-stacks associated with a generator aj

that does not commute with ai. What remains is a piling p1 with strictly fewer letters. Thus
the word σ⋆(p1) is already defined, by induction hypothesis, and we define the word σ⋆(p) by
concatenation σ⋆(p) = a±1

i σ⋆(p1).
We claim that the word σ⋆(p) is a normal reduced representative of a; indeed, in the above

construction we see that the first letter of σ⋆(p) is also the first letter of some reduced
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representative of a. By induction, the whole word σ⋆(p) is a reduced representative of a.
Moreover, the word σ⋆(p) is initially normal, by construction, and by induction its suffix σ⋆(p1)
is normal. Hence the whole word σ⋆(p) is normal.

Example 2.8. Using the notation of Example 2.4, the word σ⋆(p) is equal to a−1
4 a3

a−1
2 a1a2a

−1
1 a2a2. The calculation is shown in Figure 2.

1

4
a a aa2 31a a aa2 3 41

aextract

4
a a aa2 31 4

a a aa2 31

a2 aa a
3 41 a2

aa a
3 41 a2 aa a

3 41 a2
a aa

3 41

aextract −1aextract3a−1extract 4
1 aextract

aextractaextractextracta−1

2
2

22

aa aa2 3 41

Figure 2. The word σ⋆(p) associated to a piling p

2.2. Cyclic normal forms and pyramidal pilings

We are now ready to attack the conjugacy problem.

2.2.1. Cyclically reduced words and cyclically reduced pilings. We recall that a cycling of
a reduced word w is the operation of removing the first letter of the word, and placing it at the
end of the word. A word is called cyclically reduced if it is reduced and if any word obtained
from it by a sequence of cyclings and commutations is still reduced – in other words, if it is
not of the form x1a

±1
i x2a

∓1
i x3, where all the letters of x1 and x3 commute with ai. As far as

we know, all known solutions to the conjugacy problem in RAAGs are based on the following
lemma.

Lemma 2.9. Two cyclically reduced words represent conjugate elements if and only if they
are related by a sequence of cyclings and commutation relations.

Therefore two reduced words w1, w2 with letters in {a±1
1 , . . . , a±1

n } represent conjugate
elements of A if and only if there is a sequence of words

w1
red
−→ v1 ↔ v2

red
←− w2

where the two arrows labelled “red” represent two sequences of cyclic reductions down
to cyclically reduced words and the arrow ↔ represents a finite sequence of cyclings and
commutation relations.
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Definition 2.10. If, in a piling p, the ai-stack starts (resp. finishes) with a letter + or −,
the bottom ai-tile (resp. the top ai-tile) of p is the sub-piling formed by the first (resp. last)
letter of the ai-stack and the first (resp. last) letter of the aj-stacks such that ai and aj do not
commute in A.

Example 2.11. With the notation of Example 2.4, Figure 3 gives an example of top and
bottom tiles of a piling.

cyclic reduction

a a aa2 3 41a a aa2 3 41

Figure 3. A top a2-tile and a bottom a2-tile, and the associated cyclic reduction

Definition 2.12. If in a piling p the ai-stack starts with the letter + and ends with −, or
vice versa, a cyclic reduction is the act of removing both top and bottom ai-tiles. We say that
the piling is cyclically reduced if no cyclic reduction is possible.

Note that cyclically reducing a piling yields again a piling. We remark that there is an obvious
linear-time algorithm for transforming any piling into a cyclically reduced one by a finite
sequence of cyclic reductions. We also observe that for a reduced word w ∈ {a±1

1 , . . . , a±1
N }

∗,
cycling of w corresponds to a cycling of its piling, and that w is cyclically reduced if and only
if the piling π⋆(w) is.

Now we have a fast algorithm for cyclically reducing words and pilings. In contrast to the
case of free groups, however, the reduced words which can obtained are not unique up to cyclic
permutation. In order to circumvent this problem, we shall introduce in the sequel the notion
of a cyclic normal form.

2.2.2. Non-split words and non-split pilings. Our first objective is to restrict the conjugacy
problem to the case of non-split cyclically reduced words (or pilings). We recall that a graph ΓA

is associated to the right-angled Artin group A.

Definition 2.13. Let w be a reduced word different from 1, and let p be its image by π⋆.
Consider ∆(p) (or ∆(w)) the full subgraph of ΓA whose vertices are those whose correponding
stacks contain at least one bead different from 0 (in other words, the letters ai such that a±1

i

occurs in w). Then, the word w and the piling p are said to be non-split when the graph ∆(p)
is connected.

In other words, w is non-split if and only if its set of letters cannot be separated in two
disjoint subsets such that every letter of one of the subset commutes in A with every letter of
the other subset. Clearly, it takes linear-time to obtain the set of vertices of the graph ∆(p),
and constant time (which depends on the graph ΓA) to decide whether ∆(p) is connected. If it
is not, it takes still constant time to determine the connected components ∆1(w), . . . , ∆k(w)
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of ∆(w). Figure 4 (which still uses the notation of Example 2.4) contains examples of both
split and non-split pilings.

a aa2 3 411a

cyclic reduction

aa2 3 4
a a

Figure 4. The word a
−1

1
a2a3a1a

−1

4
is not split, but cyclic reduction yields a word which is split:
a2(a3a

−1

4
) = (a3a

−1

4
)a2

Now, if w is a cyclically reduced word that is split, then it is equivalent to a product w1 · · ·wk

of non-split cyclically reduced words, one for each connected component ∆i(w) of the
graph ∆(w); the graph ∆i(w) is equal to ∆(wi). Furthermore, once that the connected
components ∆1(w), . . . , ∆k(w) of ∆(w) are computed, appropriate words w1, . . . , wk can be
obtained in linear-time.

Remark 2.14. The following observation will be crucial: if v is another cyclically reduced
word, then w and v represent conjugate elements if and only if two conditions are satisfied:
firstly the graph ∆(v) is equal to ∆(w); secondly, if v1, . . . , vk are words such that ∆(vi) = ∆i(v)
and such that v is equivalent to the product v1 · · · vk, then for each index i the words wi and vi

represent conjugate elements.

Therefore, in order to obtain a solution to the conjugacy problem in linear-time it is enough
to consider the case of cyclically reduced non-split words.

2.2.3. Pyramidal piling and cyclic normal form To solve the conjugacy problem, we
associate in the sequel a cyclic normal word to each cyclically reduced non-split word. We
first do the analogue of this in the framework of pilings: to each non-split cyclically reduced
piling, we associate a pyramidal piling.

Definition 2.15. Let p be a non-empty piling, and denote by i the smallest index such
that the ai-stack contains an a±

i -bead. We say that the piling p is pyramidal if the first bead
of every stack except the ai-stack is either empty or starts with the letter 0. In that case, we
say that ai is the apex of the pyramidal piling.

Note that a pyramidal piling has to be non-split.

Lemma 2.16. (i) Let p be a non-empty piling and denote by i the smallest index such
that the ai-stack of p contains an a±

i -bead; then there exists a unique decomposition p0 · p1

of p such that p1 is a pyramidal piling with ai as apex, and p0 is a piling without a±
i -beads.

Furthermore, one has the equality of words σ⋆(p) = σ⋆(p0)σ
⋆(p1).

(ii) The above decomposition p0 · p1 can be computed in linear-time on the number of ±-
beads of the piling p.

Example 2.17. Using the notation of Example 2.4, Figure 5 gives an example of a
decomposition of a piling.
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432 1a a aa2 3 41 a aaa

Figure 5. Decomposition of a piling as p0 · p1

Proof of Lemma 2.16. We start by exhibiting a linear-time algorithm for finding such a
decomposition of a given non-empty piling p. Let p0 be the empty piling. Reading all the
stacks (in the index order), obtain in linear-time the smallest index i for which the ai-stack
contains a bead distinct from 0. Then, apply iteratively the following recipe: consider the largest
index j (necessarily greater than i) for which the aj-stack starts with a letter + or −; then
remove all the beads in the bottom aj-tile, and add them to the top of the piling p0. When
no more beads can be extracted from the bottom of the piling p, then the construction of the
factor p0 is complete, and what remains is the piling p1. This proves the existence part of (i),
as well as part (ii). The formula σ⋆(p) = σ⋆(p0)σ

⋆(p1) is now immediate by construction. For
the uniqueness part of (i), we notice that in any decomposition p = p0 · p1, the factor p0 has
to contain exactly those tiles that can be extracted on the bottom from p without extracting
any apex bead.

We call the piling p0 the 0-factor of p. Thus the piling p is pyramidal if and only if its 0-factor
is empty.

In our physical interpretation, if i is the smallest index such that the ai-stack contains a a±
i -

bead, we can lift up the first a±
i -bead along its stick to the first floor. Then some part of the

piling stays on the ground, while some beads are lifted up. The factor that stays down is p0,
the factor that is lifted up is p1. This latter factor has the structure of an upside-down pyramid
supported by one of the apex-beads, hence the names.

If in a cyclically reduced piling, the ai-stack starts with a letter + or −, then one can
perform a cycling of the bottom tile containing that bead to the top of the piling. A physical
interpretation of this procedure is obtained by replacing the sticks by concentric hula hoops,
and cycling the tile around the hula hoops (see Figure 6).

Proposition 2.18. There is an algorithm which takes as its input any non-split cyclically
reduced piling p and which outputs a pyramidal piling that is obtained from the input piling
by a finite sequence of cyclings. If the piling has ℓ beads, then the algorithm requires O(ℓ)
cyclings, so its computational complexity is O(ℓ).

Proof. The basic procedure of the algorithm is in two steps; given a cyclically reduced
piling p, first determine the 0-factor p0 of the canonical decomposition (by the method of
Lemma 2.16). Secondly, cycle all the tiles belonging to p0 in order to obtain a new piling. This
procedure takes time O(ℓ). The algorithm is simply to iterate this basic procedure until the
factor p0 is empty. It remains to prove that there is a bound on the number of iterations which
depends only on the group A, not on the piling p. In fact, if we denote i the smallest index
such that p contains an ai-tile, and ∆(p) the full subgraph of the defining graph Γ defined
above, we claim that maxaj∈∆(p) dist∆(ai, aj) is an upper bound on the number of iterations,
where each edge of ∆(p) has length 1. This quantity is finite, because ∆(p) is connected, and
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2
a a

1

0

2
a a

1

p
0

p

a
4

a
31

a
2

a
2

a a
1

a
3

reduction
cyclingcyclingcyclic

hold

is pyramidal
This piling

4
a

4
aa

3
a

3 4
a

Figure 6. The calculation of a pyramidal piling

is bounded above by N , the number of generators of the group A (which does not depend
on the piling p). This fact is obvious from the geometrical representation, and the proof is a
straightforward induction: after the first iteration of the basic procedure, no a±

j -beads such

that aj is at distance 1 from ai in ∆(p) appear in the 0-factor; after a second iteration no a±
j -

beads such that aj is at distance at most 2 from ai in ∆(p) appear in the 0-factor, and so on.

Now, if w is a non-split reduced word, we can apply the algorithm of Proposition 2.18 to the
piling π(w) to obtain a pyramidal piling p. Then the words σ⋆(p) and w represent conjugate
elements.

Definition 2.19. Let w be a word in {a±1
1 , . . . , a±1

n }
∗ that is reduced and cyclically

reduced. We say that the word w is a cyclic normal form if it is normal and all its cyclically
conjugate words are normal.

Intuitively, if we regard w as a cyclic word, and we start reading anywhere in the word, then
the first letter that we read must always be the largest-index letter that can be extracted on
the left. For instance, with the notation of Example 2.4, the word a−1

4 a3a
−1
2 a1a2a

−1
1 a2a2 is not

a cyclic normal form: starting from the last letter and reading cyclically, we read out a2a
−1
4 . . .,

which is already illegal, because the letters a2 and a4 commute, and a−1
4 has a larger index

than a2, so a−1
4 should come first. Another example: the word a1a2a

−1
1 a3a

−1
4 a2 is a cyclic

normal form. Our linear-time solution to the conjugacy problem is based on the two following
results.

Proposition 2.20. If p is a non-split cyclically reduced pyramidal piling, then σ⋆(p) is a
cyclic normal form.

Proposition 2.21. Two cyclic normal forms represent conjugate elements if and only if
they are equal up to a cyclic permutation.

Proof of Proposition 2.20. Firstly, we remark that a consequence of Lemma 2.1 is the
following fact: if aǫ, bη are letters (ǫ, η = ±1) and w is a reduced word such that b−ηw and waǫ

are both reduced (i.e. no word equivalent to w starts and finishes with bη and a−ǫ, respectively)
but the word b−ηwaǫ is not reduced (i.e. waǫ is equivalent to some word that starts with bη),
then aǫ = bη and all the letters of w commute with a. Now, we know that σ⋆(p) is a normal
cyclically reduced word. For a cyclically reduced word w, the word ww is cyclically reduced
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(this follows directly from the above fact, or from the piling representation), and all the words
cyclically conjugate to the former are subwords of the latter. Therefore, in order to prove the
result, it is enough to prove that the word σ⋆(p)σ⋆(p) is normal. Assume that this is not the
case. Since σ⋆(p) is normal, we can then write σ⋆(p) = w1a

η
j w2 = v1a

ǫ
iv2 such that aη

j w2v1

is initially normal but aη
j w2v1a

ǫ is not. In particular, there exists aν
k, with k > j, such that

a−ν
k aη

j w2v1 is reduced but a−ν
k aη

j w2v1a
ǫ
i is not. Since aη

j w2v1a
ǫ
i is a subword of σ⋆(p)σ⋆(p), it

is reduced. Using the above fact, we get that aǫ
i = aν

k, and aν
k commute with all the letters

of aη
j w2v1. In particular, the word σ⋆(p) is equivalent to aν

kv1v2. This is impossible because k
is greater than j, and p is pyramidal. Therefore, σ⋆(p)σ⋆(p) is normal.

Proof of Proposition 2.21. The “if” implication is obvious, we have to prove the “only if”
part.

Let w and w′ be two cyclic normal forms that represent conjugate elements. Let i be the
smallest index that appears in w and choose a distinguished letter aε

i in w. As the words w
and w′ are cyclically reduced, there exists a sequence of words w0 = w → w1 → · · ·wr = w′

that transforms w into w′, such that wi+1 is obtained from wi by a commutation or a cycling
transformation.

We can keep track of the distinguished letter aε
i along the transformations: write wj =

w′
ja

ε
i w

′′
j . Assume the number ℓ of commutations that involve the distinguished letter is positive.

Since w is a normal word, the first commutation wj → wj+1 that involves aε
i is “from left to

right”, i.e. it is of the following form: wj = w′
j+1a

ε′

i′ a
ε
i w

′′
j and wj+1 = w′

j+1a
ε
i a

ε′

i′ w
′′
j with i′ > i.

Now, consider the last operation wp → wp+1 such that a letter aη
k is exchanged with the

distinguished letter aε
i from left to right: we have wp = w′

p+1a
η
kaε

i w
′′
p and wp+1 = w′

p+1a
ε
ia

η
kw′′

p .
We can also keep track of the distinguished letter aη

k. As long as the two letters do not cross
each other again in the opposite direction, we have w′′

q w′
q = yqa

η
kzq such that all the letters of

yq commute with ak (where q satisfies q > p). In particular, aε
i w

′′
q w′

q is not initially normal. But
w′ is normal, so the two distinguished letters have to cross each other again in the opposite
direction: there exists s, with p < s < r, such that ws = w′

sa
ε
ia

η
kw′′

s+1 and ws+1 = w′
sa

η
kaε

iw
′′
s+1.

Hence, we have a sequence

wp = w′
p+1a

η
kaε

i w
′′
p → v′p+1a

η
kaε

i v
′′
p+1 → · · · → v′s−1a

η
kaε

iv
′′
s−1 → v′sa

η
kaε

iv
′′
s → ws+1

such that each word v′′q v′q is equal to the word yqzqw
′
q. Thus we obtain a new sequence from w

to w′ with only ℓ− 2 commutations that involve the distinguished letter aε
i .

It follows that we can assume that no commutation involves the distinguished letter aε
i along

the sequence w0 = w → w1 → · · ·wr = w′. But this implies that the words aε
iw

′′
1 w′

1 and aε
iw

′′
r w′

r

are equivalent. As they are both cyclic normal forms, they are normal words. Therefore they
are equal by Proposition 2.6. Hence, the words w and w′ are equal up to a cyclic permutation.

Theorem 2.22. The conjugacy problem in a right-angled Artin group A is linear-time on
the sum of the lengths of the two input words.

Proof. Here is a summary of the algorithm: given any two words w and v,

(i) produce the piling π⋆(w), and then by cyclic reduction a cyclically reduced piling p;
similarly for the word v produce first the piling π⋆(v), and cyclically reduce it to a
piling q;
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(ii) factorize each of the pilings p and q into non-split factors. If the collection of subgraphs
∆i(p) and ∆i(q) of the defining graph ΓA do not coincide, output “NO, w and v do not
represent conjugate elements” and stop. Otherwise,

(iii) if p = p(1) · . . . · p(k) and q = q(1) · . . . · q(k) are the factorizations found in step (ii), then
for i = 1, . . . , k do the following

(a) transform the non-split cyclically reduced pilings p(i) and q(i) into pyramidal pilings
p̃(i) and q̃(i), using a sequence of cyclings. Then produce the words in cyclic normal
form σ⋆(p(i)) and σ⋆(q(i));

(b) decide whether the words in cylic normal form found in the previous steps are the
same up to cyclic permutation (in linear-time, using a standard algorithm). If they
are not, answer “NO” and stop.

(iv) answer ”YES”.

2.3. Calculating the centralizer of an element

The centralizer of a cyclically reduced element of A has a canonical finite generating set:
suppose that w is a cyclically reduced word, written as a product of cyclically reduced non-
split words w = w1 · · ·wk, c.f. Section 2.2.2. Then, according to [6], for each i in {1, . . . , k}
there exists a unique maximal infinite-cyclic subgroup of A containing [wi], generated by some
cyclically reduced element [zi], and by [27] the centralizer of [w] in A is generated by

(1) the elements [zi], and
(2) the generators of A which commute with all the generators occurring in w.
In the next section we will need to algorithmically determine explicit representatives of these

generators, in the special case where the words wi are cyclic normal forms.

Proposition 2.23. There is a linear-time algorithm which takes as its input a cyclically
reduced word w, decomposed as a product of words in cyclic normal form w = w1 · · ·wk, and
which outputs the canonical generating set of the centralizer of w.

Proof. It takes linear time to determine the graph ∆(w), and then constant time to deduce
from this the generators of type (2).

Now we turn to the generators of type (1), i.e. the minimal roots [zi] of the elements [wi]. As
a first step, we claim that periodicity of elements is visible in their cyclic normal form. More
precisely, if one of the words wi is equivalent to a word of the form z̃ r

i for some word z̃i and
some integer r, then the word wi itself is of the form zr

i , for some word zi. In order to prove
this claim, we observe that z̃i is equivalent to a word zi in cyclic normal form (because the
0-factor of p(z̃i) must divide the 0-factor of p(wi), which is the trivial word). Now the word
zr

i is still in cyclic normal form (c.f. the proof of Proposition 2.20), and it is equivalent to wi.
Therefore we have zr

i = wi.
We claim that for each of the factors wi, the desired minimal root zi of wi is detectable in

linear-time: we can calculate a pair (zi, r), where zi is a word and r an integer with zr
i = wi,

and r is maximal among all such pairs. Indeed, this algorithm works as follows: consider the
word w∗

i obtained by removing the first letter from the word wiwi. Then find the starting point
of the first occurrence of wi as a subword of w∗

i – this can be done by standard algorithms, like
the Boyer-Moore algorithm, in time O(ℓi), where ℓi denotes the length of wi. If this starting
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point is at the ℓith letter of w∗, then there is no periodicity. If on the other hand the starting
point is at the tth letter with t < ℓi, then let zi be the prefix of wi of length t. By construction
we have an equality of words ziwi = wizi. This implies that the words wi and zi have a common
root. By the choice of zi, this root has to be zi itself and for r := ℓi/t we have an equality of
words wi = zr

i . Finally, by the choice of t, no prefix of wi of length less than t can be a root
of wi, so zi is indeed the minimal root.

3. The conjugacy problem in subgroups of RAAGs

In the previous section we saw that the conjugacy problem in a fixed right-angled Artin
group can be solved in linear-time on a RAM-machine with constant that depends only on
the group. In this section we shall prove analogue results for a large class of subgroups of
right-angled Artin groups, namely those considered in the papers [11, 12], as well as in [19].

3.1. A class of subgroups of RAAGs

Every right-angled Artin group A admits a finite K(A, 1), called the Salvetti complex of A,
which we shall denote Y and which can be constructed explicitely from the presentation of A.
It is a cubed complex which has one single vertex, and one edge of length 1 for every generator
of A. Moreover, for every n-tuple of mutually commuting generators of A, there is one (n + 1)-
torus in Y . We equip every cell, of any dimension, of this complex with the flat metric, in the
sense that in the universal cover Ỹ every cell is a Euclidean cube of side length 1. Then the
complex is locally CAT(0), and its universal cover Ỹ is CAT(0). For instance, for the group
A = Z

2 = 〈a1, a2 | [a1, a2] = 1〉, the complex Y is a torus, constructed out of one vertex, two
edges, and one square which glued to the 1-skeleton according to the commutation relation.
See [11] for details. Notice that as soon as an orientation is chosen on each edge (i.e. simple
loop) of Y , one obtains an explicit isomorphism between A and π1(Y ) such that the image of
each generator ai of A is represented by the simple loop labelled by ai traversed in the positive
direction.

Now, suppose that X is a finite locally CAT (0) cubed complex, and consider a cubical
map Φ: X → Y , sending each open cube of X bijectively and locally isometrically to a cell of
the same dimension in Y . If one of the vertices of X is designated as its basepoint, then such a
mapping induces a homomorphism Φ∗ : π1(X)→ π1(Y ). See Figure 7 for an example where X
and Y are 1-dimensional complexes.

We need some more notation: for any vertex x of X , we denote by Φlk : lk(x, X)→
lk(Φ(x), Y ) the induced map from the link of x in X to the link of Φ(x) in Y We shall
be interested in the following two properties which our map Φ may have:

– The convexity property: for any vertex x of X , and any two vertices of lk(Φ(x), Y ) which
belong to the image Φlk(lk(x, X)) and which are connected by an edge, the connecting
edge belongs to the image Φlk(lk(x, X)), as well.

– The injectivity property: the map of universal covers Φ̃ : X̃ → Ỹ is injective. In particular,
Φ∗ : π1(X)→ π1(Y ) is a monomorphism.

We remark that a map Φ satisfying the two hypotheses is a local isometry. Now, the
subgroups of the right-angled Artin group A ∼= π1(Y ) for which we shall solve the conjugacy
problem are the fundamental groups π1(X) of cubical complexes X which admit a cubical
map Φ: X → Y with the convexity and injectivity property.

Remark 3.1. If X and Y are both known to be CAT (0) cube complexes then the convexity
property implies the injectivity property – cf. [11], Theorem 1 and the remark following.
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Conversely, the two conditions, together with the knowledge that Y is CAT (0), imply that the
complex X is itself CAT (0).

The reader unfamiliar with the geometrical language used in stating the conditions should
remember that the convexity and injectivity properties are satisfied by all the subgroups of
right-angled Artin groups discussed in Theorem 1 of [11]. So some typical examples to keep
in mind are those given in this paper. More generally, in order to get a mental image of the
class of subgroups satisfying the two hypotheses, one can think of a subgroup whose Cayley
graph sits in the Cayley graph of A in a “flat” way. Moreover, as proven by Haglund and Wise
([19], Theorem 4.2), for a cubed complex X , the property of admitting a map Φ to a RAAG
with the convexity and injectivity property can be characterized purely in terms of certain
combinatorial conditions on the complex X – they call such complexes special.

Notation. We fix some notation and conventions for the rest of the section:

– We fix once and for all a right-angled Artin group A given by a presentation with
generators a1, . . . , aN , and we denote by Y the cubed complex associated with A. We fix
an orientation on every edge of Y and identify A with π1(Y ), using the chosen orientations.

– We also fix a finite cubed complex X and Φ: X → Y a cubical map satisfying the convexity
and injectivity condition. Finally, we fix a label x1, x2, x3, . . . for each vertex of X .

We will not directly solve the conjugacy problem in the fundamental group of X , but a
more general problem, namely the conjugacy problem in the fundamental groupoid of X , in
linear-time. First, we explain what precisely that means.

Let us fix a (positive) orientation for each edge of the complex X by pulling back along
Φ the orientation of edges in Y . An element of the fundamental groupoid is, by definition, a
homotopy class of paths (with fixed endpoints) from some vertex xi to some vertex xj . Such
an element of the fundamental groupoid can be represented by a finite sequence of successive
directed edges, which may be traversed in the positive or in the negative direction. We shall
call such a sequence an edge path from xi to xj . Similarly in Y we have an analogue notion
of an edge path as a homotopy class of path specified as a sequence of positively or negatively
directed edges.

We shall use the following very convenient way of coding edge paths in X and Y : in Y , we
shall simply identify closed edge paths with words in the letters a±1

1 , . . . , a±1
N . As for X , the

map Φ gives rise to a coding of edge paths in X by based words.

Definition 3.2. A based word is a word of the form xiwxj , where xi and xj are vertices
of X , and w is the image under Φ of an edge path in X starting at xi and ending at xj . The
vertex xi is called the base vertex of the based word.

In other words, the edge path xiwxj is by definition the pullback to X of the path w in
Y which starts at xi and ends at xj . Notice that not every word of the form xiwxj , with xi

and xj vertices of X and w a word with letters in {a±1
1 , . . . , a±1

N }, is a based word. However,
when it is, then it uniquely determines an edge path in X , because of the injectivity property.
For instance, if xiwxj is a based word, and if the word w can be written as a concatenation
w = w1w2, then there exists a unique vertex xk such that xiw1xk and xkw2xj are based words.
For an example of based words, see again Figure 7.

Two elements of the fundamental groupoid of X can be multiplied if the terminal vertex
of the first coincides with the initial vertex of the second. In terms of based words, (xiw1xj) ·
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(xjw2xk) = xiw1w2xk. Two loops in X are freely homotopic if and only if they represent
conjugate elements of the fundamental groupoid. If the loops are represented by based words
x1wx1 and x2vx2, then this equivalent to the existence of a based word x1ux2 such that the
elements of the fundamental groupoid represented by x1uvu−1x1 and x1wx1 coincide.

We are now ready to state our main result. The proof will occupy the whole rest of the
paper:

Theorem 3.3. Given two based words x1wx1 and x2vx2, one can decide whether they
represent freely homotopic loops in X . Moreover, if w and v have length ℓ1 and ℓ2, respectively,
the decision can be performed by an algorithm which takes time O(ℓ1 + ℓ2) on a RAM machine,
where the linear constants depend on X , Y and Φ only.

3.2. Base points and homotopies in the cubical complex X

Warning. Suppose α and β are two closed edge paths in X based at a common vertex x.
One might think that α and β represent conjugate elements of π1(X) if and only if the
words Φ(α) and Φ(β) represent conjugate elements of A. This, however, is wrong, and an
explicit counterexample, illustrating the underlying basepoint problem, is given in Figure 7.

e2

e3

X =
x1 x2

= Y

a2 = Φ(e2)

basepoint

Φ
e1 a1 = Φ(e1) = Φ(e3)

Figure 7. π1(Y ) is the free group on two generators a1 = Φ(e1) = Φ(e3) and a2 = Φ(e3). The
loops e1 and e2e3e

−1

2
are not conjugate as elements of π1(X), whereas their images in π1(Y ) are. In

order to describe the loops in X it is better to use the based words x1a1x1 and x1a2a1a
−1

2
x1. The

latter is conjugate to x2a1x2.

In order to prepare the proof of Theorem 3.3, let us study what homotopies of paths in X
look like.

If α is an edge path in X giving rise to a based word xiwxj , and if xiw̃xj is a based
word obtained from xiwxj by one application of a commutation relation (corresponding to a
homotopy of a path in Y across a square) then there exists an edge path α̃ in X , starting from
the same vertex as α and homotopic to α, which gives rise to the based word xiw̃xj – this is
an immediate consequence of the convexity condition. Similarly, free cancellations in w can be
realised by cancellations of backtracking path segments in α.

Let us now look more generally at free homotopies of loops in X , i.e., homotopies that move
the basepoint.

Definition 3.4. Suppose that xwx is a based word. A parallel transport of xwx is a
replacement of the vertex x by a vertex x′, where x′ is obtained from x by walking along an
oriented edge e with the property that the element Φ(e) of A commutes with all the generators
of A occurring in the word w.

Geometrically, this move corresponds to replacing a closed path based at x by a parallel
one based at x′, where x and x′ are joined by an edge e. The two paths together bound an
annulus-shaped region of X . Notice that, under Φ, the two paths have the same image w in Y .
Another way of moving the basepoint of a loop is to push it along the loop:
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Definition 3.5. Suppose that w = xy1y2 . . . yℓx is a based word, and denote by e the
unique edge of X that has one of its extremities equal to x and such that Φ(e) = y1. A based
cycling of the based word w is its replacement by the word x′y2 . . . yℓy1x

′, such that the
vertex x′ is the second extremity of the edge e.

Geometrically, if α is a loop in X based at a vertex x, and described by a based
word xy1y2 . . . yℓx, and if we apply a cycling operation (in the sense of section 2) to the
word y1y2 . . . yℓ, then this cycling can be pulled back to X to a based cycling of the based word,
yielding a loop α̃, which looks exactly like α, except that it based at a different vertex x′, “one
notch further along the loop”.

Example 3.6. In the example of Figure 7, we can apply a based cycling to the based
word x1a2a1a

−1
2 x1, yielding x2a1a

−1
2 a2x2. After a cancellation, we obtain the based word γ2 =

x2a1x2. We note that this is different from the based word γ1 = x1a1x1, which was also
discussed in that example – in fact, the based words x2a1x2 and x1a1x1 are not even related
by parallel transport (because Φ(e2) = a2 does not commute with a1). As we shall see in
Lemma 3.9, this implies that the two loops e1 and e2e3e

−1
2 are not freely homotopic in X .

Also note that a cyclic reduction of a word on the generators of A and their inverses can be
decomposed as a cycling, followed by a usual cancellation of letters, and each of these operations
can be pulled back to operations on the loop in X . Summarizing the last few paragraphs, we
have the following

Key Observation 3.7. If α is a loop in X then all non-length-increasing free homotopies
of the loop Φ(α) in Y can be pulled back to free homotopies of α. Thus for a based word
xwx, all cancellations, applications of commutation relations, cyclings, and cyclic reductions
of the word w can be pulled back to analogue cancellations, commutation relations, and based
cyclings of the based word. Similarly, if x1wx2 is a based word, and if the word w can be
transformed into a word w′ by applying cancellations and commutation relations, then x1w

′x2

is again a based word.

3.3. The linear-time solution to the conjugacy problem

We recall that we are considering two based words x1wx1 and x2vx2 representing two loops
in X traversing ℓ1 and ℓ2 edges, respectively. A necessary condition for these loops being
conjugate in the fundamental groupoid of X is that the words w1 and w2 represent conjugate
elements of the right-angled Artin group A. In geometric terms, for the two loops to be freely
homotopic in X , their images under Φ in Y must be freely homotopic. This is a condition
which we can check in time O(ℓ1 + ℓ2) by the results of Section 2. However, this condition is
not sufficient, as seen in Example 3.6. So let us now try to refine this approach.

Proposition 3.8. There is an algorithm with running time O(ℓ1 + ℓ2) whose input consists
of two based words x1wx1 and x2vx2 of lengths ℓ1 and ℓ2, and which outputs

(i) either the information that they do not represent freely homotopic loops in X , or
(ii) two based words x′

1w̃1 . . . w̃kx′
1 and x′

2w̃1 . . . w̃kx′
2, representing two loops in X which

are respectively freely homotopic to the original two, and where the w̃i are mutually
commuting cyclic normal forms.
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Proof of Proposition 3.8. As seen in Section 2 we can decide in linear-time whether w
and v represent conjugate elements of A. If they do not, then the two based words do not
represent conjugate elements of the fundamental groupoid either, and it suffices to output this
information (case (1)).

For the rest of the proof we have to deal with the case where w and v do represent conjugate
elements of A.

We already know from Section 2 that the word w can, by a sequence of cancellations,
commutation relations and cyclings be transformed into a word w′ with the required
decomposition w′ = w′

1 . . . w′
k. Moreover, we know how to calculate the word w′ in linear-time.

We also know from the Key Observation 3.7 above that the transformation of the word w
into the word w′ can be pulled back to a transformation of the based word x1wx1 into a based
word x3w

′x3. Our next task is to determine the corresponding base vertex x3 in linear-time.
We shall fulfill this task by “carrying along information about the base vertex in X during the

algorithm”. While running the algorithm of Section 2, the only steps that affect the base vertex
are the cyclings of pilings (including cyclic reductions of pilings, which can be decomposed as
cyclings, followed by cancellations of tiles): when we cycle an a±

j -tile, we have to determine
how the base vertex is affected. However, this can be done simply by a lookup in a finite,
precalculated list: for every vertex x of X , for every generator aj of A, and for every ǫ ∈ {−1, 1},
this list must tell us at which vertex of X we arrive if we pull back the loop aǫ

j ∈ A = π1(Y )
to a path in X starting at x (if that is possible). Since the algorithm of Section 2 performs a
linearly bounded number of cyclings, we can calculate the new base vertex x3 in time O(ℓ1).

In a similar manner we can algorithmically transform the based word x2vx2 into a word
x′

2w̃x′
2, where w̃ is equipped with an analogue decomposition w̃ = w̃1 . . . w̃j .

But since w and v represented conjugate elements of A, we have, by the results of Section 2,
that the words w′ and w̃ are in fact the same, at least after a reordering of the factors of w′

and a linearly bounded number of cyclings of each factor w′
i; in particular, we have j = k.

Moreover, the Boyer-Moore algorithm tells us how many letters from each factor we have to
cycle in order to achieve this. Thus we can transform the based word x3w

′x3 into the based
word x′

1w̃x′
1 for some vertex x′

1, using a reordering of the factors (which does not affect the
base vertex) and a linearly bounded number of based cyclings.

Thus in order to prove Theorem 3.3, it is enough to prove it for the special case v = w =
w̃1 . . . w̃k, where the words w̃1, . . . , w̃k are mutually commuting cyclic normal forms. (For
instance, this is the situation of Example 3.6, where we need to decide if the based words x1a1x1

and x2a1x2 represent freely homotopic loops in X .) For the rest of the proof of Theorem 3.3
we fix a word w̃ of length ℓ, with such a decomposition w̃ = w̃1 . . . w̃k, and our aim is to decide
in time O(ℓ) whether two based words x1w̃x1 and x2w̃x2 represent freely homotopic loops.

Suppose a based word x1ũx2 is such that x1ũw̃ũ−1x1 and x1w̃x1 represent the same element
of the fundamental groupoid. Then in particular the elements of A represented by ũ and w̃
commute: we have [ũ][w̃][ũ]−1 = [w̃] in A.

As seen in Section 2.3, and using the notation of this section, the word ũ is equivalent to
another word u of the form

u = zp1

1 . . . zpk

k ζ

where p1, . . . , pk are integers and ζ is a word whose letters are generators of A which commute
with, but are different from, all the generators occurring in w, and their inverses. We shall call
such a word u a word in preferred form. We define the norm ‖u‖ of u by

‖u‖ =

k∑

i=1

|pi|+ length(ζ)
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We are now ready state an algorithmically checkable criterion for x1w̃x1 and x2w̃x2

representing conjugate elements (i.e. representing freely homotopic loops in X):

Lemma 3.9. The two based words x1w̃x1 and x2w̃x2 represent conjugate elements in the
fundamental groupoid if and only if there exists a based word x1ux2 such that u is a word in
preferred form with

‖u‖ 6 #{vertices of X} (3.1)

Proof. We first suppose that an edge path x1ux2 exists, where u is a word in preferred form.
Then the word uw̃u−1 can be transformed into the word w̃ by a finite number of commutation
relations and cancellations (but no length-increasing transformations). By Key Observation 3.7,
this homotopy can be pulled back to X , to yield a based homotopy between the paths in X
represented by the based words x1uw̃u−1x1 and x1w̃x1. In other words, the elements x1w̃x1

and x2w̃x2 are conjugate, with conjugating element x1ux2.
Conversely, let us suppose that a conjugating element in the fundamental groupoid exists,

and is represented by a based word x1ũx2. This means that there exists an edge path in X from
x1 to x2 such that reading out the edge labels along the path yields the word ũ. As seen before,
[ũ] belongs to the subgroup of A generated the elements [z1], . . . , [zk] and [aj1 ], . . . , [ajm

]. Thus
there is a word u in preferred form which can be obtained from ũ by a sequence of reductions
and commutation relations. By Key Observation 3.7, x1ux2 is also a based word, i.e. it also
represents an edge path in X .

We have shown the existence of a based word x1ux2 with u a word in preferred form, and
without loss of generality we can suppose that u is chosen so that ‖u‖ is minimal among all
such based words.

Now for t in {0, . . . , ‖u‖} let us denote by x(t) the vertex of X obtained by a walk in X
starting at x1 and following the edges of X according to the t first subwords. Now, if this
function

{0, 1, . . . , ‖u‖} −→ {vertices of X} , t 7→ x(t)

is not injective (for instance, if ‖u‖ is larger than the number of vertices of X), then there exists
a strictly shorter edge path in X represented by a based word x1u

′x2 with u′ also in preferred
form, obtained by cutting out some segment of the previous edge path (c.f. the paragraph
following Definition 3.2). This is in contradiction to the choice of u, and we can conclude that
we have ‖u‖ 6 #{vertices of X}.

Let us now prove that the condition of Lemma 3.9 can be checked algorithmically in linear-
time, i.e. in time O(ℓ), where ℓ is the length of the word w.

Firstly, recalling that the centralizer of [w̃] is generated by a finite number of elements (some
of them represented by the words z1, . . . , zk and the others equal to certain generators of A),
we observe that there is a universal upper bound on the number of generators, namely the
number of generators of A. Moreover, as seen in Proposition 2.23, words representing these
generators can be determined in linear time.

Now there is a very simple-minded linear-time algorithm to check for the existence of a
conjugating element: for all words u in preferred form satisfying condition (3.1) check whether
x1ux2 is a based word, i.e. whether there exists an edge path in X represented by the based
word x1ux2. Indeed, there is a universal bound on the number of words to be checked, and
for each word u the check takes linear time (since the length of the words zi can grow linearly
with the length of w̃).
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Here is a summary of the whole algorithm: given two based words x∗wx∗ and x∗vx∗

representing loops α and β in X ,

(1) Apply steps (i) and (ii) of the algorithm of Section 2.2, always carrying along the base
vertex, to find graphs ∆j(w) (j = 1, . . . , k), ∆j(v) (j = 1, . . . , k′), base vertices x1, x2,
and based words x1w1 . . . wkx1 and x2v1 . . . vk′x2 representing loops that are freely
homotopic to α and β.

(2) If k 6= k′, or if the collections of full subgraphs ∆j(w) and ∆j(v) ⊂ Γ are not the same,
or if for some j between 1 and k the words vj and wj do not have the same length ℓj,
return “NO”.

(3) Apply step (iii)(a) of the algorithm of Section 2.2 to each of the k factors, always carrying
along the base vertices, to transform x1w1 . . . wkx1 into a based word x3w

′
1 . . . w′

kx3 and
similarly x2v1 . . . vkx2 into x′

2w̃1 . . . w̃kx′
2, where all words w′

i and w̃i are cyclic normal
forms.

(4) For each factor, use a standard pattern matching algorithm to decide if w′
i = w̃i as cyclic

words. If no, return “NO”. If yes, keep in mind how many cyclings of each factor w′
i are

required to achieve equality w′
i = w̃i as (non-cyclic) words.

(5) Perform the required based cyclings of x3w
′
1 . . . w′

kx3 to obtain a based word of the form
x′

1w̃1 . . . w̃kx′
1.

(6) Calculate the minimal roots zi of the words w̃i, as explained in Section 2.3. Also
determine the set of generators that commute with all the letters occurring in the words
w̃i, but do not occur in any of them.

(7) Check, for all words u in preferred from satisfying condition (3.1), whether there exists
an edge path in X represented by the based word x′

1ux′
2. If for one of the words u the

answer is affirmative, then return “YES”. Otherwise return “NO”.

Questions 3.10. Can our techniques be used to say anything about the conjugacy problem
in Coxeter- or Artin groups? Does the fundamental group of any compact, locally CAT(0)
cubical complex, even a non-special one, have a linear-time solution to the conjugacy problem
(c.f. [25])?
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30. X Viennot, Algèbres de Lie libre et monöıdes libres, Lecture Notes in Math. 691, Springer-Verlag (1978).
31. C Wrathall, Free partially commutative groups, in “Combinatorics, computing and complexity” (Ed.

D-Z Du and G Hu) 195–216, Kluwer academic/Science press, Norwell, MA (1989).
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