
NIELSEN-THURSTON ORDERINGS AND

THE SPACE OF BRAID ORDERINGS
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Abstract. We study the topological space of left-orderings of the braid group,
and its subspace of Nielsen-Thurston orderings. Our main result is that no
Nielsen-Thurston ordering is isolated in the space of braid orderings. In the
course of the proof, we classify the convex subgroups and calculate the Con-
radian soul for any Nielsen-Thurston ordering of Bn. We also prove that for a
large class of Nielsen-Thurston orderings, including all those of infinite type,
a stronger result holds: they are approximated by their own conjugates. On
the other hand, we suggest an example of a Nielsen-Thurston ordering which
may not be approximated by its conjugates.

1. Introduction

In recent years, some progress in the theory of orderable groups has been achieved
by studying the so-called space of orderings (throughout, the word ordering stands
for a left-invariant total order relation on a group). This corresponds to the set of
all orderings that may be defined on a given group Γ, and carries a natural topology:
given finitely many group elements, a neighborhood of a prescribed ordering ≺ is
the set of all orderings which coincide with ≺ on this finite set. It is easy to see
that this space is totally disconnected and compact; moreover, it is metrizable when
the underlying group is countable. It is a nontrivial fact that this space cannot be
countably infinite [7, 8, 9]. Notice that an isolated point in this space corresponds
to an ordering which is completely determined by finitely many inequalities.

Remarkable examples of orderable groups are the braid groups Bn. Historically,
the first ordering on Bn (for n > 3) was defined by Dehornoy. It was shown in [8]
that the Dehornoy ordering ≺

D
is non isolated in the space of braid orderings.

This is to be contrasted with the work [3], where Dubrovina and Dubrovin show,
by means of a slight modification of the Dehornoy construction, that Bn admits
isolated orderings. For example, on B3 there is a unique ordering ≺

DD
verifying

the inequalities σ1σ2 ≻
DD

1 and σ−1
2 ≻

DD
1.

Dehornoy’s construction involves some deep ideas which are purely algebraic. How-
ever, there is an alternative geometric approach to braid orderability. Indeed, ≺

D

can be seen as a particular member of a family of uncountably many orderings, each
of which is associated to a completely separating geodesic of the punctured disk
(endowed with a hyperbolic metric). These so-called Nielsen-Thurston orderings on
braid groups where largely studied and classified by H. Short and the second-named
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author in [10]. In the present paper we pursue this study from the point of view of
the space of orderings. Our main result may be stated as follows.

Theorem. No Nielsen-Thurston ordering is isolated in the space of braid-orderings.

We recall that the positive cone of an ordering is the semigroup consisting of ele-
ments greater than the identity. As a direct consequence of this theorem and [8,
Proposition 1.8] we have:

Corollary. There is no Nielsen-Thurston ordering whose positive cone is finitely

generated as a semigroup.

To show the theorem, we first determine the convex subgroups of Nielsen-Thurston
orderings (where a subset S is said to be convex if g ∈ S whenever f1 ≺ g ≺ f2 and
both f1, f2 are in S). We prove that the only convex subgroups are the obvious
ones, coming from the way in which the geodesic cuts up the surface. For example,
for the Nielsen-Thurston orderings of full infinite type (to be defined below), we
prove that they have no convex subgroups other than {1} and Bn. This solves by
the affirmative the second half of Question 2.21 in [2, Chapter XVI].

With the whole list of convex subgroups at hand, for each Nielsen-Thurston or-
dering we determine the Conradian soul, that is the maximal convex subgroup
restricted to which the ordering satisfies the so-called Conrad property. This notion
was introduced by the first-named author as a tool for studying the possibility of
approximating a given ordering by its conjugates (where the conjugate of an or-
dering ≺ by a group element h is the ordering ≺h for which f ≺h g if and only if
h−1fh ≺ h−1gh). For example, by [8] every ordering on a countable group having
trivial Conradian soul may be approximated by its conjugates. As a consequence,
Nielsen-Thurston orderings of full infinite type can be approximated by their con-
jugates.

For Nielsen-Thurston orderings whose Conradian soul is isomorphic to Z (as is the
case of the Dehornoy ordering), we show that the property of accumulation by its
conjugates still holds. In the rest of the cases, we show that the Conradian soul is
isomorphic to Zk for some k > 2. Although we ignore whether these orderings may
be approximated by their conjugates (actually, we present evidence that some of
them might be isolated in the “space of Nielsen-Thurston orderings”), we show that
they are not isolated in the space of braid orderings. This is achieved by means of
a classical and very simple convex extension type argument.

2. A brief reminder on Nielsen-Thurston orderings

Nielsen-Thurston orderings of Bn, which were introduced in [10], are the total
orderings arising from the natural action of Bn on the open interval ]0, π[.

We briefly recall the definition. Let Dn denote the unit disk, with n punctures lined
up on the horizontal diameter. We can equip Dn with a hyperbolic structure (in
which the punctures correspond to cusps). Indeed, many such hyperbolic structures
exist, but we fix one choice, for the rest of the paper.
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A Nielsen-Thurston ordering is, by definition, induced by a finite or infinite geodesic
ray γ : [0, T ] → Dn (with T ∈ R+) or γ : [0,∞[→ Dn, starting at a basepoint on
the boundary of Dn, and (in the case of a finite ray) terminating at some other
point of ∂Dn.

The ordering induced by γ is defined as follows. Any geodesic starting on the
basepoint in ∂Dn has in its starting point a certain angle, belonging to the interval
]0, π[, with the boundary ∂Dn. Conversely, the geodesic is uniquely determined
by the value of this angle. More generally, even a non-geodesic ray starting on the
basepoint is homotopic, relative to its end points, to a unique geodesic, so homotopy
classes of such rays are still in one-to-one correspondence with angles in ]0, π[. Now
the braid group, viewed as the mapping class group of Dn, acts on the geodesic γ;
this yields a partial ordering ≺ of Bn, by defining that β1 ≺ β2 if and only if the
angle of β1.γ is smaller than the angle β2.γ.

If γ is not invariant under the action of any braid, then this recipe determines
a total ordering of Bn, and this ordering is called the Nielsen-Thurston ordering

induced by γ. Notice that a necessary (but not sufficient) condition for γ not being
invariant under any braid action is that γ cuts up the surface, in the sense that no
two punctures are in the same path components of Dn − γ([0, T ])).

An important property of Nielsen-Thurston orderings is the so-called subword-

property, or property S. This means that for any two braid words w and w′, where w′

is obtained from w by inserting positive generators σi, we have : w ≺ w′. Geomet-
rically, this is nothing but the fact that the left half-twist along any arc connecting
two punctures pushes any curve intersecting the arc further to the left. In particular
this half-twist is a positive element for the ordering.

The properties of the Nielsen-Thurston orderings are closely related to the geo-
metric nature of the corresponding geodesic. Let us consider, for a maximal
m ∈ {0, 1, . . . , n − 1}, the m points in time such that some pair of punctures is
in the same path component of Dn −γ([0, ti− ǫ]), but in separate path components
of Dn − γ([0, ti]). We shall call this the sequence of separating moments.

If m = n − 1, i.e. if a finite initial segment of γ is sufficient to cut up the surface,
then the ordering is said to be of finite type. If m < n − 1 then the ordering is of
infinite type. If m = 0, i.e. if γ has no self-intersections and no finite initial segment
of γ separates any pair of punctures, then we say the ordering is of full infinite type.

3. Convex subgroups of Nielsen-Thurston orderings of finite type

Theorem 3.1. Suppose ≺ is a Nielsen-Thurston ordering of finite type, associated

to a geodesic γ. Let 0 < t1 < t2 < . . . < tn−1 be the sequence of separating moments

of γ. Then the chain of convex subgroups is

{1} ⊂ Gn−1 ⊂ . . . ⊂ G1 ⊂ Bn

where Gi denotes the subgroup of Bn consisting of all braids which preserve the

geodesic segment γ([0, ti]).

Proof. It is immediate that the subgroups thus described are convex, we only have
to prove that they are the only ones.
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The proof is by downwards induction. The start of the induction is with the cases
where all components of Dn − γ([0, tn−i]) contain at most two punctures. In these
cases, the subgroup consisting of elements of Bn leaving γn−i invariant is isomorphic
to Zi, and is lexicographically ordered. Such an ordered group has no convex
subgroups except the ones obtained by successively removing the largest generator
– and these subgroups do indeed appear in the chain of convex subgroups Gn−1 ⊂
. . . ⊂ Gn−i.

Let us now suppose inductively that for some index i there are no convex subgroups
in Gn−i except Gn−j with j < i. Let G′ be a convex subgroup of Gn−i−1 such that
Gn−i ( G′ ⊂ Gn−i−1. Our aim is to prove that G′ = Gn−i−1.

Let us recall the structure of the group Gn−i−1: the geodesic γ([0, tn−i−1]) cuts Dn

into a number of components, some of which contain punctures. If we denote
n1, . . . , nk the number of punctures contained in each of these path components,
then the subgroup Gn−i−1 is isomorphic to a product Gn−i−1

∼= Bn1
× . . . × Bnk

.
Moreover, there is exactly one connected component of Dn−γ([0, tn−i−1]) which is
further cut by γ([tn−i−1, tn−i]) into pieces one of which contains λ punctures and
another one µ punctures (with λ, µ > 1, and at least one of the two being > 2).
Without loss of generality let us say the component being cut is the first one, so
that n1 = λ + µ.

λ punctures

γ([tn−i−1, tn−i])

µ punctures

Figure 1. Fat lines: γ([0, tn−i−1]). Dashed line: γ([tn−i−1, tn−i]).

Now there are three disks with geodesic boundary contained in the region under
discussion: one containing λ punctures, one containing µ punctures, and one con-
taining both sets of punctures. Possibly after a conjugation we can assume that
the three disks are round (i.e. their boundaries intersect the horizontal diameter
only twice, see Figure 1).

We shall study the action of the hypothetical subgroup G′ on the geodesic γ([0, tn−i]),
keeping in mind that it fixes the initial segment γ([0, tn−i−1]). Let

γmax = sup
g′∈G′

g′.γ

(where the supremum is in the sense that every geodesic corresponds to a point of
the real line, and we’re taking the supremum of real numbers). What does the first
intersection of γmax with our critical component of Dn − γ([0, tn−i−1]) look like?
Notice that γmax must be G′-invariant.
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γmax

γmax

i+1

σi

i i+1

σi.γmax

i

(a)

(b)

Figure 2

The geodesic segment γmax cannot pass between two punctures among the λ punc-
tures of the left disk, nor can it pass between two of the µ punctures of the right
disk, for if it did, then the action of an appropriate element in the smaller convex
subgroup Bλ or Bµ would displace the geodesic even further to the left, which is
excluded by construction (see Figure 2(a)). Suppose, on the other hand, that γmax

avoids entirely the two discs with geodesic boundary containing the set of λ or µ
punctures, but intersects the horizontal segment between the two disks. Then we
have g′.γmax > γmax or (g′)−1.γmax > γmax, where g′ is any element of G′ which
moves the segment γ([tn−i−1, tn−i]) (such an element must exist, since Gn−i ( G′).
This is also impossible.

In summary, the geodesic γmax remains disjoint from the disk with geodesic bound-
ary containing the λ + µ punctures; thus it spirals onto its boundary, as indicated
in Figure 2(b). But this means that g′.γ can get as big (far to the left) as any
geodesic g.γ with g ∈ Gn−i−1. This implies that G′ = Gn−i−1. 2

4. Convex subgroups of Nielsen-Thurston orderings of full infinite
type

We recall that a geodesic ray γ in Dn gives rise to an ordering of full infinite type if
it starts at the basepoint in ∂Dn, has no self-intersections, separates the punctures,
and is not stabilized by any nontrivial element of Bn.

The next result should be compared with [5].
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Theorem 4.1. Suppose γ is an infinite geodesic ray in Dn giving rise to a Nielsen-

Thurston ordering ≺ of Bn of full infinite type. Then ≺ has no convex subgroups

except {1} and Bn.

Proof. The strategy is to prove that Bn can be generated by elements which
are “arbitrarily close to the identity”, which implies that any nontrivial convex
subgroup contains all of Bn.

Here are the details. The geodesic γ can be specified by an infinite word, where
the kth letter (k ∈ N) specifies between which pair of punctures of Dn the kth
intersection of γ with the horizontal diameter occurs, and in which direction (up
or down).

We shall prove that the braid group can be generated by n−1 elements τ1, . . . , τn−1

which all leave an arbitrarily long initial segment of γ invariant: the words de-
scribing τi.γ all coincide with the word describing γ on an arbitrarily long initial
segment.

Here is the construction of the elements τi: we trace out the geodesic γ, for at least
the whole required initial segment, and continue until we pass close to a puncture
(so close that the line we have drawn so far does not intersect the short segment
from our current position to the puncture). At that moment, we deviate from
the geodesic γ, and drop into the puncture. We replace the curve we have just
drawn by a geodesic which is homotopic to it relative to its endpoints, and call this
geodesic γ′. The puncture at its end will be called the central puncture. Let k be
the number of intersections of γ′ with the horizontal diameter (not counting the
final drop into the central puncture).

There are geodesic arcs a1, . . . , an−1 disjoint from γ′ and from each other, connect-
ing the central puncture to the n− 1 other punctures. For later use, we shall equip
these arcs with an orientation pointing towards the central puncture. The braid τi

will be a positive or negative half Dehn-twist around the arc ai – the sign remains
to be specified, depending on the relative position of terminal segments of γ′ and ai.

We shall consider three cases. Firstly, if the last intersections of these two arcs
with the horizontal diameter do not occur between the same pairs of punctures,
then the sign of the half Dehn twist can be chosen arbitrarily. Indeed, in this case
the first k intersections of τi.γ with the horizontal diameter coincide with those
of γ, independently of whether τi is taken to be the positive or negative half twist
along ai – see Figure 3(a).

The second case to consider is where the last intersections of the the arcs γ′ and ai

with the horizontal diameter lie between the same pairs of punctures, and where,
moreover, the terminal segment of ai lies to the right of the terminal segment of γ′

(as seen while approaching the central puncture along γ′) – see Figure 3(b) for
examples. In this case, we take τi to be the positive half twist along ai. Again, we
observe that with this choice the word describing the first k intersections of τi.γ
with the horizontal diameter coincides with the corresponding word for γ.

The third and final case is where the last intersections of the the arcs γ′ and ai

with the horizontal diameter lie between the same pairs of punctures, and where
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ai

kth intersection
of γ1, γ′

1, γ′

2, γ2

with horizontal
diameter

γ1 γ2with horiz. diameter
last intersection of ai

γ′

2γ′

1

ai

γ1

γ2

=⇒
perform negative
half Dehn twist
along ai

(a)

(b)

(c)

γ1

γ2

=⇒
perform positive
half Dehn twist
along ai

ai

Figure 3

the terminal segment of ai lies to the left of the terminal segment of γ′. In this
case, we take τi to be the negative half twist along ai – see Figure 3(c). 2

5. Convex subgroups of general Nielsen-Thurston orderings

By combining the techniques of proof of Theorems 3.1 and 4.1, one can easily obtain
the following unified result:

Theorem 5.1. Suppose ≺ is a Nielsen-Thurston ordering, associated to a geo-

desic γ. Let 0 < t1 < t2 < . . . < tm, with m ∈ {0, 1, . . . , n − 1}, be the sequence of

separating moments of γ. Then the chain of convex subgroups is

{1} ⊂ Gm ⊂ . . . ⊂ G1 ⊂ Bn

where Gi denotes the subgroup of Bn consisting of all braids which preserve the

geodesic segment γ([0, ti]). 2

6. The Conradian soul of Nielsen-Thurston orderings

Recall that a group ordering ≺ is said to be Conradian if for every positive f, g
there exists k ∈ N so that fgk ≻ g (see [1, 6]). Using structure theorems for Con-
rad orderable groups and the description of the convex subgroups from the previous
sections, one can easily show that no Nielsen-Thurston ordering is Conradian (c.f.
Corollary 6.4). However, we prefer giving a longer proof which avoids these struc-
ture theorems. In this proof, the cases of finite type orderings on B3 and B4 need
a special argument (compare Remark 6.5).

Example 6.1. The Dehornoy ordering ≺
D

on B3 is not Conradian. This is shown
in [8, Example 3.21], through a very indirect argument. A shorter proof works
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as follows: using the identity σ2σ1σ
−1
2 = σ−1

1 σ2σ1 we get, for all k ∈ N, that

1 ≺
D

σ2σ1σ
−(k+1)
2 = σ

−(k+1)
1 σ2σ1. Therefore, (σ−1

2 σ1)(σ
k
1 ) ≺

D
σ1 for all k ∈ N,

yet both σ−1
2 σ1 and σ1 are ≺

D
-positive.

Notice that, according to [10], every Nielsen-Thurston ordering of finite type on B3

is conjugate to the Dehornoy ordering. Since the Conrad property is stable under
conjugacy, no Nielsen-Thurston ordering of finite type on B3 is Conradian.

Example 6.2. Up to conjugacy, there are only three Nielsen-Thurston orderings of
finite type on B4, namely those given by the geodesics of Figure 4 below (see again
[10]). None of them gives rise to a Conradian ordering. Indeed, (a) corresponds to
the Dehornoy ordering, and the above argument applies. For the geodesics in (b)

and (c), one can directly check the inequality 1 ≺ σ3σ2σ
−(k+1)
3 , which allows to

conclude as in the previous example.

(b)(a) (c)

Figure 4. The three conjugacy classes of finite type Nielsen-
Thurston orderings of B4.

Following [8, 9], the Conradian soul of an ordering is defined as the maximal convex
subgroup restricted to which the order satisfies the Conrad property. It was already
shown in [8] that the Conradian soul of the Dehornoy ordering on Bn corresponds
to 〈σn−1〉. Next, we describe the Conradian soul of any Nielsen-Thurston ordering,
thus solving a problem raised in [8, Remark 3.40].

Theorem 6.3. The Conradian soul of a Nielsen-Thurston ordering on Bn cor-

responds to the maximal Abelian convex subgroup, that is, to the largest copy of

B2 × · · · × B2 which is convex.

Proof. For a geodesic of infinite type, the smallest non-trivial convex subgroup is a
copy of Bm for some m with 3 6 m 6 n. Such a group has no convex subgroup. If it
was Conradian, then it would be Archimedean, and hence by Hölder’s theorem, the
underlying group would be Abelian (see [1, 6]). This is absurd as Bm, for m > 3,
is not Abelian.

If the geodesic is of finite type, then it is clear that the maximal convex copy
of a product of (say, k) B2 factors is contained in the Conradian soul (indeed,
any bi-invariant ordering – and thus any ordering defined on an Abelian group –
is Conradian). The next larger convex subgroup of Bn corresponds either to a
product P = Bn1

× · · · × Bnk−1
, where there is only one index different from 2,

which is equal to 4, or to a product P = Bn1
× · · · × Bnk

, where only one index
is different from 2, and it is equal to 3. If the restriction of the ordering to P was
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Conradian, then the restriction to B4 or B3, respectively, would be also Conradian.
However, we have seen in Examples 6.1 and 6.2 that this cannot be the case.

An alternative argument for the end of the proof. To see that the restriction of
the ordering to P cannot be Conradian, first note that P has only finitely many
convex subgroups. By [9, Proposition 1.7] and its proof, if P was Conradian then
the underlying group would be solvable. However, neither B3 nor B4 are solvable.

2

Corollary 6.4. No Nielsen-Thurston ordering is Conradian.

Proof. If a Nielsen-Thurston ordering was Conradian, then it would coincide with
its Conradian soul. However, according to Theorem 6.3, this is never the case. 2

Remark 6.5. Although stated for Nielsen-Thurston orderings on general braid
groups Bn (with n > 3), the preceding corollary gives new information only in the
cases of B3 and B4. Indeed, these groups do admit Conradian orderings, whereas
for n > 5 there is no Conradian ordering on Bn at all (see [2, pp. 287-289]).

7. Nielsen-Thurston orderings of infinite type are approximated by
their conjugates

The relevance of the Conradian soul stems from the following result which we cite
from [8, Proposition 4.7] (see also [4, Theorem 1.2] and [9, Theorem 2.7]).

Theorem 7.1. If the Conradian soul of an ordering on an infinite countable group

is trivial, then this ordering is an accumulation point of its conjugates.

Using this result we may easily prove the following

Theorem 7.2. Any Nielsen-Thurston ordering of infinite type on Bn may be ap-

proximated by its conjugates.

Proof. By Theorem 6.3, the Conradian soul of the ordering is trivial. The result
then follows from Theorem 7.1. 2

8. Nielsen-Thurston orderings of finite type are not isolated

We now show our main result.

Theorem 8.1. Nielsen-Thurston orderings are not isolated in the topological space

of left-invariant orderings of Bn.

Proof. In the case of orderings of infinite type, the ordering may be approximated
by its conjugates (see Theorem 7.2).

In the finite type case, for a maximal value of k there exists a convex subgroup
of the form B2 × · · · × B2 ∼ Zk. If k > 2, then the restriction of ≺ to Zk is not
isolated in the space of orderings of Zk (see for instance [11]). A convex extension
argument (see [8, Section 3.3.5]) then shows that ≺ is not isolated in the space of
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braid orderings. If k = 1, then the smallest convex subgroup strictly containing the
maximal Abelian convex subgroup B2 is a copy of B3. By [10], the restriction of
≺ to this copy of B3 is a conjugate of the Dehornoy ordering, which is not isolated
in the space of orderings of B3: see Example 8.2 below. Once again, a convex
extension argument shows that ≺ is not isolated in the space of braid orderings. 2

Example 8.2. Dehornoy’s ordering is approximated by its conjugates. This was
first shown in [8] throughout a very indirect argument. A simpler proof appears in
[2, Chapter XIV]. Here we propose an even simpler argument.

Let ≺j be the Dehornoy ordering, conjugated by σ−j
2 σ1. Thus, a word w is positive

in the ordering ≺j if and only if σ−1
1 σj

2wσ−j
2 σ1 ≻

D
1. We claim that the sequence

≺j tends to ≺
D

in the space of orderings.

Indeed, if w = σk
2 for some k > 0, then σ−1

1 σj
2wσ−j

2 σ1 ≻
D

1 since the De-
hornoy order has Property S. If, on the other hand, w is a σ1-positive word:

w = σk1

2 σ1σ
k2

2 σ1 . . . σ
kℓ−1

2 σ1σ
kℓ

2 , then we calculate

σ−1
1 σj

2wσ−j
2 σ1 = σ−1

1 σj
2σ

k1

2 σ1σ
k2

2 σ1 . . . σ
kℓ−1

2 σ1σ
kℓ

2 σ−i
2 σ1

= σ2σ
j+k1

1 σ−1
2 σk2

2 σ1 . . . σ
kℓ−1

2 σ1σ
kℓ

2 σ−n
2 σ1.

Thus σ1σ
−j
2 wσj

2σ1 is σ1-positive for sufficiently large j (namely for j > −k1), which
proves the desired convergence.

Finally, ≺j is different from ≺
D

for all positive integers j, since its smallest positive

element is the conjugate of σ2 by σ−j
2 σ1, and this is different from σ2.

Remark 8.3. The choice of the sequence σ−j
2 σ1 is quite natural. Indeed, the

sequence σ−j
2 σ1 approaches the Conradian soul from above: for any element c of

the Conradian soul 〈σ2〉 and for any σ1-positive word w we have c ≺
D

σ−j
2 σ1 ≺

D
w,

where the second inequality is only true for sufficiently large j. In terms of geodesics,
if γ is the standard geodesic inducing the Dehornoy-order on B3 (c.f. Figure 4(a)),

then the sequence of geodesics σ−j
2 σ1.γ is eventually further to the right than any

prescribed geodesic β.γ, for β a σ1-positive braid – see Figure 5.

σ
−7

2
σ1

Figure 5. The geodesic σ−j
2 σ1.γ deviates from γ to the left, but

“by as little as possible”: it goes “over” the leftmost puncture (thus
deviating to the left), but then it goes as much to the right as pos-
sible (it turns j times counterclockwise around the two rightmost
punctures, with j arbitrarily large)

Example 8.2 can be generalized as follows.
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Theorem 8.4. Every Nielsen-Thurston ordering ≺ of finite type whose Conradian

soul is a copy of B2 can be approximated by its conjugates.

Proof. If σ is a positive generator of the Conradian soul, then σ corresponds
to a left half-twist. According to [8, Proposition 4.9] and its proof (see also [9,
Theorem 2.9] and its proof), there exists a sequence ≺j= gj(≺) of conjugates of
≺ which converges either to ≺ or to ≺′, where ≺′ is the ordering whose set of
positive elements is the union of {σk : k < 0} and {g : g ≻ 1, g /∈ 〈σ〉}. If the limit
point was ≺′, then the conjugates g−1

j σgj would be negative for j large enough.
This contradicts the fact that the Nielsen-Thurston ordering ≺ has the subword
property S.

Remark 8.5. The argument of the proof above actually shows the stronger result
that for any given Nielsen-Thurston ordering of finite type ≺, there exists another
finite-type Nielsen-Thurston ordering ≺1, obtained from the given one simply by
permuting the lexicographic order of the Conradian soul, which is approximated by
conjugates of itself (compare [8, Proposition 4.9] and [9, Corollary 2.10]).

The previous results show that the only Nielsen-Thurston orderings which may fail
to be approximated by their conjugates are those of finite type whose Conradian
soul is higher-rank Abelian.

Example 8.6. Consider the ordering ≺ induced by the geodesic shown in Fig-
ure 6(a). The Conradian soul of this ordering is 〈σ1, σ3, σ5〉 = Z3. By Theorem 8.1,
this order can be approximated by other orders, but we do not know whether it
can be approximated by its conjugates. Imitating Example 8.2 and the proof of
Theorem 8.4, we could try to conjugate the order by elements which are as small
as possible while being larger than all elements of the Conradian soul. This, how-
ever, yields an approximation not of the desired ordering ≺, but of one where the
lexicographic order of Z3 has been permuted.

(a) (b)

Figure 6. (a) A geodesic whose associated ordering of B6 seems
not to be a limit point of Nielsen-Thurston orderings. Note the
convex subgroups 〈σ5〉 ⊆ 〈σ3, σ5〉 ⊆ 〈σ1, σ3, σ5〉. (b) Conjugating

by σ−N
3 σ4 (a sequence which becomes eventually smaller than any

positive element outside the Conradian soul) yields an approxima-
tion of a different ordering with convex jumps 〈σ1〉 ⊆ 〈σ1, σ5〉 ⊆
〈σ1, σ3, σ5〉.
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Question. Can the ordering induced by the geodesic of Figure 6(a) be approxi-
mated by its conjugates? If not, can it be approximated by a sequence of Nielsen-
Thurston orderings? The calculation above suggests that the answer to both ques-
tions may be “no”.
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