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Abstract

The notion of regular singular points appeared in the classical theory of complex ODE.
Equations with regular singular points can be solved locally by the so-called Frobenius method
and behave more nicely than other classes of equations. It is well-known by a theorem of Fuchs,
Turrittin and Lutz that finding regular singular points is equivalent to searching for cyclic
vectors. This documents, based on a work of Katz, interprets the connection of aforementioned
notions and provides an explicit formula for finding cyclic vectors.
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1 Complex ordinary differential equations in one variable
Hilbert’s twenty-first problem asks about the existence of linear differential equations having pre-
scribed monodromic group. The main reference for this section is [Kat76]. Let X be a complete
connected nonsingular curve over C, whose underlying complex manifold is thus a compact Rie-
mann surface. Let U be a non-empty Zariski open set, the complement in X of a finite (possibly
empty) set of closed points. The underlying complex manifolds Uan is thus a finitely punctured
Riemann surfaces.

Consider a linear homogeneous differential equation of rank n on U . To make this more clear, let
us explicate several notions as well as present examples. For instance, if X = P1 and U ⊂ P1−{∞},
this simply means a (n× n) system

d

dz
f = P (z) · f . (1.1)

This class of equations includes the case linear equations of order n

f (n) = pn−1f
(n−1) + · · ·+ p1f

′ + p0f, (1.2)
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by taking for the matrix P (z) the particular choice

P (z) =


0 1 ... 0 0
0 . 1 0 0
... . . . . . . ...
0 0 0 1
p0 p1 · · · pn−2 pn−1

 (1.3)

In case of higher genus, we have no global coordinate z so we are led to define a differential
equation on U to be a pair (M,∇) consisting of a locally free coherent sheaf M on U together with
a connection ∇ : M → M ⊗ Ω1

U/C (definition 2.1), we then define solutions of this equation to be
the kernel of ∇. This is reasonable, at least when one thinks in terms of analytic manifolds. Let’s
consider the following example.

Example 1.1. Denote π : C2 × C → C by the trivial bundle of rank 2 over C. Any connection
on π can be expressed as

∇ = d+

(
−f11(z) −f12(z)
−f21(z) −f22(z)

)
dz (1.4)

where d is the exterior derivative and fij(z) are analytic functions. A section a ∈ Γ(π) may be
identified with a map

C → C2

z 7→ (a1(z), a2(z)),

and then
∇(a) = ∇

(
a1(z)
a2(z)

)
=

(
a′1(z)− f11(z)a1(z)− f12(z)a2(z)
a′2(z)− f21(z)a1(z)− f22(z)a2(z)

)
dz. (1.5)

We can easily see that a being in the kernel of ∇ is essentially equivalent to being a solution of a
(2× 2) system.

If we fix a point z0 ∈ U , then the germ S of local holomorphic solutions near z0 is a complex vector
space of dimension rank(M), by the local existence theorem for differential equations. Given
a loop γ in Uan starting and ending at z0, then the analytic continuation along γ defines an
automorphism of S. In this way the fundamental group π1(U

an, z0) acts on S, this is called the
monodromy representation of the differential equation.

Example 1.2. Take the differential equation

z
df

dz
= αf, α ∈ C (1.6)

on the punctured plane C − {0}. Fix a point in the punctured plane and choose a branch cut
starting from the chosen point then the local solution is the function zα = exp(αlog(z)). If we take
the analytic continuation along the homotopy class of the curve γ looping counterclockwise around
the origin an angle of 2π then the solution turns out to be e2πiαzα. We have π1(C − {0}) ∼= Z
with generator [γ], the corresponding monodromy representation in C× = GL(1,C) is given by
γ 7→ e2πiα.
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Let us recall the notion of a regular singular point before we state the Hilbert’s twenty-first problem.
Consider a ODE in one complex variable z ∈ C

f (n) = pn−1f
(n−1) + · · ·+ p1f

′ + p0f, (1.7)

where pi are meromorphic functions. The above equation is said to have a regular singular point
at a ∈ C if all pn−i have a pole of order at most i at a. In such a case, by a routine computation,
the equation can be transformed into the form

D(n)f = bn−1D
(n−1)f + ...+ b0f, (1.8)

where D = (z − a) d
dz

. The original one has a regular singular point at a iff all bi are holomorphic
at a.

Example 1.3. If p, q are two holomorphic functions then

f ”(z) =
p(z)

z
f ′(z) +

q(z)

z2
f(z) (1.9)

is equivalent to D2f = (p + 1)Df + qf , so we see that this equation has a regular singular point
at z = 0.

We rewrite the resulting equation into the matrix form

D


f
Df
D2f
...

D(n−1)f

 =


0 1 ... 0 0
0 . 1 0 0
... . . . . . . ...
0 0 0 1
b0 b1 · · · bn−2 bn−1




f
Df
D2

...
D(n−1)f

 . (1.10)

Consequently, the original equation does not have a regular singular point at a iff orda(pi) < 0
for some i. We shall see this fact again in theorem 2.4. Initially, the concept of regular singular
points was defined by requiring the local analytic solution to satisfy certain growth estimates but
afterwards Fuchs proved that in fact this notion is purely algebraic, which is precisely the one we
just define here.

Remark. Though we do not use this but we recall that once we know our equation has a regular
singular point at a, the so-called Frobenius method can be used to provide n independent solutions
near a.

Now we are in position to state the Hilbert’s twenty-first problem.

Hilbert’s twenty-first problem. Let X be a nonsingular curve over C, U one of its non-empty
Zariski open set. Hilbert’s twenty-first problem asks whether any finite-dimensional complex rep-
resentation of π1(U

an) can be obtained as the monodromy representation of a differential equation
on U with regular singular points.

If we remove the regular condition, then there may be too many differential equations with
given monodromy.
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Example 1.4. Let U = A1, Uan = C, and consider π1(U
an) = 0 → C× the trivial representation.

For any polynomial P ∈ C[z], the equation

df

dz
= P (z).f (1.11)

has solution
f(z) = exp

(∫ z

0

P (t)dt

)
(1.12)

which is an entire function, so without monodromy. But as differential equations on the algebraic
variety A1, these are pairwise non-isomorphic; only the choice P ≡ 0 gives regular singular points
(include ∞). Indeed, if z = 1/w then the equation

w
df

dw
= − Q(w)

wdeg(P )+1
.f where wdeg(P )P (1/w) = Q(w) (1.13)

has a regular singular point at w = 0 iff Q(w) ≡ 0. For this reason, one insists on regular singular
points.

The next section introduces the classical theory of regular singular points and show how it is
related to the notion of cyclic vectors. Loosely, once we know that our connection has a cyclic
vector, we can use this vector to check the regularity; in this sense, a cyclic vector behaves like a
local solution of our differential equation.

2 Classical singular regular theory and Turrittin’s theorem
Throughout this section, we suppose k is a field of characteristics 0 and K is a function field in
one variable over k; for instance, we can take K to be the function field of a smooth, projective
curve over k. Let W a finite-dimensional vector space over K. Denote by n the dimension of W
over K.

Definition 2.1 (Connection). A connection ∇ on W is an additive mapping ∇ : W → Ω1
K/k⊗W

satisfying the Leibniz rule

∇(fw) = df ⊗ w + f∇(w) ∀f ∈ K,w ∈ W. (2.1)

Equivalently, ∇ can be viewed as a K-linear mapping

∇ : Derk(K,K) → Endk(W ) (2.2)

such that
(∇(D))(fw) = D(f)w + f(∇(D))w ∀D ∈ Derk(K,K), f ∈ K,w ∈ W, (2.3)

where ∇(D) is the composite

For simplicity, we can assume that k is algebraically closed then K is the function field of a
nonsingular, projective curve. Thus for every closed point p (we also call a closed point a place)
we do have

Op = {f ∈ K | ordp(f) ⩾ 0}
mp = {f ∈ K | ordp(f) ⩾ 1} ,

(2.5)

where ordp : K → Z ∪ {∞} is the discrete valuation at p.
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Definition 2.2 (Regular singular point). Let p be a place of K/k, let ∇ be a connection on
W . We say that ∇ has a regular singular point at p if there exists a basis e of W and a matrix
P ∈ Mn(Op) such that

∇
(
h
d

dh

)
e = Pe, (2.6)

where h is an uniformizer at p.

Definition 2.3 (Cyclic vectors). Let ∇ be a connection on W . A vector w ∈ W is said to be
cyclic if there exists a non-zero derivation D ∈ Derk(K,K) such that

SpanK

〈
w, (∇(D))(w), ..., (∇(D))l(w), ...

〉
= W. (2.7)

In that case, we call (W,∇) a cyclic object.

We mention Turrittin theorem in the first section. Now we state the theorem partially. Those
who are interested in reading its full statement and proof are advised to refer to [Kat70].

Theorem 2.4 (Fuchs, Turrittin, Lutz). Suppose that (W,∇) has a cyclic vector w ∈ W , p is
a place of K/k, h is a uniformizer at p and n = dimK(W ). Then the following conditions are
equivalent:

• (W,∇) does not have a regular singular point at p.

• In terms of the basis

e =


w

∇
(
h d
dh

)
(w)

...(
∇
(
h d
dh

))n−1
(w)

 (2.8)

of W , the connection matrix is expressed as

∇
(
h
d

dh

)
e =


0 1 ... 0 0
0 . 1 0 0
... . . . . . . ...
0 0 0 1
p0 p1 · · · pn−2 pn−1

 e (2.9)

and, for some value of i, we have ordp(pi) < 0.

Proof. [Kat70], theorem 11.9.

Remark. In this setting, the basis e plays the role of the tuple (f,Df,D2f, ..., D(n−1)f) in (1.10).

Having explained why cyclic vectors are important, the next section gives an efficient algorithm
for the problem of finding cyclic vectors.
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3 A simple algorithm for cyclic vectors
The setting in this section is general as we deal with a large class of rings, not only for fields as
before. Let R be a commutative ring with unity, ∂ : R → R is a derivation of R to itself, and
t ∈ R an element with ∂(t) = 1. We denote by R∂ the subring of "constants". For any constant
a ∈ R∂, the element t+ a of R also satisfies ∂(t+ a) = 1.

Fix an integer n ⩾ 1, and a triple (V,D, e) consisting of a free R-module V of rank n, an
additive mapping D : V → V satisfying

D(fv) = ∂(f)v + fD(v) (3.1)

for all f ∈ R, v ∈ V , and a R-basis e = (e0, ..., en−1) of V .
An element v ∈ V is said to be a cyclic vector if v,Dv, ..., Dn−1(v) is a R-basis of V . Suppose

now that (n− 1)! is invertible in R. For each constant a ∈ R∂, we define an element c(e, t− a) in
V by the following formula

c(e, t− a) =
n−1∑
j=0

(t− a)j

j!

j∑
k=0

(−1)k
(
j

k

)
Dk(en−k). (3.2)

Theorem 3.1 (N. Katz, [Kat87]). Suppose R is a local Z[1/(n − 1)!]-algebra whose maximal
ideal contains t− a. Then c(e, t− a) is a cyclic vector.

Proof. We compute the successive derivatives of c(e, t−a). For convenience, we define the following
elements

c(i, j) ∈ V indexed by i, j integers ⩾ 0,

inductively by the formulas

c(0, j) =

{∑j
k=0(−1)k

(
j
k

)
Dk(ej−k) j ⩽ n− 1,

0 j ⩾ n.

c(i+ 1, j) = c(i, j + 1) +D(c(i, j)).

By definition of c(e, t− a), we have

c(e, t− a) =
n−1∑
j=0

(t− a)j

j!
c(0, j). (3.3)

We shall prove by induction that

Dic(e, t− a) =
n−1∑
j=0

(t− a)j

j!
c(i, j). (3.4)

Before that, we shall show that

(i) ∂((t− a)j) = j(t− a)j−1. This can be proved by induction. Indeed, for j = 1, it is true since
∂(t) = 1, ∂(a) = 0. Suppose it is true for j, then we have

∂((t− a)j+1) = (t− a)∂((t− a)j) + (t− a)j∂(t− a)
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(ii) c(i, j) = 0 if j ⩾ n. Again, this can be proved by induction because c(0, j) = 0 if j ⩾ n and
c(i+ 1, j) = c(i, j + 1) +D(c(i, j)). In particular, we deduce that c(i+ 1, n− 1) = D(c(i, j))
because c(i, n) = 0.

The case i = 0 is trivial, suppose it is true for i, we shall prove that it holds for i + 1. Applying
D to our induction hypothesis

Di+1c(e, t− a) = D

(
n−1∑
j=0

(t− a)j

j!
c(i, j)

)

=
n−1∑
j=0

(
1

j!
∂((t− a)j)c(i, j) +

(t− a)j

j!
D(c(i, j))

)
(i)
=

n−1∑
j=0

(
(t− a)j−1

(j − 1)!
c(i, j) +

(t− a)j

j!
D(c(i, j))

)

=
(t− a)n−1

(n− 1)!
D(c(i, n− 1)) +

n−2∑
j=0

(
(t− a)

j!
c(i, j + 1) +

(t− a)j

j!
D(c(i, j))

)
(ii)
=

n−1∑
j=0

(t− a)j

j!
c(i+ 1, j).

Another straightforward induction shows that

c(i, j) =

j∑
k=0

(−1)k
(
j

k

)
D(ei+j−k) ∀ i+ j ⩽ n− 1. (3.5)

In particular, c(i, 0) = ei ∀ i = 0, n− 1, which implies that

Dic(e, t− a) ≡ ei mod (t− a)V. (3.6)

Denote by I the ideal generated by Dic(e, t− a), then we can easily see that

V = (t− a)V + I, (3.7)

but (t− a) is contained in the maximal ideal of R so we apply Nakayama’s lemma (recall that V
is finitely generated) to conclude that V = I; equivalently, c(e, t− a) is a cyclic vector.

Theorem 3.2 (N. Katz, [Kat87]). Let R be a ring in which (n− 1)! is invertible, and let k be
a subfield of R∂. Suppose that |k| > n(n − 1), and let a0, a1, ..., an(n−1) be n(n − 1) + 1 distinct
elements of k. Then Zariski locally on X = Spec(R), one of the vectors c(e, t−ai), i = 0, n(n− 1),
is a cyclic vector.

Remark. Here Zariski locally literally means there exists an open covering Spec(R) =
⋃

i Spec(Ri)
such that the conclusion holds for each Ri.

Proof. For i = 0, n− 1, X ∈ R, we define elements ci(e, X) by

ci(e, X) =
n−1∑
j=0

Xj

j!
c(i, j). (3.8)
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Taking wedge product gives us

c0(e, X) ∧ · · · ∧ cn−1(e, X) = P (X)e0 ∧ · · · ∧ en−1, (3.9)

where P is a polynomial of degree ⩽ n(n− 1). We know in the proof of the previous theorem that
ci(e, 0) = ei, so P (0) = 1. At X = t − a, we know from (3.4) that ci(e, t − a) = Dic(e, t − a);
therefore, c(e, t− a) is a cyclic vector if and only if P (t− a) ∈ R×. We must show that the ideal
generated by P (t− ai) is the unit ideal. Let us write explicitly

P (X) =

n(n−1)∑
j=0

rjX
j. (3.10)

If we take rj as variables then we have a system consisting of n(n− 1) + 1 equations

P (t− ai) =

n(n−1)∑
j=0

rj(t− ai)
j. (3.11)

The determinant of this system is the well-known Van der Monde determinant:

det
(
(t− ai)

j
0⩽i,j⩽n(n−1)

)
=

∏
0⩽i<j⩽n(n−1)

(ai − aj) ∈ k× ⊂ R×. (3.12)

From this we see that the ideal generated by P (t−ai) equals the ideal generated by the coefficients
ri, but r0 = P (0) = 1.

The proof theorem 3.2 also yields the following variant.

Corollary 3.3. Let R be a ring in which (n(n−1))! is invertible, then Zariski locally on Spec(R),
one of the vectors c(e, t− i), i = 0, n(n− 1) is a cyclic vector.

Proof. Since (n(n− 1))! is invertible, we deduce that all constants 0, 1, ..., n(n− 1) are contained
in k. Thus, we may apply previous theorem with ai = i.

Remark. • Suppose e = (e0, ..., en−1) is a cyclic basis to begin with, i.e., e0 is a cyclic vector
and ei = Die0 for i = 0, n− 1. Then c(0, 0) = e0 and c(0, j) = 0 for j > 0. Therefore
c(e, t− a) = e0 is the cyclic vector we began with.

• Suppose R is a field, n ⩾ 2. If (n − 1)! is not invertible in R, (V,D) may admit no cyclic
vector. For example, take R = Fp(t), ∂ = d/dt, V = Rn, D(f1, ..., fn) = (∂f1, ..., ∂fn).
Because ∂p = 0, so Dp = 0, so (V,D) admits no cyclic vector if p ⩽ n− 1.

• Suppose R is a field, n ⩾ 2, and (n − 1)! is invertible in R. For a suitably chosen basis e,
c(e, t) can vanish. Indeed, if e0 is a cyclic vector, and if ei = Die0 for i = 0, n− 2 then

c(e, t) = e0 +
tn−1

(n− 1)!
(en−1 −Dn−1e0),

so we can solve for en−1 to force c(e, t) = 0.
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• If R is a field in which (n− 1)! is invertible, and which is finitely generated extension of an
algebraically closed subfield k of R∂. Given (V,D, e) over R, write the connection in the
matrix form

Dej =
∑
j

aijei. (3.13)

There exists a ∂-stable k-subalgera R0 of R which is finitely generated as a k-algebra, and
which contains t and all entrices aij. We have a canonical descent (V0, D, e) of (V,D, e), here
by V0 we mean V but it is considered as a R0-module. For every k-point x of X = Spec(R0),
we have inclusions

R0 ⊂ OX,x ⊂ R, (3.14)

where the first inclusion follows from the fact that R0 is a domain while the second one is
obvious as well since R is a field. Since x is a k-point, we denote by t(x) the image of t
in k under the canonical morphism. By theorem 3.1 we know that c(e, t − t(x)) is a cyclic
vector for V0⊗R0 OX,x because t− t(x) is zero in the residue field and hence contained in the
maximal ideal. Therefore, à fortiori c(e, t− t(x)) is a cyclic vector for V = V0 ⊗R0 R itself.

• The formula (3.2) is not randomly chosen. A heuristic reason to write such a cumbersome
formular is the following. Consider R = C[[t]], the formal power series over C in one variable,
∂ = d/dt is the formal derivative. If (h0, ..., hn−1) is a horizontal basis of V , i.e. a R-basis
such that Dhi = 0 ∀ i = 0, n− 1. Then it can be seen easily that

n−1∑
j=0

tj

j!
hj (3.15)

is a cyclic vector. Given any v ∈ V , the t-adic sequence

ṽ =
∑
k⩾0

(−1)k
tk

k!
Dk(v) (3.16)

is the unique solution of
ṽ ≡ v mod tV, D(ṽ) = 0. (3.17)

Therefore if e = (e0, ..., en−1) is any R-basis of V , then (ẽ0, ..., ẽn−1) is, by Nakayama’s lemma,
a horizontal R-basis, and consequently

n−1∑
j=0

tj

j!
ẽj =

n−1∑
j=0

tj

j!

∑
k⩾0

(−1)k
tk

k!
Dk(ej) (3.18)

is a cyclic vector. But if v is a cyclic vector, then so, by Nakayama’s lemma, is v + tnv0 for
any v0 ∈ V , simply because, for i = 0, n− 1,

Di(v + tnv0) ≡ Div mod tn−iV. (3.19)

Therefore in the above double sum, we may neglect all terms with j + k ⩾ n, to conclude
that

n−1∑
j=0

tj

j!

n−1−j∑
k=0

(−1)k
tk

k!
Dk(ej) (3.20)

is a cyclic vector. But this last vector is easily seen to be c(e, t).
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There is another variant which improves Katz’s results in the case of a differential system over a
field R = K. The ring of constants K∂ turns out to be a field, so it contains a prime field (either
Z/p or Q), this prime field is denoted KC .

Theorem 3.4. Suppose R = K is a field, and KC contains at least n non-zero elements and that
the extension K/KC is either infinite or of degree at least n. Then every n-dimensional differential
K-space (V, ∂,D) admits a cyclic vector.

Proof. [GCKS02], Cyclic Vectors, theorem 3.11.

Remark. The hypotheses of the above theorem are essential, R. C. Churchill and Jerald J. Kovacic
constructed counterexamples in case we dismiss either hypothesis of the cardinality of KC or the
degree of the extension K/KC .
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